Ethgen O, Bruyere O, Richy F, Dardennes C, Reginster JY. Health-related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J Bone Jt Surg Am. 2004;86(5):963–74. https://doi.org/10.2106/00004623-200405000-00012.
Article
Google Scholar
Daigle ME, Weinstein AM, Katz JN, Losina E. The cost-effectiveness of total joint arthroplasty: a systematic review of published literature. Best Pract Res Clin Rheumatol. 2012;26(5):649–58. https://doi.org/10.1016/j.berh.2012.07.013.
Article
Google Scholar
Singh JA, Yu S, Chen L, Cleveland JD. Rates of total joint replacement in the United States: future projections to 2020–2040 using the national inpatient sample. J Rheumatol. 2019;46(9):1134–40. https://doi.org/10.3899/jrheum.170990.
Article
Google Scholar
Hip, knee & shoulder arthroplasty, in hip, knee & shoulder arthroplasty. 2022, Australian Orthopaedic Association National Joint Replacement Registry.
Ackerman IN, Bohensky MA, Zomer E, Tacey M, Gorelik A, Brand CA, de Steiger R. The projected burden of primary total knee and hip replacement for osteoarthritis in Australia to the year 2030. BMC Musculoskelet Disord. 2019;20(1):90. https://doi.org/10.1186/s12891-019-2411-9.
Article
Google Scholar
Lubbeke A, Rees JL, Barea C, Combescure C, Carr AJ, Silman AJ. International variation in shoulder arthroplasty. Acta Orthop. 2017;88(6):592–9. https://doi.org/10.1080/17453674.2017.1368884.
Article
Google Scholar
Wagner ER, Farley KX, Higgins I, Wilson JM, Daly CA, Gottschalk MB. The incidence of shoulder arthroplasty: rise and future projections compared with hip and knee arthroplasty. J Shoulder Elb Surg. 2020;29(12):2601–9. https://doi.org/10.1016/j.jse.2020.03.049.
Article
Google Scholar
Labek G, Thaler M, Janda W, Agreiter M, Stockl B. Revision rates after total joint replacement: cumulative results from worldwide joint register datasets. J Bone Jt Surg Br. 2011;93(3):293–7. https://doi.org/10.1302/0301-620X.93B3.25467.
Article
CAS
Google Scholar
Kurtz SM, Lau E, Ong K, Zhao K, Kelly M, Bozic KJ. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res. 2009;467(10):2606–12. https://doi.org/10.1007/s11999-009-0834-6.
Article
Google Scholar
Glassman AH, Bobyn JD, Tanzer M. New femoral designs: Do they influence stress shielding? Clin Orthop Relat Res. 2006;453:64–74. https://doi.org/10.1097/01.blo.0000246541.41951.20.
Article
CAS
Google Scholar
Ridzwan MIZ, Shuib S, Hassan AY, Shokri AA, Mohamad Ib MN. Problem of stress shielding and improvement to the hip implant designs: a review. J Med Sci. 2007;7(3):460–7. https://doi.org/10.3923/jms.2007.460.467.
Article
Google Scholar
Martinez-Marquez D, Delmar Y, Sun S, Stewart RA. Exploring macroporosity of additively manufactured titanium metamaterials for bone regeneration with quality by design: a systematic literature review. Materials (Basel). 2020. https://doi.org/10.3390/ma13214794.
Article
Google Scholar
Huiskes RIK, Weinans H, Rietbergen BV. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 1992. https://doi.org/10.1097/00003086-199201000-00014.
Article
Google Scholar
Mehboob H, Ahmad F, Tarlochan F, Mehboob A, Chang SH. A comprehensive analysis of bio-inspired design of femoral stem on primary and secondary stabilities using mechanoregulatory algorithm. Biomech Model Mechanobiol. 2020;19(6):2213–26. https://doi.org/10.1007/s10237-020-01334-3.
Article
Google Scholar
Limmahakhun S, Oloyede A, Chantarapanich N, Jiamwatthanachai P, Sitthiseripratip K, Xiao Y, Yan C. Alternative designs of load−sharing cobalt chromium graded femoral stems. Mater Today Commun. 2017;12:1–10. https://doi.org/10.1016/j.mtcomm.2017.05.002.
Article
CAS
Google Scholar
Sarker A, Leary M, Fox K. Metallic additive manufacturing for bone-interfacing implants. Biointerphases. 2020;15(5):050801. https://doi.org/10.1116/6.0000414.
Article
CAS
Google Scholar
Li J, Cui X, Hooper GJ, Lim KS, Woodfield TBF. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: a review. J Mech Behav Biomed Mater. 2020;105:103671. https://doi.org/10.1016/j.jmbbm.2020.103671.
Article
CAS
Google Scholar
Spece H, Basgul C, Andrews CE, MacDonald DW, Taheri ML, Kurtz SM. A systematic review of preclinical in vivo testing of 3D printed porous Ti6Al4V for orthopedic applications, part I: animal models and bone ingrowth outcome measures. J Biomed Mater Res B Appl Biomater. 2021;109(10):1436–54. https://doi.org/10.1002/jbm.b.34803.
Article
CAS
Google Scholar
Murr LE. Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration, osteoinduction and vascularization: an overview. J Mater Sci Technol. 2019;35(2):231–41. https://doi.org/10.1016/j.jmst.2018.09.003.
Article
CAS
Google Scholar
Bai L, Gong C, Chen X, Sun Y, Zhang J, Cai L, Zhu S, Xie SQ. Additive manufacturing of customized metallic orthopedic implants: materials, structures, and surface modifications. Metals. 2019. https://doi.org/10.3390/met9091004.
Article
Google Scholar
Mahmoud D, Elbestawi M. Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review. J Manuf Mater Process. 2017. https://doi.org/10.3390/jmmp1020013.
Article
Google Scholar
Koju N, Niraula S, Fotovvati B. Additively manufactured porous Ti6Al4V for bone implants: a review. Metals. 2022. https://doi.org/10.3390/met12040687.
Article
Google Scholar
Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52(6):377–84. https://doi.org/10.1136/jech.52.6.377.
Article
CAS
Google Scholar
von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, Initiative S. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Epidemiology. 2007;18(6):800–4. https://doi.org/10.1097/EDE.0b013e3181577654.
Article
Google Scholar
Abate KM, Nazir A, Jeng J-Y. Design, optimization, and selective laser melting of vin tiles cellular structure-based hip implant. Int J Adv Manuf Technol. 2021;112(7–8):2037–50. https://doi.org/10.1007/s00170-020-06323-5.
Article
Google Scholar
Jette B, Brailovski V, Dumas M, Simoneau C, Terriault P. Femoral stem incorporating a diamond cubic lattice structure: design, manufacture and testing. J Mech Behav Biomed Mater. 2018;77:58–72. https://doi.org/10.1016/j.jmbbm.2017.08.034.
Article
Google Scholar
Mehboob H, Tarlochan F, Mehboob A, Chang SH, Ramesh S, Harun WSW, Kadirgama K. A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem. J Mater Sci Mater Med. 2020;31(9):78. https://doi.org/10.1007/s10856-020-06420-7.
Article
CAS
Google Scholar
Al Zoubi NF, Tarlochan F, Mehboob H, Jarrar F. Design of titanium alloy femoral stem cellular structure for stress shielding and stem stability: computational analysis. Appl Sci. 2022. https://doi.org/10.3390/app12031548.
Article
Google Scholar
Hazlehurst KB, Wang CJ, Stanford M. An investigation into the flexural characteristics of functionally graded cobalt chrome femoral stems manufactured using selective laser melting. Mater Des. 2014;60:177–83. https://doi.org/10.1016/j.matdes.2014.03.068.
Article
CAS
Google Scholar
Abate KM, Nazir A, Chen J-E, Jeng J-Y. Design, optimization, and evaluation of additively manufactured vintiles cellular structure for acetabular cup implant. Processes. 2019. https://doi.org/10.3390/pr8010025.
Article
Google Scholar
Kolken HMA, de Jonge CP, van der Sloten T, Garcia AF, Pouran B, Willemsen K, Weinans H, Zadpoor AA. Additively manufactured space-filling meta-implants. Acta Biomater. 2021;125:345–57. https://doi.org/10.1016/j.actbio.2021.02.020.
Article
CAS
Google Scholar
Hollister SJ, Kikuchi N. A comparison of homogenization and standard mechanics analyses for periodic porous composites. Comput Mech. 1992;10(2):73–95. https://doi.org/10.1007/bf00369853.
Article
Google Scholar
Corona-Castuera J, Rodriguez-Delgado D, Henao J, Castro-Sandoval JC, Poblano-Salas CA. Design and fabrication of a customized partial hip prosthesis employing CT-scan data and lattice porous structures. ACS Omega. 2021;6(10):6902–13. https://doi.org/10.1021/acsomega.0c06144.
Article
CAS
Google Scholar
Cortis G, Mileti I, Nalli F, Palermo E, Cortese L. Additive manufacturing structural redesign of hip prostheses for stress-shielding reduction and improved functionality and safety. Mech Mater. 2022. https://doi.org/10.1016/j.mechmat.2021.104173.
Article
Google Scholar
Alkhatib SE, Mehboob H, Tarlochan F. Finite element analysis of porous titanium alloy hip stem to evaluate the biomechanical performance during walking and stair climbing. J Bionic Eng. 2019;16(6):1103–15. https://doi.org/10.1007/s42235-019-0122-4.
Article
Google Scholar
Harrysson OLA, Cansizoglu O, Marcellin-Little DJ, Cormier DR, West HA. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C. 2008;28(3):366–73. https://doi.org/10.1016/j.msec.2007.04.022.
Article
CAS
Google Scholar
Marcellin-Little DJ, Cansizoglu O, Harrysson OL, Roe SC. In vitro evaluation of a low-modulus mesh canine prosthetic hip stem. Am J Vet Res. 2010;71(9):1089–95. https://doi.org/10.2460/ajvr.71.9.1089.
Article
Google Scholar
Bittredge O, Hassanin H, El-Sayed MA, Eldessouky HM, Alsaleh NA, Alrasheedi NH, Essa K, Ahmadein M. Fabrication and optimisation of Ti-6Al-4V lattice-structured total shoulder implants using laser additive manufacturing. Materials (Basel). 2022. https://doi.org/10.3390/ma15093095.
Article
Google Scholar
El Hofy H, Eldesouky I. Design and prototyping of a novel low stiffness cementless hip stem. Int J Biomed Eng Technol. 2020. https://doi.org/10.1504/ijbet.2020.10027741.
Article
Google Scholar
Eldesouky I, El-Hofy H, Harrysson O. Research: design and analysis of a low-stiffness porous hip stem. Biomed Instrum Technol. 2017;51(6):474–82. https://doi.org/10.2345/0899-8205-51.6.474.
Article
Google Scholar
Cheah YK, Azman AH, Bajuri MY. Finite-element analysis of load-bearing hip implant design for additive manufacturing. J Fail Anal Prev. 2022;22(1):356–67. https://doi.org/10.1007/s11668-021-01304-6.
Article
Google Scholar
Jette B, Brailovski V, Simoneau C, Dumas M, Terriault P. Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem. J Mech Behav Biomed Mater. 2018;77:539–50. https://doi.org/10.1016/j.jmbbm.2017.10.019.
Article
Google Scholar
Bahraminasab M, Sahari BB, Edwards KL, Farahmand F, Jahan A, Hong TS, Arumugam M. On the influence of shape and material used for the femoral component pegs in knee prostheses for reducing the problem of aseptic loosening. Mater Des. 2014;55:416–28. https://doi.org/10.1016/j.matdes.2013.10.020.
Article
CAS
Google Scholar
Eltlhawy B, El-Midany T, Fouda N, Eldesouky I. Finite element assessment of a porous tibial implant design using rhombic dodecahedron structure. Solid State Phenom. 2021;318:71–81. https://doi.org/10.4028/www.scientific.net/SSP.318.71.
Article
Google Scholar
Eltlhawy B, Fouda N, Eldesouky I. Numerical evaluation of a porous tibial-knee implant using gyroid structure. J Biomed Phys Eng. 2022;12(1):75–82. https://doi.org/10.31661/jbpe.v0i0.2005-1116.
Article
Google Scholar
Wang S, Zhou X, Liu L, Shi Z, Hao Y. On the design and properties of porous femoral stems with adjustable stiffness gradient. Med Eng Phys. 2020;81:30–8. https://doi.org/10.1016/j.medengphy.2020.05.003.
Article
Google Scholar
Jafari Chashmi M, Fathi A, Shirzad M, Jafari-Talookolaei R-A, Bodaghi M, Rabiee SM. Design and analysis of porous functionally graded femoral prostheses with improved stress shielding. Designs. 2020. https://doi.org/10.3390/designs4020012.
Article
Google Scholar
Hedia HS, Aldousari SM, Timraz HA, Fouda N. Stress shielding reduction via graded porosity of a femoral stem implant. Mater Test. 2019;61(7):695–704. https://doi.org/10.3139/120.111374.
Article
CAS
Google Scholar
Singh SK, Tandon P. Heterogeneous modeling based prosthesis design with porosity and material variation. J Mech Behav Biomed Mater. 2018;87:124–31. https://doi.org/10.1016/j.jmbbm.2018.07.029.
Article
Google Scholar
Ghavidelnia N, Bodaghi M, Hedayati R. Femur auxetic meta-implants with tuned micromotion distribution. Materials (Basel). 2020. https://doi.org/10.3390/ma14010114.
Article
Google Scholar
Kolken HMA, Janbaz S, Leeflang SMA, Lietaert K, Weinans HH, Zadpoor AA. Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials. Mater Horiz. 2018;5(1):28–35. https://doi.org/10.1039/c7mh00699c.
Article
CAS
Google Scholar
Sufiiarov VSh, Borisov EV, Sokolova VV, Chukovenkova MO, Soklakov AV, Mikhaluk DS, Popovich AA. Structural analysis of an endoprosthesis designed with graded density lattice structures. Int J Numer Method Biomed Eng. 2021;37(2):e3420. https://doi.org/10.1002/cnm.3420.
Article
Google Scholar
Sufiiarov VSh, Orlov AV, Popovich AA, Chukovenkova MO, Soklakov AV, Mikhaluk DS. Numerical analysis of strength for an endoprosthesis made of a material with graded lattice structures. Russ J Biomech. 2021;25(1):55–66. https://doi.org/10.15593/RJBiomech/2021.1.05.
Article
Google Scholar
Bahraminasab M, Sahari BB, Edwards KL, Farahmand F, Hong TS, Naghibi H. Material tailoring of the femoral component in a total knee replacement to reduce the problem of aseptic loosening. Mater Design (1980–2015). 2013;52:441–51. https://doi.org/10.1016/j.matdes.2013.05.066.
Article
CAS
Google Scholar
Liu Y, Chen B, Wang C, Chen H, Zhang A, Yin W, Wu N, Han Q, Wang J. Design of porous metal block augmentation to treat tibial bone defects in total knee arthroplasty based on topology optimization. Front Bioeng Biotechnol. 2021;9:765438. https://doi.org/10.3389/fbioe.2021.765438.
Article
Google Scholar
Arabnejad Khanoki S, Pasini D. Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material. J Biomech Eng. 2012;134(3):031004. https://doi.org/10.1115/1.4006115.
Article
Google Scholar
Arabnejad Khanoki S, Pasini D. Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem. J Mech Behav Biomed Mater. 2013;22:65–83. https://doi.org/10.1016/j.jmbbm.2013.03.002.
Article
CAS
Google Scholar
Arabnejad S, Johnston B, Tanzer M, Pasini D. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J Orthop Res. 2017;35(8):1774–83. https://doi.org/10.1002/jor.23445.
Article
CAS
Google Scholar
Moussa A, Rahman S, Xu M, Tanzer M, Pasini D. Topology optimization of 3D-printed structurally porous cage for acetabular reinforcement in total hip arthroplasty. J Mech Behav Biomed Mater. 2020;105:103705. https://doi.org/10.1016/j.jmbbm.2020.103705.
Article
CAS
Google Scholar
Rahimizadeh A, Nourmohammadi Z, Arabnejad S, Tanzer M, Pasini D. Porous architected biomaterial for a tibial-knee implant with minimum bone resorption and bone-implant interface micromotion. J Mech Behav Biomed Mater. 2018;78:465–79. https://doi.org/10.1016/j.jmbbm.2017.11.041.
Article
CAS
Google Scholar
Wang Y, Arabnejad S, Tanzer M, Pasini D. Hip implant design with three-dimensional porous architecture of optimized graded density. J Mech Design. 2018. https://doi.org/10.1115/1.4041208.
Article
Google Scholar
Xu M, Zhang Y, Wang S, Jiang G. Genetic-based optimization of 3D Burch-Schneider cage with functionally graded lattice material. Front Bioeng Biotechnol. 2022;10:819005. https://doi.org/10.3389/fbioe.2022.819005.
Article
Google Scholar
Garner E, Wu J, Zadpoor AA. Multi-objective design optimization of 3D micro-architected implants. Comput Methods Appl Mech Eng. 2022. https://doi.org/10.1016/j.cma.2022.115102.
Article
Google Scholar
Saravana Kumar G, George SP. Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect. Proc Inst Mech Eng H. 2017;231(2):149–59. https://doi.org/10.1177/0954411916686125.
Article
Google Scholar
Nomura J, Takezawa A, Zhang H, Kitamura M. Design optimization of functionally graded lattice infill total hip arthroplasty stem for stress shielding reduction. Proc Inst Mech Eng H. 2022. https://doi.org/10.1177/09544119221075140.
Article
Google Scholar
Gao X, Zhao Y, Wang M, Liu Z, Liu C. Parametric design of hip implant with gradient porous structure. Front Bioeng Biotechnol. 2022;10:850184. https://doi.org/10.3389/fbioe.2022.850184.
Article
Google Scholar
Sun C, Wang L, Kang J, Li D, Jin Z. Biomechanical optimization of elastic modulus distribution in porous femoral stem for artificial hip joints. J Bionic Eng. 2018;15(4):693–702. https://doi.org/10.1007/s42235-018-0057-1.
Article
Google Scholar
Sun C, Kang J, Wang L, Jin Z, Liu C, Li D. Stress-dependent design and optimization methodology of gradient porous implant and application in femoral stem. Comput Methods Biomech Biomed Engin. 2022. https://doi.org/10.1080/10255842.2022.2115291.
Article
Google Scholar
Cramer AD, Challis VJ, Roberts AP. Physically realizable three-dimensional bone prosthesis design with interpolated microstructures. J Biomech Eng. 2017. https://doi.org/10.1115/1.4035481.
Article
Google Scholar
Bahraminasab M, Sahari BB, Edwards KL, Farahmand F, Hong TS, Arumugam M, Jahan A. Multi-objective design optimization of functionally graded material for the femoral component of a total knee replacement. Mater Des. 2014;53:159–73. https://doi.org/10.1016/j.matdes.2013.06.050.
Article
CAS
Google Scholar
Bergmann G, Bender A, Dymke J, Duda G, Damm P. Standardized loads acting in hip implants. PLoS ONE. 2016;11(5):e0155612. https://doi.org/10.1371/journal.pone.0155612.
Article
CAS
Google Scholar
Bergmann G, Bender A, Graichen F, Dymke J, Rohlmann A, Trepczynski A, Heller MO, Kutzner I. Standardized loads acting in knee implants. PLoS ONE. 2014;9(1):e86035. https://doi.org/10.1371/journal.pone.0086035.
Article
CAS
Google Scholar
Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34(7):859–71. https://doi.org/10.1016/s0021-9290(01)00040-9.
Article
CAS
Google Scholar
Bergmann G, Graichen F, Rohlmann A, Bender A, Heinlein B, Duda GN, Heller MO, Morlock MM. Realistic loads for testing hip implants. Biomed Mater Eng. 2010;20(2):65–75. https://doi.org/10.3233/BME-2010-0616.
Article
CAS
Google Scholar
Heinlein B, Kutzner I, Graichen F, Bender A, Rohlmann A, Halder AM, Beier A, Bergmann G. ESB clinical biomechanics award 2008: complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6–10 months. Clin Biomech (Bristol, Avon). 2009;24(4):315–26. https://doi.org/10.1016/j.clinbiomech.2009.01.011.
Article
Google Scholar
Heller MO, Bergmann G, Kassi JP, Claes L, Haas NP, Duda GN. Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech. 2005;38(5):1155–63. https://doi.org/10.1016/j.jbiomech.2004.05.022.
Article
CAS
Google Scholar
Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Bergmann G. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech. 2010;43(11):2164–73. https://doi.org/10.1016/j.jbiomech.2010.03.046.
Article
CAS
Google Scholar
Pedersen DR, Brand RA, Davy DT. Pelvic muscle and acetabular contact forces during gait. J Biomech. 1997;30(9):959–65. https://doi.org/10.1016/s0021-9290(97)00041-9.
Article
CAS
Google Scholar
Speirs AD, Heller MO, Duda GN, Taylor WR. Physiologically based boundary conditions in finite element modelling. J Biomech. 2007;40(10):2318–23. https://doi.org/10.1016/j.jbiomech.2006.10.038.
Article
Google Scholar
Ghosh S, Choudhury D, Roy T, Moradi A, Masjuki HH, Pingguan-Murphy B. Tribological performance of the biological components of synovial fluid in artificial joint implants. Sci Technol Adv Mater. 2015;16(4):045002. https://doi.org/10.1088/1468-6996/16/4/045002.
Article
CAS
Google Scholar
Castagnini F, Bordini B, Yorifuji M, Giardina F, Natali S, Pardo F, Traina F. Highly porous titanium cups versus hydroxyapatite-coated sockets: midterm results in metachronous bilateral total hip arthroplasty. Med Princ Pract. 2019;28(6):559–65. https://doi.org/10.1159/000500876.
Article
Google Scholar
Engh CA Jr, McAuley JP, Sychterz CJ, Sacco ME, Engh CA Sr. The accuracy and reproducibility of radiographic assessment of stress-shielding. A postmortem analysis. J Bone Jt Surg Am. 2000;82(10):1414–20. https://doi.org/10.2106/00004623-200010000-00007.
Article
Google Scholar
Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res. 1986. https://doi.org/10.1097/00003086-198607000-00023.
Article
Google Scholar
Alkhatib SE, Tarlochan F, Mehboob H, Singh R, Kadirgama K, Harun W. Finite element study of functionally graded porous femoral stems incorporating body-centered cubic structure. Artif Organs. 2019;43(7):E152–64. https://doi.org/10.1111/aor.13444.
Article
Google Scholar
Tarlochan F, Mehboob H, Mehboob A, Chang SH. Influence of functionally graded pores on bone ingrowth in cementless hip prosthesis: a finite element study using mechano-regulatory algorithm. Biomech Model Mechanobiol. 2018;17(3):701–16. https://doi.org/10.1007/s10237-017-0987-2.
Article
Google Scholar
Pasini D, Guest JK. Imperfect architected materials: mechanics and topology optimization. MRS Bull. 2019;44(10):766–72. https://doi.org/10.1557/mrs.2019.231.
Article
Google Scholar
Bagheri ZS, Melancon D, Liu L, Johnston RB, Pasini D. Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with selective laser melting. J Mech Behav Biomed Mater. 2017;70:17–27. https://doi.org/10.1016/j.jmbbm.2016.04.041.
Article
CAS
Google Scholar
Moussa A, Melancon D, El Elmi A, Pasini D. Topology optimization of imperfect lattice materials built with process-induced defects via powder bed fusion. Addit Manuf. 2021. https://doi.org/10.1016/j.addma.2020.101608.
Article
Google Scholar
Van Hooreweder B, Apers Y, Lietaert K, Kruth JP. Improving the fatigue performance of porous metallic biomaterials produced by selective laser melting. Acta Biomater. 2017;47:193–202. https://doi.org/10.1016/j.actbio.2016.10.005.
Article
CAS
Google Scholar
Ahmadi SM, Kumar R, Borisov EV, Petrov R, Leeflang S, Li Y, Tumer N, Huizenga R, Ayas C, Zadpoor AA, Popovich VA. From microstructural design to surface engineering: a tailored approach for improving fatigue life of additively manufactured meta-biomaterials. Acta Biomater. 2019;83:153–66. https://doi.org/10.1016/j.actbio.2018.10.043.
Article
CAS
Google Scholar
Dallago M, Raghavendra S, Luchin V, Zappini G, Pasini D, Benedetti M. The role of node fillet, unit-cell size and strut orientation on the fatigue strength of Ti-6Al-4V lattice materials additively manufactured via laser powder bed fusion. Int J Fatigue. 2021. https://doi.org/10.1016/j.ijfatigue.2020.105946.
Article
Google Scholar
Benedetti M, du Plessis A, Ritchie RO, Dallago M, Razavi SMJ, Berto F. Architected cellular materials: a review on their mechanical properties towards fatigue-tolerant design and fabrication. Mater Sci Eng R Rep. 2021. https://doi.org/10.1016/j.mser.2021.100606.
Article
Google Scholar
Rodriguez-Contreras A, Punset M, Calero JA, Gil FJ, Ruperez E, Manero JM. Powder metallurgy with space holder for porous titanium implants: a review. J Mater Sci Technol. 2021;76:129–49. https://doi.org/10.1016/j.jmst.2020.11.005.
Article
CAS
Google Scholar
Ferraris S, Spriano S. Porous titanium by additive manufacturing: a focus on surfaces for bone integration. Metals. 2021. https://doi.org/10.3390/met11091343.
Article
Google Scholar
Wu C, Fang J, Entezari A, Sun G, Swain MV, Xu Y, Steven GP, Li Q. A time-dependent mechanobiology-based topology optimization to enhance bone growth in tissue scaffolds. J Biomech. 2021;117:110233. https://doi.org/10.1016/j.jbiomech.2021.110233.
Article
Google Scholar
Popov VV Jr, Muller-Kamskii G, Kovalevsky A, Dzhenzhera G, Strokin E, Kolomiets A, Ramon J. Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomed Eng Lett. 2018;8(4):337–44. https://doi.org/10.1007/s13534-018-0080-5.
Article
Google Scholar
Wally Z, van Grunsven W, Claeyssens F, Goodall R, Reilly G. Porous titanium for dental implant applications. Metals. 2015;5(4):1902–20. https://doi.org/10.3390/met5041902.
Article
Google Scholar
Murr LE. Metallurgy principles applied to powder bed fusion 3D printing/additive manufacturing of personalized and optimized metal and alloy biomedical implants: an overview. J Mark Res. 2020;9(1):1087–103. https://doi.org/10.1016/j.jmrt.2019.12.015.
Article
CAS
Google Scholar
Hazlehurst KB, Wang CJ, Stanford M. A numerical investigation into the influence of the properties of cobalt chrome cellular structures on the load transfer to the periprosthetic femur following total hip arthroplasty. Med Eng Phys. 2014;36(4):458–66. https://doi.org/10.1016/j.medengphy.2014.02.008.
Article
Google Scholar