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Abstract 

Background Total joint replacements are an established treatment for patients suffering from reduced mobility and 
pain due to severe joint damage. Aseptic loosening due to stress shielding is currently one of the main reasons for 
revision surgery. As this phenomenon is related to a mismatch in mechanical properties between implant and bone, 
stiffness reduction of implants has been of major interest in new implant designs. Facilitated by modern additive 
manufacturing technologies, the introduction of porosity into implant materials has been shown to enable signifi-
cant stiffness reduction; however, whether these devices mitigate stress-shielding associated complications or device 
failure remains poorly understood.

Methods In this systematic review, a broad literature search was conducted in six databases (Scopus, Web of Science, 
Medline, Embase, Compendex, and Inspec) aiming to identify current design approaches to target stress shielding 
through controlled porous structures. The search keywords included ‘lattice,’ ‘implant,’ ‘additive manufacturing,’ and 
‘stress shielding.’

Results After the screening of 2530 articles, a total of 46 studies were included in this review. Studies focusing on 
hip, knee, and shoulder replacements were found. Three porous design strategies were identified, specifically uniform, 
graded, and optimized designs. The latter included personalized design approaches targeting stress shielding based 
on patient-specific data. All studies reported a reduction of stress shielding achieved by the presented design.

Conclusion Not all studies used quantitative measures to describe the improvements, and the main stress shield-
ing measures chosen varied between studies. However, due to the nature of the optimization approaches, optimized 
designs were found to be the most promising. Besides the stiffness reduction, other factors such as mechanical 
strength can be considered in the design on a patient-specific level. While it was found that controlled porous designs 
are overall promising to reduce stress shielding, further research and clinical evidence are needed to determine the 
most superior design approach for total joint replacement implants.

Keywords 3D printing, Lattice structure, Aseptic loosening, Joint prosthesis, Orthopedic implant, Osseointegration

Introduction
Total knee replacement (TKR) and total hip replacement 
(THR) surgeries are established treatments to improve 
quality of life by reducing pain and restoring mobility in 
patients suffering from advanced osteoarthritis [1, 2]. By 
2030, the annual number of primary TKR and THR pro-
cedures in the USA is projected to be 2.8–4.1 million [3]. 
In Australia, over 1.8 million joint replacement surgeries 
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were reported between 1999 and 2021 with the num-
ber of TKR and THR surgeries expected to increase by 
over 200% in the next 30 years [4, 5]. The number of total 
shoulder replacements (TSR) has been increasing sub-
stantially and is projected to be up to over 200% higher 
in 2025 compared to 2017 [4, 6, 7]. Current revision rates 
are approximately 6% after five years and 12% after ten 
years for both THR and TKR arthroplasties, respectively 
[8]. These high revision rates are compounded by the 
increasing number of young patients undergoing hip and 
knee joint replacement surgery [9]. Together these fac-
tors underscore the critical importance of longevity in 
modern implant designs.

The leading cause for implant loosening and peripros-
thetic fractures is loss of bone density due to stress shield-
ing [10, 11]. A key factor that influences stress shielding 
is the mismatch in the material properties between 
the implant and bone. The elastic modulus of com-
mon implant materials such as titanium and its alloys is 
within 100–120 GPa, while the elastic modulus of bone is 
within 0.02–6 GPa for cancellous and 3–30 GPa for corti-
cal bone [12]. Due to the significantly higher stiffness of 
the implant, the load is primarily transferred through the 
implant which shields the bone from loading and results 
in bone resorption as per Wolff’s law [11, 13].

Several design approaches have been adopted in recent 
years with the aim to reduce implant stiffness and miti-
gate stress shielding. These include alterations of the 
implant geometry [10] and the use of low-stiffness mate-
rials [10]. Another approach to reduce stiffness while 
additionally enhancing implant fixation is the introduc-
tion of empty spaces into the implant design, creating 
porosity. Implant porosity enhances the fixation to the 
bone as it enables osseointegration which is the ingrowth 
of bone into the implant [14]. Osseointegration requires 
low relative micromotion between the implant and the 
bone (< 150 μm) which can be achieved through reduced 
implant stiffness and thus reduced stresses at the bone–
implant interface [14, 15]. Porous materials are therefore 
advantageous for increasing implant longevity compared 
to other design approaches.

Additive manufacturing (AM) is an emerging tech-
nology in the medical device sector, allowing for more 
flexibility in the internal design structure of implants. 
At present, AM has been used to fabricate implants for 
a number of locations in the body including the spine, 
the hip, and maxillofacial and dental regions [16]. One of 
the advancements AM has brought to implant manufac-
ture is the design of predefined and controlled porosity 
to lower implant stiffness and reduce bone stress shield-
ing [16, 17]. Porosity also enables bone ingrowth, further 
enhancing load transfer through the bone. The capability 
of bone ingrowth into porous structures has previously 

been shown in implants with porous coating, and vari-
ous animal studies on additively manufactured porous 
titanium structures [10, 18]. The materials can be ran-
domly or stochastically porous (e.g., foams), as well as 
controlled porous (e.g., lattice structures) to match the 
elastic modulus of the bone, which improves their long-
term performance [12, 17, 19, 20].

Previous research has documented porous joint 
replacement designs, focusing especially on the design 
of porous materials and their performance [20–22]. 
However, to date, no review paper has focused on stress 
shielding in their comparison of different approaches for 
designing porous implants. This systematic review aims 
to provide an overview of design strategies used in addi-
tively manufactured porous orthopedic joint replacement 
implants to reduce bone stress shielding.

The evaluation of the designs in each of the studies 
regarding stress shielding and the consideration of the 
reduced mechanical strength were analyzed. This review 
of the current state of the art identifies existing design 
approaches and suggests further directions to address the 
issue of stress shielding caused by orthopedic implants.

Materials and methods
Search strategy
A broad literature search was conducted to identify 
articles in which stress shielding in orthopedic joint 
implants and additively manufactured porous materials 
were addressed (initial search: 07 June 2021, additional 
search for new publications: 19 September 2022). This 
search was based on the following relevant keywords 
which were combined through AND operators: ‘lattice,’ 
‘implant,’ ‘additive manufacturing,’ and ‘stress shielding.’ 
To ensure maximal coverage of relevant literature, syno-
nyms and similar words were added to the search for each 
keyword and connected through OR operators (Fig.  1). 
Additionally, words describing the design approach or 
criteria, such as biomimetic and topology optimization, 
were added to the ‘additive manufacturing’ category to 
broaden the search to include studies that were solely 
computational. Masking and truncations were used to 
cover possible variations of the words. Due to the inter-
disciplinary nature of the research question, the search 
for relevant literature was conducted in six databases, 
namely Scopus, Web of Science, Medline, Embase, Com-
pendex, and Inspec.

Selection criteria
Duplicates were removed, and the remaining articles 
were screened for eligibility by two independent review-
ers (S.S. and Y.Y.). Covidence systematic review software 
(Veritas Health Innovation, Melbourne, Australia) was 
used for the screening process. Firstly, titles and abstracts 
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were assessed, and then, full texts of the selected articles 
were retrieved to determine whether they fulfilled the 
inclusion criteria. To be included in this review, the pub-
lications were required to (i) describe the design or the 
validation of a uncemented orthopedic joint replacement 
implant, (ii) use a controlled porous material, (iii) be 
additively manufactured, (iv) use metallic materials, (v) 
address and assess stress shielding, (vi) be peer-reviewed 
journal articles, and (vii) be written in English. In addi-
tion, we excluded (i) studies involving biodegradable 
scaffold materials, (ii) studies focusing on the influence 
of material composition, or heat or chemical treatment, 
and (iii) studies focusing on the influence of surface coat-
ing and modification. Review articles and meta-analyses 
were excluded. Articles describing the design and/or vali-
dation of the same implant over multiple publications, 
presented by the same research group, were combined 
and evaluated jointly as one study.

Quality assessment
The quality of each of the included studies was assessed 
by one reviewer (S.S.) within the context of the current 

review using a modified questionnaire based on the 
Downs and Black checklist [23] and the STROBE state-
ment [24]. Eleven questions were identified to determine 
the overall quality of the article for this review (Table 1). 
Each study was assigned a score of 2 (fully addressed), 
1 (partially addressed), or 0 (not addressed) for each of 
the eleven questions. A total score for each article was 
calculated by summing up the relevant scores for the 
individual questions. Based on their total score, articles 
were classified as high quality (total score ≥ 20), moder-
ate quality (20 > total score ≥ 15), or low quality (total 
score < 15).

Data extraction
After conducting the search and assessing the articles for 
eligibility and quality, relevant data were extracted from 
all studies by one reviewer (S.S.). This included the type 
of implant, the design strategy to reduce stress shielding, 
and the lattice geometry used for the design. Additionally, 
outcomes as a result of porous design to mitigate stress 
shielding reduction were also documented. Inclusion of 

Fig. 1 Keywords used in the search on Scopus, Web of Science, Medline, Embase, Compendex, and Inspec. The search string was of the form 
‘(Lattice* OR Porous OR … OR Cellular) AND (Implant OR Prosthes* OR… OR Replacement*) AND (Additiv* manufactur* OR 3?d* print*OR … OR 
Topology optimi*) AND (Stress shielding OR Os?eointegrat* OR … OR Tissue regenerat*)’
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mechanical strength into the design and/or the validation 
was examined for each article.

Results
Search results and quality
The total number of records identified through the exten-
sive database search was 5584. Five additional papers 
that were identified during screening were also included. 
After removal of duplicates, 2530 titles, keywords, and 
abstracts were screened for eligibility. During this step, 
2400 articles were excluded as they did not match the 
inclusion criteria. With an additional ten articles identi-
fied through reference search of included articles, the 
total number of articles for full-text assessment was 140. 
Applying the inclusion criteria during full-text screen-
ing, 90 articles were excluded because: they did not 
address stress shielding (n = 43), stochastic or random-
based material was used rather than controlled poros-
ity (n = 18), the implant was not an orthopedic joint 
replacement (n = 9), the study was focused on investigat-
ing material behavior (n = 5), the article was not peer-
reviewed (n = 5), the article was not written in English 
(n = 5), the implant was not additively manufactured 
(n = 4), or the implant was non-metallic (n = 1). In total, 
50 articles based on 46 studies were included in this sys-
tematic review (Fig. 2).

Out of the 46 studies analyzed, most (61%, n = 28) 
were assessed to be of moderate quality, 26% (n = 12) 
were assessed to be of high quality, and 13% (n = 6) were 
assessed to be of low quality based on the thresholds 
given in the Methods section (Fig.  3). The mean total 
score over all studies was 17.5.

The overall mean score computed across all questions 
was 1.6 (Fig.  4). For four of the eleven questions, the 
mean score over all studies was below the mean, includ-
ing the description of the rationale of the porosity and 
implant design (1.4), the suitability (1.2), and reliability 
(1.4) of the outcome measures used to evaluate stress 
shielding, and the discussion of the study’s limitations 
(1.0) (Fig. 4).

Implant types
Most studies included in this review introduced poros-
ity designs for hip and knee joint replacement implants. 
Only one of the included studies presented a porous 
design of a shoulder replacement. In 83% (n = 38) of the 
studies, components of a total hip replacement were pre-
sented, while 15% (n = 7) designed components of a total 
knee replacement. The hip femoral stem was the most 
reported on with 33 (72%) studies focusing on its design. 
Five (11%) studies focused on the acetabular cup design, 
two of which focused on cages for reinforcing the acetab-
ular cup. Four studies (9%) focused on lattice designs for 
the tibial component of a knee replacement, one of which 
presented a design for a ‘block augmentation’ (an addi-
tional component used with a TKR in patients with a tib-
ial bone defect). Two studies (4%) focused on designs of 
the femoral knee replacement component, one of which 
focused solely on the design of the pegs in the femoral 
component.

Additive manufacturing
The design of porous structures with conventional 
manufacturing methods requires a different approach 
compared to the use of AM which allows for higher com-
plexity in the internal structures. Therefore, only studies 
in which AM was considered suitable for the manufac-
turing of the presented implant design were included in 
this review. The most selected material was titanium in 
87% of the studies (n = 40), followed by cobalt–chro-
mium (7%, n = 3), functionally graded material combina-
tions (7%, n = 3), and stainless steel (4%, n = 2) (Table 2). 
Almost half of the included studies (46%, n = 21) did not 
report a specific AM technology for their porous design. 
SLM was used or intended to be used for manufactur-
ing in 35% of the studies (n = 16), followed by EBM (9%, 
n = 4), Direct Metal Laser Sintering (DMLS, 9%, n = 4), 
and Direct Metal Printing (DMP, 2%, n = 1).

Implant design testing
All studies included in this review conducted experi-
ments or analyses to evaluate their designs in relation to 
stress shielding and mechanical performance (Tables  3, 
4 and 5). One of the studies was clinically based in 
which radiographic data from a hospital database were 

Table 1 Questions for quality assessment based on the Downs 
and Black checklist [23] and the STROBE statement [24]

Number Quality assessment question (QAQ)

1 Is the scientific background/rationale for the investigation 
reported?

2 Is the aim/objective of the study clearly described?

3 Is the porosity design method clearly described?

4 Is the rationale of the porosity design clearly described?

5 Is the study design clearly described?

6 Is the study design suitable to validate the porosity design 
with regard to stress shielding?

7 Are the outcome measures suitable to validate the porosity 
design with regard to stress shielding?

8 Are the outcome measures reliable?

9 Are the outcomes and main findings of the study clearly 
described?

10 Are the key results clearly stated regarding the study objec-
tives?

11 Are the limitations of the study discussed?
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Fig. 2 Flowchart of study selection from identified records

Fig. 3 Number of studies over total quality score reached. Studies were of high (green), moderate (yellow), or low (orange) quality
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evaluated, while the remaining 45 studies examined the 
presented designs through finite element analysis or 
in vitro experiments. Most studies included (76%, n = 35) 
were solely computational studies, followed by stud-
ies conducting computational and in  vitro experiments 
(15%, n = 7) and solely in  vitro experiments (7%, n = 3) 
(Fig. 5A). Many of the included studies (72%, n = 33) used 
physiological loading in their models and experimen-
tal protocols. Other studies (9%, n = 4) used the loading 
conditions described in the ISO 7206–4 standard for hip 
implants (Fig. 5B).

Stress shielding
In the included studies, different measures were used 
to quantify the effect of the presented design on stress 
shielding (Fig.  6). Most studies (39%, n = 18) used bone 
stress followed by bone loss (22%, n = 10) and bone 
strain (13%, n = 6). Mechanical properties (7%, n = 3) and 
implant weight (4%, n = 2) were also considered for the 
evaluation of stress shielding in some studies.

To quantify the reduction of stress shielding, stress 
and strain values were either interpreted directly or used 
for the calculation of other measures such as the stress 
shielding increase (SSI) (Tables  3, 4 and 5), comparing 
the relative change in stress (or strain) in the bone before 
and after implantation. Bone remodeling was found to 
be a recurring measure used to evaluate stress shielding 
among the studies. Strain energy density in bone before 
and after implantation is compared to determine the 
regions of bone loss, growth, and homeostasis [13].

Mechanical strength
For the validation of the performance of hip implant 
designs, a setup following the ISO 7204-6 standard was 
used in four studies [25–28]. Other studies selected 
physiological or non-physiological loading conditions in 
their computational models or experiments. Non-physi-
ological experiments for the validation of the mechanical 
strength included flexure/bending tests on femoral hip 
stems [15, 29] and compression testing of the acetabular 
cup [30, 31]. The mechanical strength of the material was 
either compared to values observed in the mechanical 
analysis of the implant (53%) or included in the optimi-
zation scheme (31%). However, seven (16%) studies did 
not consider mechanical strength as a design parameter. 
Only nine (20%) studies considered fatigue in the design 
and/or validation of their lattice structure.

Porous structures were often simplified using repre-
sentative volume elements (RVE) and modeled as con-
tinuums in finite element models rather than modeling 
their detailed porous geometry [32]. RVEs were used in 
33 (73%) of the selected studies (Table 6).

Porosity designs
Porous implants were broadly categorized into three 
groups based on the distribution of porosity within the 
implant. These groups were: uniform porosity, graded 
porosity, and optimized porosity (Fig. 7).

Studies using optimized porosity for their porous 
implant design exhibited the highest quality (mean qual-
ity score 18.5), followed by graded porosity (mean quality 

Fig. 4 Mean score for each of the eleven quality assessment question (Table 1) across all studies included in the current review. The vertical dashed 
line indicates the overall mean score computed across all criteria



Page 7 of 23Safavi et al. Journal of Orthopaedic Surgery and Research           (2023) 18:42  

Table 2 Materials and AM technologies selected for the porous implant design

Study Material Selected 
AM 
technology

[30] Titanium (alloy) SLM

[25] Titanium (alloy) SLM

[56] Titanium (alloy) SLM

[58] Titanium (alloy) SLM

[69] Titanium (alloy) SLM

[51] Titanium (alloy) SLM

[59] Titanium (alloy) SLM

[60] Titanium (alloy) SLM

[52, 53] Titanium (alloy) SLM

[61] Titanium (alloy) SLM

[34] Titanium (alloy) SLM

[38] Titanium (alloy) SLM

[41] Titanium (alloy) SLM

[63] Titanium (alloy) SLM

[99] Cobalt-chrome SLM

[15] Cobalt-chrome SLM

[57] Titanium (alloy) EBM

[81] Titanium (alloy) EBM

[40] Titanium (alloy) EBM

[36, 37] Titanium (alloy) EBM

[31] Titanium (alloy) DMP

[26, 42] Titanium (alloy) DMLS

[14, 27] Titanium (alloy) DMLS

[33] Stainless steel DMLS

[29] Cobalt-chrome DMLS

[48] Titanium (alloy), stainless steel, functionally graded material (FGM)—titanium, stainless steel –

[84] Titanium (alloy) –

[43] Titanium (alloy) –

[47] Titanium (alloy) –

[39] Titanium (alloy) –

[44] Titanium (alloy) –

[50] Titanium (alloy) –

[64] Titanium (alloy) –

[49] Titanium (alloy) –

[67] Titanium (alloy) –

[46] Titanium (alloy) –

[55] Titanium (alloy) –

[28] Titanium (alloy) –

[65] Titanium (alloy) –

[62] Titanium (alloy) –

[45] Titanium (alloy) –

[66] Titanium (alloy) –

[35] Titanium (alloy) –

[68] Titanium (alloy) –

[54] Functionally graded material (FGM)—titanium, alumina ceramic –

[70] Functionally graded material (FGM)—titanium, alumina ceramic –
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score 17.4) and uniform porosity (mean quality score 
16.5). The amounts of studies of high, moderate, and low 
quality are highest for the optimized group (67%, n = 8), 
the graded group (39%, n = 11), and the uniform group 
(83%, n = 5), respectively (Fig. 8).

Uniform porosity
Uniform porosity, characterized by the use of a single 
unit cell design repeated throughout all porous areas of 
the implant, was used in 15 (33%) of the included studies 

(Table 3). The aim when using a uniform porosity design 
was to match typical, average mechanical properties of 
bone as closely as possible. A variety of unit cell designs 
were applied to achieve this aim.

While some of the presented implants had a solid shell 
surrounding the porous structure [29, 33, 34], most stud-
ies used open porosity to enable bone ingrowth. The 
extent of open porosity in the designed implants var-
ied. In two studies, fully porous hip replacements were 
designed with only the neck of the femoral component 

Fig. 5 Approaches to evaluate stress shielding and mechanical properties: A Number of studies conducted computationally, in vitro, or clinically, 
and B number of studies using setups with physiological loading conditions, models using an ISO 7206–4 setup, and other setups in computational 
and in vitro models

Fig. 6 Main parameter used to evaluate the impact of the presented design on the stress shielding
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Fig. 7 Number of studies conducted on each type of implant and porosity design strategies

Fig. 8 Quality distribution between porosity design groups in per cent
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being left solid [35–37]. Similarly, almost fully porous 
shoulder implants were investigated in another study 
[38].

Eldesouky et  al. (2017) reported a reduction of stress 
shielding through the inclusion of a cubic lattice into 
the proximal part of the implant, which was further 
improved in a later study using auxetic lattice structures 
[39, 40]. Another design facilitating boney ingrowth in 
the proximal part of the stem was presented by Mehboob 
et al. (2020) who used beads to create an open porosity 
in their encapsulated body-centered cubic lattice design 
[14, 27]. Designs with partial open porosity in mostly 
the proximal part were investigated in another study to 
determine the most suitable design space to reduce stress 
shielding while not exceeding the material’s yield stress 
[41]. Jette et al. (2018) left an open window in the solid 
shell of their stem to facilitate osseointegration [26, 42]. 
Reduced stress shielding was also shown in knee replace-
ments with uniform porosities in the stem of tibial com-
ponents in two studies, and the geometrically optimized 
pegs of a femoral component in another study [43–45].

Functionally graded porosity
Defined gradients with a specified number of different 
unit cell designs that are distributed rationally based on 
assumptions obtained from analysis and the literature are 
summarized as functionally graded designs. Functionally 
graded porous materials were used in 14 of the included 
studies (Table  4). However, five of them do not present 
an actual lattice design but rather a graded stiffness. 
Since the chosen material properties were associated 
with porous/lattice materials, they can be directly trans-
lated into such designs. Moreover, 36% did not quantify 
the reduction in stress shielding explicitly but instead 
compared stress or strain distributions to qualitatively 
describe the improvement.

Comparisons between radial and axial grading of hip 
stems in two studies suggest that both approaches can be 
effective in reducing stress shielding [15, 46]. While the 
radial grading which implemented a stiffer outer shell 
was found to better mitigate stress shielding than a proxi-
mally stiffer axial grading, the observed differences were 
not significant [15, 46]. Similar to these results, other 
studies found that decreasing stiffness toward the distal 
end improved the load exposure of the bone, while a stiff-
ness increase toward the distal end resulted in a better 
load bearing performance of the implant and improved 
stress distribution in bone [47]. In contrast, Hedia et al. 
(2019) compared the influence of porosity in their study 
but also material grading with a porosity decrease toward 
the distal end and reported a stress increase in the femur 
[48]. Al Zoubi et  al. (2022) compared radially graded 
and uniform designs with different porosities and found 

that designs with increasing porosity toward the center 
of the implant performed best in terms of stress transfer 
to bone, but also micromotion and mechanical strength 
[28]. Singh et  al. (2018) reported that a combination of 
both, radial and axial grading, could further enhance 
the decrease in stress shielding and the increase in bone 
ingrowth [49].

Besides axial and radial grading, other approaches for 
functionally graded porosity design in femoral stems 
were identified amongst the included studies. Two stud-
ies presented a hip stem design with lattice structures in 
the proximal area, combining design with negative and 
positive Poisson’s ratio to expose the femur bone to com-
pression on both sides of the implant [50, 51]. Sufiiarov 
et al. (2021) changed the parameters of their lattice struc-
ture depending on which parts of the implant interacted 
with cortical and trabecular bone and reported a favora-
ble stress distribution in the femur compared to a solid 
implant [52, 53].

In addition, functionally graded porosity was found to 
be beneficial in other implant components. Kolken et al. 
(2021) studied various lattice structures and applied them 
for the design of porous acetabular cups with higher 
porosity at the bone–implant interface to fully dense 
material at the joint revealed a superior performance of 
the diamond lattice structure [31]. In one study, a stress 
increase at the bone–implant interface was achieved 
using a graded porous knee implant design without a 
specific lattice design by gradually changing the porosity 
from one surface to the other [54]. Another study pro-
posed a porous design for metal block augmentation for 
the tibial component of a knee replacement to address 
stress shielding [55]. Design spaces for higher and lower 
porosity were selected through topology optimization 
with the aim to achieve sufficient mechanical strength 
despite material reduction [55].

Optimized porosity
Optimized porosity refers to the use of optimization algo-
rithms to achieve the most suitable design specification. 
Optimization to reduce stress shielding was employed 
in 17 of the included studies (Table 5). While not all the 
studies used a customized approach in their optimiza-
tion, 65% (n = 11) used the mechanical properties of bone 
obtained from CT scans to optimize the implant internal 
structure.

A recurring objective in optimized porosity design 
approaches was the reduction of bone loss to target the 
effects of stress shielding directly. Arabnejad et al. (2012, 
2013, 2017) minimized bone loss subject to interface 
failure, a defined safety factor and porosity in a hip stem 
[56–58]. Based on their findings, optimizations on a hip 
stem, a hip cage, and a knee implant were conducted 
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using material compliance as the main design factor 
increasing the amount of stress and strain exposure in the 
bone and reducing bone resorption [59–61]. Similarly, Xu 
et al. (2022) minimized compliance for the design of their 
Burch–Schneider cage [62]. Minimizing bone resorption 
but also interface stress, Garner et al. (2022) presented a 
porous femoral component with varying Poisson’s ratio 
[63]. This study was the only one included in this review 
using optimization to design an implant with auxetic lat-
tice structures.

Other than bone resorption, bone stress was targeted 
in the optimization in some studies. Saravana et  al. 
(2017) used the comparison of stress present in the femur 
before and after implantation, namely SSI, as their objec-
tive function taking yield and stress, and elastic modulus 
into consideration for the optimization [64]. A similar 
approach was applied in a study presenting a hip stem 
design based on optimized stress shielding and compli-
ance [65]. Gao et al. (2022) designed a femoral stem con-
sisting of eight porous segments maximizing the stress 
transferred to the surrounding bone [66]. In contrast to 
other studies, Sun et  al. (2018) started the optimization 
process from a fully porous, low-stiffness implant and 
iteratively increased the stiffness of each mesh element 
until the global safety was reached [67]. In a later study, 
Sun et  al. (2022) considered the nonlinear relationship 
between the elastic modulus and the stress distribution 
and minimized bone loss to determine a suitable lattice 
design for their femoral component [68].

To target implant failure, Cramer et al. (2017) focused 
on minimizing shear stress in their study and consid-
ered bone loss as a constraint [69]. Abate et  al. (2019, 
2021) targeted material reduction considering sufficient 
mechanical strength, porosity, and strut diameter reduc-
ing the weight significantly compared to a solid implant 
[25, 30]. In another study, Bahraminasab et  al. (2014) 
based their optimization on the findings from their pre-
vious study and developed a weighted optimization 
method for a femoral knee component [70]. Through the 
graded materials considering composition and porosity 
parameters subject to stresses in the surrounding bone, 
micromotion, and implant wear, the stress in the bone 
increased [70].

Summary and discussion
The emergence of additive manufacturing in the medi-
cal device industry has a new capability to design joint 
replacement components with properties that match that 
of the underlying bone. Using lattice designs, porosity 
may provide a much larger range of mechanical proper-
ties that may reduce implant failure due to effects such 
as stress shielding. This systematic review aimed to iden-
tify design strategies presented in the literature and to 

suggest further directions to reduce stress shielding in 
joint replacement implants.

There were 46 studies identified that fit the inclusion 
criteria, most of which (n = 28) were of moderate quality. 
While the background and rationale of the investigations 
were mostly well described, many studies (n = 25) did not 
or only partially explain the rationale of the implant and 
lattice design strategy. Therefore, the reason for choos-
ing a particular porous design and porosity distribu-
tion remained unclear. While the study design was well 
described in nearly all articles (n = 37), the reported out-
come measures relating to stress shielding such as stress 
and/or strain in the surrounding bone were not fully ana-
lyzed and quantified (61%). For instance, a comparison of 
stress or strain maxima or minima instead of their distri-
bution throughout the bone was found to be insufficient 
to determine the reduction of stress shielding. Further-
more, more than half of the studies (54%) did not report 
all their results nor compare them to outcomes reported 
in the literature. However, in most studies, the main find-
ings were summarized (89%), and key results stated with 
regard to the study objective (85%). The lowest quality 
scores were achieved in the discussion of limitations. 
Several articles were found to not sufficiently discuss the 
limitations of their study (61%).

Apart from one clinically based study, all included 
studies evaluated their implant designs using computa-
tional and/or physical in  vitro models. Computational 
models offer a cost-effective approach for trialing numer-
ous designs and loading conditions; however, to provide 
physiologically valid predictions, model outputs must 
agree with experimental data. Seven studies followed 
this approach where model predictions were compared 
to physical tests of the matching implant under identi-
cal loading conditions [15, 25, 29, 37, 42, 58, 66]. For the 
remaining 35 studies, model outputs were not compared 
to in vitro models, which raises questions regarding the 
validity of the models. While computational models can 
allow for efficient testing of new implant designs, there 
is a need for experimental validation to evaluate their 
accuracy.

Another aspect regarding the validation of new 
implant designs is the quantification of stress shielding. 
While most studies provided stress and strain distribu-
tion within the bone and/or the implant under loading 
(n = 38), not all studies quantified the reduction of stress 
shielding. The location and magnitude of stress and/or 
strain maxima in the bone and/or implant may be a good 
indicator for the success of the new design. However, 
quantitative data comparing stress and strain in the bone 
and/or implant before and after implantation can provide 
a better understanding of the reduction of stress shield-
ing and therefore bone loss related to a new implant 
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design. Particularly, the inclusion of bone modeling and 
remodeling measures may accommodate the prediction 
of clinical outcomes with regard to stress shielding.

A key challenge with both computational and in vitro 
techniques is modeling all the physiological conditions 
experienced by the implant. Both approaches imple-
mented loads that were representative of those in  vivo, 
specifically loads obtained from instrumented hip and 
knee implants [71–79]. However, in all but one of the 
reviewed studies biological effects such as the composi-
tion of synovial fluid were not applied, yet these condi-
tions are known to affect implant performance [80].

The study by Castagnini et  al. (2019) [81] was a clini-
cal based study where 3D printed porous implants were 
implanted in patients, thus exposing them to biological 
effects in  vivo. Comparing a conventionally to an addi-
tively manufactured porous acetabular cup design, the 
authors found no significant differences in the midterm 
outcomes with regard to stress shielding and signs of 
osseointegration [81]. Clinical studies that did not assess 
stress shielding were excluded from this review. It is 
worth noting that the reproducibility of determining the 
extent of stress shielding based on radiographic bone loss 
assessment has been found to be limited as results varied 
between the assessing surgeons [82]. Even though more 
in vivo studies are needed to overcome the limitations of 
computational and in vitro modeling, the clinical evalu-
ation of stress shielding remains a challenge in clinical 
settings.

For the included studies in this review, implant porosity 
was implemented using either a uniform (33%), graded 
(30%), or optimized (37%) design strategy. All studies 
reported stress shielding reduction based on the cho-
sen measure of stress shielding. It was found that quality 
assessment of included studies showed 67% of high-qual-
ity studies used an optimized design strategy compared 
to 25% for graded and 8% for uniform porosity designs. 
This suggests higher reliability of the findings of stud-
ies on optimized porosity design approaches regarding 
reducing stress shielding. However, since the studies did 
not quantify the reduction of stress shielding in an iden-
tical manner, the superiority between the lattice design 
strategies remains unclear.

Although stress shielding was the focus of this review, 
there are other factors that influence implant longevity. 
For example, micromotion between implant and bone 
is known to impact bony ingrowth and, if excessive, can 
lead to implant loosening [83]. Reducing the stiffness 
mismatch to achieve a reduction of micromotion was 
a rationale for employing different design approaches 
[50, 59, 60]. Implant designs with uniformly porous 
materials were found to lead to higher micromotion at 
the bone–implant interface, negatively impacting the 

osseointegration [46, 67, 84]. Using a mechano-regula-
tion algorithm to simulate bone tissue growth, Tarlochan 
et al. (2018) found porous functionally graded material to 
be superior to homogenously porous materials in terms 
of bone ingrowth and therefore fixation of the implant 
[85]. This finding indicates that graded porosity designs 
have a greater capability to enhance implant longevity 
than uniform designs.

Mechanical strength is an important factor in the lon-
gevity of an implant, since insufficient strength may 
lead to implant failure and, ultimately, revision surgery. 
Fatigue performance, which influences implant longev-
ity, was factored into topology optimization schemes 
in several studies. This included a fatigue safety fac-
tor as a boundary condition [57, 58, 60, 61], optimizing 
the design until a suitable factor of safety was achieved 
[67], or by comparing the occurring stress in the porous 
design to the respective fatigue strength of the selected 
material [62, 65]. Considering fatigue strength in the 
optimization as a boundary condition enables the design 
of a graded porous design with reduced stiffness and suf-
ficient mechanical strength.

Manufacturing imperfections impact mechanical per-
formance and can cause premature material failure, 
which can be especially prevalent for porous structures 
produced by additive manufacturing [86]. Yet none of 
the included studies considered these defects. A com-
pensation strategy may help reduce the geometrical and 
mechanical differences after manufacturing compared 
to the computational model [87]. Furthermore, Moussa 
et al. (2021) presented an approach to factor such com-
pensation strategies into a topology optimization to 
achieve less disparity between computational designs and 
manufactured components [88]. These studies highlight 
the importance of considering the discrepancy in the 
geometry between designed and manufactured lattice 
because it results in significant discrepancies in mechani-
cal properties between the designed and manufactured 
lattice.

Besides considering mechanical performance in porous 
implant designs, mechanical strength can be enhanced to 
avoid implant failure. Strategies to improve the mechani-
cal performance, in particular fatigue strength, of 
additively manufactured lattice structures such as post-
manufacturing treatments [89, 90], design adjustments 
(e.g., filleted nodes) [91], or manufacturing parameters 
(e.g., layer thickness, laser/electron beam power) of the 
lattice have been presented in the literature [92]. None 
of the studies included in this review considered these 
post-processing steps in their implant design. To prevent 
material failure in porous implants, strategies to enhance 
mechanical performance need to be understood and con-
sidered in the design.
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The mechanical properties and surface finishing of 
porous implants impact remodeling of bone after implan-
tation, which impacts their long-term performance. 
Enabling bone tissue growth into the implant for better 
fixation is a common rationale for introducing porosity 
[19]. An analysis of bone formation after implantation, 
however, was only found in the computational study by 
Mehboob et  al. who analyzed the influence of implant 
stiffness on bone formation [14]. To enhance bone 
ingrowth, surface coatings or treatments ought to be 
considered for additively manufactured porous implants 
since they have been found to be beneficial [18, 93, 94]. 
Looking at time-dependent and time-independent algo-
rithms, Wu et al. found that the formation of bone tissue 
and the resulting change of load transfer had a significant 
impact on the design of their topology optimized scaf-
folds [95]. This finding indicates the importance of con-
sidering time-dependent mechanobiological models in 
implant design for osseointegration [95].

This review had limitations that ought to be acknowl-
edged. Notably, studies on cemented implants were 
excluded in this review. Cementless implants are used 
to preserve the underlying bone for cases where revi-
sions are more likely, such as in younger patients who 
have a longer life expectancy and are therefore more 
likely to outlive their implant [4]. Since cementless 
implants require greater bone stock for fixation, avoiding 
bone resorption is of greater concern for these types of 
implants compared to cemented. While it is feasible that 
implant porosity may be designed to enhance cemented 
implant performance, this would require different design 
criteria involving cement–implant interaction.

Studies on porous structures for other types of 
implants than joint replacements were excluded from 
this review. Approaches using lattice structures to reduce 
stress shielding can also be found in other types of bone 
replacement implants and dental applications [16, 96–
98]. However, due to the multi-axial, dynamic, and high 
loading conditions at joints, the requirements of joint 
replacements differ from other bone-interfacing implants 
such as those for the treatment of large bone defects. 
Additionally, other factors besides stress shielding affect-
ing implant longevity, including wear [54, 70] and micro-
motion [14, 15, 28, 35, 44, 46, 50, 59–61, 63, 70, 84], were 
not considered in the analyses.

Conclusion
The longevity of joint replacement implants is adversely 
affected by a stiffness mismatch between implant and 
the surrounding bone. Introducing porosity into stiff 
implant materials, facilitated by additive manufacturing 

technologies, has become an area of interest to address 
the issue of stress shielding and enable osseointegration. 
Functionally grading material properties through lattice 
structures, especially through optimization, can be used 
to reduce the effects of stress shielding under considera-
tion of the resulting increase in micromotion and decrease 
in mechanical strength. Due to a lack of consistent vali-
dation and quantification of stress shielding, no superior 
porosity design strategy has been identified to date. More-
over, the long-term stability of these new designs with 
regard to bone growth remains poorly understood. More 
research is required to understand the extent of potential 
improvements and to predict clinical outcomes.
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