Andersen OZ, Offermanns V, Sillassen M, Almtoft KP, Andersen IH, Sorensen S, Jeppesen CS, Kraft DC, Bottiger J, Rasse M, Kloss F, Foss M. Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. Biomaterials. 2013;34(24):5883–90. https://doi.org/10.1016/j.biomaterials.2013.04.031.
Article
CAS
Google Scholar
Albrektsson T, Chrcanovic B, Jacobsson M, Wennerberg A. Osseointegration of implants—a biological and clinical overview. JSM Dent Surg. 2017;2:1–6.
Google Scholar
von Wilmowsky C, Moest T, Nkenke E, Stelzle F, Schlegel KA. Implants in bone: part II. Research on implant osseointegration: material testing, mechanical testing, imaging and histoanalytical methods. Oral Maxillofac Surg. 2014;18(4):355–72. https://doi.org/10.1007/s10006-013-0397-2.
Article
Google Scholar
Fernandez-Yague MA, Abbah SA, McNamara L, Zeugolis DI, Pandit A, Biggs MJ. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Deliv Rev. 2015;84:1–29. https://doi.org/10.1016/j.addr.2014.09.005.
Article
CAS
Google Scholar
Cordova LA, Stresing V, Gobin B, Rosset P, Passuti N, Gouin F, Trichet V, Layrolle P, Heymann D. Orthopaedic implant failure: aseptic implant loosening–the contribution and future challenges of mouse models in translational research. Clin Sci. 2014;127(5):277–93. https://doi.org/10.1042/CS20130338.
Article
Google Scholar
Tang K, Deng Z, Wang T, Nie M. Aseptic Loosening after total hip arthroplasty secondary to the disappearing coating? Asian J Surg. 2022;45(1):535–6. https://doi.org/10.1016/j.asjsur.2021.09.041.
Article
Google Scholar
Vladescu A, Mihai Cotrut C, Ak Azem F, Bramowicz M, Pana I, Braic V, Birlik I, Kiss A, Braic M, Abdulgader R, Booysen R, Kulesza S, Monsees TK. Sputtered Si and Mg doped hydroxyapatite for biomedical applications. Biomed Mater. 2018;13(2):025011. https://doi.org/10.1088/1748-605X/aa9718.
Article
Google Scholar
Zhang P, Wang X, Lin Z, Lin H, Zhang Z, Li W, Yang X, Cui J. Ti-based biomedical material modified with TiOx/TiNx duplex bioactivity film via micro-arc oxidation and nitrogen ion implantation. Nanomaterials. 2017. https://doi.org/10.3390/nano7100343.
Article
Google Scholar
Duncan WJ, Lee MH, Bae TS, Lee SJ, Gay J, Loch C. Anodisation increases integration of unloaded titanium implants in sheep mandible. Biomed Res Int. 2015;2015:857969. https://doi.org/10.1155/2015/857969.
Article
CAS
Google Scholar
Zarone F, Di Mauro MI, Ausiello P, Ruggiero G, Sorrentino R. Current status on lithium disilicate and zirconia: a narrative review. BMC Oral Health. 2019;19(1):134. https://doi.org/10.1186/s12903-019-0838-x.
Article
CAS
Google Scholar
Jung S, Moser MM, Kleinheinz J, Happe A. Biocompatibility of lithium disilicate and zirconium oxide ceramics with different surface topographies for dental implant abutments. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22147700.
Article
Google Scholar
Zhang L, Haddouti EM, Welle K, Burger C, Kabir K, Schildberg FA. Local cellular responses to metallic and ceramic nanoparticles from orthopedic joint arthroplasty implants. Int J Nanomedicine. 2020;15:6705–20. https://doi.org/10.2147/IJN.S248848.
Article
CAS
Google Scholar
Trieb K, Glinz J, Reiter M, Kastner J, Senck S. Non-destructive testing of ceramic knee implants using micro-computed tomography. J Arthroplasty. 2019;34(9):2111–7. https://doi.org/10.1016/j.arth.2019.05.006.
Article
Google Scholar
Li C, Ai F, Miao X, Liao H, Li F, Liu M, Yu F, Dong L, Li T, Wang X. “The return of ceramic implants”: Rose stem inspired dual layered modification of ceramic scaffolds with improved mechanical and anti-infective properties. Mater Sci Eng C Mater Biol Appl. 2018;93:873–9. https://doi.org/10.1016/j.msec.2018.08.044.
Article
CAS
Google Scholar
Taniguchi A, Tanaka Y. An alumina ceramic total talar prosthesis for avascular necrosis of the talus. Foot Ankle Clin. 2019;24(1):163–71. https://doi.org/10.1016/j.fcl.2018.10.004.
Article
Google Scholar
Pobloth AM, Mersiowsky MJ, Kliemt L, Schell H, Dienelt A, Pfitzner BM, Burgkart R, Detsch R, Wulsten D, Boccaccini AR, Duda GN. Bioactive coating of zirconia toughened alumina ceramic implants improves cancellous osseointegration. Sci Rep. 2019;9(1):16692. https://doi.org/10.1038/s41598-019-53094-5.
Article
CAS
Google Scholar
Taniguchi A, Takakura Y, Tanaka Y, Kurokawa H, Tomiwa K, Matsuda T, Kumai T, Sugimoto K. An alumina ceramic total Talar prosthesis for osteonecrosis of the talus. J Bone Jt Surg Am. 2015;97(16):1348–53. https://doi.org/10.2106/JBJS.N.01272.
Article
Google Scholar
Nakamura S, Ito H, Nakamura K, Kuriyama S, Furu M, Matsuda S. Long-term durability of ceramic tri-condylar knee implants: a minimum 15-year follow-up. J Arthroplasty. 2017;32(6):1874–9. https://doi.org/10.1016/j.arth.2017.01.016.
Article
Google Scholar
Akagi M, Nakamura T, Matsusue Y, Ueo T, Nishijyo K, Ohnishi E. The Bisurface total knee replacement: a unique design for flexion. Four-to-nine-year follow-up study. J Bone Joint Surg Am. 2000;82(11):1626–33. https://doi.org/10.2106/00004623-200011000-00017.
Article
CAS
Google Scholar
Majima T, Yasuda K, Tago H, Aoki Y, Minami A. Clinical results of posterior cruciate ligament retaining TKA with alumina ceramic condylar prosthesis: comparison to Co-Cr alloy prosthesis. Knee Surg Sports Traumatol Arthrosc. 2008;16(2):152–6. https://doi.org/10.1007/s00167-007-0435-4.
Article
Google Scholar
Iida T, Minoda Y, Kadoya Y, Matsui Y, Kobayashi A, Iwaki H, Ikebuchi M, Yoshida T, Nakamura H. Mid-term clinical results of alumina medial pivot total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2012;20(8):1514–9. https://doi.org/10.1007/s00167-011-1734-3.
Article
Google Scholar
Bergschmidt P, Ellenrieder M, Bader R, Kluess D, Finze S, Schwemmer B, Mittelmeier W. Prospective comparative clinical study of ceramic and metallic femoral components for total knee arthroplasty over a five-year follow-up period. Knee. 2016;23(5):871–6. https://doi.org/10.1016/j.knee.2016.06.001.
Article
Google Scholar
Bergschmidt P, Bader R, Ganzer D, Hauzeur C, Lohmann CH, Kruger A, Ruther W, Tigani D, Rani N, Esteve JL, Prats FL, Zorzi C, Madonna V, Rigotti S, Benazzo F, Rossi SM, Mittelmeier W. Prospective multi-centre study on a composite ceramic femoral component in total knee arthroplasty: five-year clinical and radiological outcomes. Knee. 2015;22(3):186–91. https://doi.org/10.1016/j.knee.2015.02.003.
Article
Google Scholar
Meier E, Gelse K, Trieb K, Pachowsky M, Hennig FF, Mauerer A. First clinical study of a novel complete metal-free ceramic total knee replacement system. J Orthop Surg Res. 2016;11:21. https://doi.org/10.1186/s13018-016-0352-7.
Article
CAS
Google Scholar
Boke F, Giner I, Keller A, Grundmeier G, Fischer H. Plasma-enhanced chemical vapor deposition (PE-CVD) yields better hydrolytical stability of biocompatible SiOx thin films on implant alumina ceramics compared to rapid thermal evaporation physical vapor deposition (PVD). ACS Appl Mater Interfaces. 2016;8(28):17805–16. https://doi.org/10.1021/acsami.6b04421.
Article
CAS
Google Scholar
Lauria I, Kramer M, Schroder T, Kant S, Hausmann A, Boke F, Leube R, Telle R, Fischer H. Inkjet printed periodical micropatterns made of inert alumina ceramics induce contact guidance and stimulate osteogenic differentiation of mesenchymal stromal cells. Acta Biomater. 2016;44:85–96. https://doi.org/10.1016/j.actbio.2016.08.004.
Article
CAS
Google Scholar
Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. 1999;20:23–4. https://doi.org/10.1016/s0142-9612(99)00160-x.
Article
Google Scholar
Gao X, Fraulob M, Haiat G. Biomechanical behaviours of the bone-implant interface: a review. J R Soc Interface. 2019;16(156):20190259. https://doi.org/10.1098/rsif.2019.0259.
Article
CAS
Google Scholar
Boke F, Schickle K, Fischer H. Biological activation of inert ceramics: recent advances using tailored self-assembled monolayers on implant ceramic surfaces. Materials. 2014;7(6):4473–92. https://doi.org/10.3390/ma7064473.
Article
Google Scholar
Böke F, Giner I, Keller A, Grundmeier G, Fischer H. Plasma-enhanced chemical vapor deposition (PE-CVD) yields better hydrolytical stability of biocompatible SiOx thin films on implant alumina ceramics compared to rapid thermal evaporation physical vapor deposition (PVD). ACS Appl Mater Interfaces. 2016;8:17805–16. https://doi.org/10.1021/acsami.6b04421.
Article
CAS
Google Scholar
Vasudev MC, Anderson KD, Bunning TJ, Tsukruk VV, Naik RR. Exploration of plasma-enhanced chemical vapor deposition as a method for thin-film fabrication with biological applications. ACS Appl Mater Interfaces. 2013;5(10):3983–94. https://doi.org/10.1021/am302989x.
Article
CAS
Google Scholar
Li Y, Ren J, Wang B, Lu W, Wang H, Hou W. Development of biobased multilayer films with improved compatibility between polylactic acid-chitosan as a function of transition coating of SiOx. Int J Biol Macromol. 2020;165(Pt A):1258–63. https://doi.org/10.1016/j.ijbiomac.2020.10.001.
Article
CAS
Google Scholar
Singh R, Lehl G, Hussain AB, Abhang TN, Kulkarni MM, Elagib MFA, Tiwari RVC. Prevalence of titanium hypersensitivity in patients with titanium implants: a systematic review and meta-analysis. J Pharm Bioallied Sci. 2021;13(Suppl 2):S1345–9. https://doi.org/10.4103/jpbs.jpbs_159_21.
Article
CAS
Google Scholar
Sivaraman K, Chopra A, Narayan AI, Balakrishnan D. Is zirconia a viable alternative to titanium for oral implant? A critical review. J Prosthodont Res. 2018;62(2):121–33. https://doi.org/10.1016/j.jpor.2017.07.003.
Article
Google Scholar
Heitmiller K, Innes M, Zollo V, Sansur C, Goldner R, Powell D, Gaspari AA. Diagnostic dilemmas of titanium hypersensitivity in patients with medical implants: a case series. Eur Ann Allergy Clin Immunol. 2021;53(1):43–6. https://doi.org/10.23822/EurAnnACI.1764-1489.141.
Article
CAS
Google Scholar
Borgonovo AE, Censi R, Vavassori V, Savio M, Re D. A possible relationship between peri-implantitis, titanium hypersensitivity, and external tooth resorption: metal-free alternative to titanium implants. Case Rep Dent. 2021;2021:8879988. https://doi.org/10.1155/2021/8879988.
Article
Google Scholar
Wood MM, Warshaw EM. Hypersensitivity reactions to titanium: diagnosis and management. Dermatitis. 2015;26(1):7–25. https://doi.org/10.1097/DER.0000000000000091.
Article
CAS
Google Scholar
Siddiqi A, Payne AGT, De Silva RK, Duncan WJ. Titanium allergy: could it affect dental implant integration? Clin Oral Implants Res. 2011;22(7):673–80. https://doi.org/10.1111/j.1600-0501.2010.02081.x.
Article
Google Scholar
Teo WZW, Schalock PC. Metal hypersensitivity reactions to orthopedic implants. Dermatol Ther. 2017;7(1):53–64. https://doi.org/10.1007/s13555-016-0162-1.
Article
Google Scholar
Kretzer JP, Reinders J, Sonntag R, Hagmann S, Streit M, Jeager S, Moradi B. Wear in total knee arthroplasty–just a question of polyethylene?: Metal ion release in total knee arthroplasty. Int Orthop. 2014;38(2):335–40. https://doi.org/10.1007/s00264-013-2162-4.
Article
Google Scholar
Solarino G, Piconi C, De Santis V, Piazzolla A, Moretti B. Ceramic total knee arthroplasty: ready to go? Joints. 2017;5(4):224–8. https://doi.org/10.1055/s-0037-1607428.
Article
CAS
Google Scholar
Middleton S, Toms A. Allergy in total knee arthroplasty: a review of the facts. Bone Jt J. 2016;98-B(4):437–41. https://doi.org/10.1302/0301-620X.98B4.36767.
Article
CAS
Google Scholar
Palmero P, Kern F, Sommer F, Lombardi M, Gadow R, Montanaro L. Issues in nanocomposite ceramic engineering: focus on processing and properties of alumina-based composites. J Appl Biomater Funct Mater. 2014;12(3):113–28. https://doi.org/10.5301/jabfm.5000185.
Article
CAS
Google Scholar
Kaur K, Talibi M, Parmar H. Do you know your ceramics? Part 4: alumina. Br Dent J. 2022;232(4):221–3. https://doi.org/10.1038/s41415-022-3937-z.
Article
Google Scholar
Aro HT, Alm JJ, Moritz N, Makinen TJ, Lankinen P. Low BMD affects initial stability and delays stem osseointegration in cementless total hip arthroplasty in women: a 2-year RSA study of 39 patients. Acta Orthop. 2012;83(2):107–14. https://doi.org/10.3109/17453674.2012.678798.
Article
Google Scholar
Lee YK, Ha YC, Chang BK, Kim KC, Kim TY, Koo KH. Cementless bipolar hemiarthroplasty using a hydroxyapatite-coated long stem for osteoporotic unstable intertrochanteric fractures. J Arthroplasty. 2011;26(4):626–32. https://doi.org/10.1016/j.arth.2010.05.010.
Article
Google Scholar
Tao Z, Zhou W, Jiang Y, Wu X, Xu Z, Yang M, Xie J. Effects of strontium-modified calcium phosphate cement combined with bone morphogenetic protein-2 on osteoporotic bone defects healing in rats. J Biomater Appl. 2018;33(1):3–10. https://doi.org/10.1177/0885328218765847.
Article
CAS
Google Scholar
Tao ZS, Zhou WS, He XW, Liu W, Bai BL, Zhou Q, Huang ZL, Tu KK, Li H, Sun T, Lv YX, Cui W, Yang L. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater Sci Eng C Mater Biol Appl. 2016;62:226–32. https://doi.org/10.1016/j.msec.2016.01.034.
Article
CAS
Google Scholar
Migliorini F, Eschweiler J, Maffulli N, Hildebrand F, Schenker H. Functionalised high-performance oxide ceramics with bone morphogenic protein 2 (BMP-2) induced ossification: an in vivo study. Life. 2022. https://doi.org/10.3390/life12060866.
Article
Google Scholar
Migliorini F, Schenker H, Maffulli N, Hildebrand F, Eschweiler J. Histomorphometry of ossification in functionalised ceramics with tripeptide Arg-Gly-Asp (RGD): an in vivo study. Life. 2022. https://doi.org/10.3390/life12050761.
Article
Google Scholar
Gong T, Chen Y, Zhang Y, Zhang Y, Liu X, Troczynski T, Häfeli UO. Osteogenic and anti-osteoporotic effects of risedronate-added calcium phosphate silicate cement. Biomed Mater. 2016;11:045002.
Article
Google Scholar
Lozano D, Trejo CG, Gomez-Barrena E, Manzano M, Doadrio JC, Salinas AJ, Vallet-Regi M, Garcia-Honduvilla N, Esbrit P, Bujan J. Osteostatin-loaded onto mesoporous ceramics improves the early phase of bone regeneration in a rabbit osteopenia model. Acta Biomater. 2012;8(6):2317–23. https://doi.org/10.1016/j.actbio.2012.03.014.
Article
CAS
Google Scholar
Luo E, Hu J, Bao C, Li Y, Tu Q, Murray D, Chen J. Sustained release of adiponectin improves osteogenesis around hydroxyapatite implants by suppressing osteoclast activity in ovariectomized rabbits. Acta Biomater. 2012;8(2):734–43. https://doi.org/10.1016/j.actbio.2011.10.029.
Article
CAS
Google Scholar
Plaza JQ, Garzón LB, Gimenez BB, Moraleda BF, Collía F, Rodríguez-Lorenzo LM. Application of calcium phosphates and fibronectin as complementary treatment for osteoporotic bone fractures. Injury. 2016;47:15–21.
Article
Google Scholar
Shen X, Ma P, Hu Y, Xu G, Xu K, Chen W, Ran Q, Dai L, Yu Y, Mu C, et al. Alendronate-loaded hydroxyapatite-TiO2 nanotubes for improved bone formation in osteoporotic rabbits. J Mater Chem. 2016;4:1423–36.
CAS
Google Scholar
Wu CC, Kuo CL, Fan FY, Yang KC. Strontium-impregnated bioabsorbable composite for osteoporotic fracture fixation. J Biomed Mater Res. 2015;103:3355–63.
Article
CAS
Google Scholar
Yu J, Xu L, Li K, Xie N, Xi Y, Wang Y, Zheng X, Chen X, Wang M, Xe Y. Zinc-modified calcium silicate coatings promote osteogenic differentiation through TGF-β/Smad pathway and osseointegration in osteopenic rabbits. Sci Rep. 2017;7:3440.
Article
Google Scholar
Gunnella F, Kunisch E, Bungartz M, Maenz S, Horbert V, Xin L, Mika J, Borowski J, Bischoff S, Schubert H, Hortschansky P, Sachse A, Illerhaus B, Gunster J, Bossert J, Jandt KD, Ploger F, Kinne RW, Brinkmann O. Low-dose BMP-2 is sufficient to enhance the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. Spine J. 2017;17(11):1699–711. https://doi.org/10.1016/j.spinee.2017.06.005.
Article
Google Scholar
Tanaka Y, Takakura Y, Kadono K. Alumina ceramic talar body prosthesis for idiopathic aseptic necrosis of the talus. Bioceramic. 2002;21:71–7.
Google Scholar
Koshino T, Okamoto R, Takagi T, Yamamoto K, Saito T. Cemented ceramic YMCK total knee arthroplasty in patients with severe rheumatoid arthritis. J Arthroplasty. 2002;17(8):1009–15. https://doi.org/10.1054/arth.2002.35826.
Article
Google Scholar
Xiang S, Zhao Y, Li Z, Feng B, Weng X. Clinical outcomes of ceramic femoral prosthesis in total knee arthroplasty: a systematic review. J Orthop Surg Res. 2019;14(1):57. https://doi.org/10.1186/s13018-019-1090-4.
Article
Google Scholar
Ramaswamy Y, Wu C, Dunstan CR, Hewson B, Eindorf T, Anderson GI, Zreiqat H. Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study. Acta Biomater. 2009;5(8):3192–204. https://doi.org/10.1016/j.actbio.2009.04.028.
Article
CAS
Google Scholar
Zhang W, Wang G, Liu Y, Zhao X, Zou D, Zhu C, Jin Y, Huang Q, Sun J, Liu X, Jiang X, Zreiqat H. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials. 2013;34(13):3184–95. https://doi.org/10.1016/j.biomaterials.2013.01.008.
Article
CAS
Google Scholar
Newman SD, Lotfibakhshaiesh N, O’Donnell M, Walboomers XF, Horwood N, Jansen JA, Amis AA, Cobb JP, Stevens MM. Enhanced osseous implant fixation with strontium-substituted bioactive glass coating. Tissue Eng Part A. 2014;20(13–14):1850–7. https://doi.org/10.1089/ten.TEA.2013.0304.
Article
CAS
Google Scholar
van Oirschot BA, Alghamdi HS, Narhi TO, Anil S, Al Farraj Aldosari A, van den Beucken JJ, Jansen JA. In vivo evaluation of bioactive glass-based coatings on dental implants in a dog implantation model. Clin Oral Implants Res. 2014;25(1):21–8. https://doi.org/10.1111/clr.12060.
Article
Google Scholar
Causey GC, Picha GJ, Price J, Pelletier MH, Wang T, Walsh WR. The effect of a novel pillar surface morphology and material composition demonstrates uniform osseointegration. J Mech Behav Biomed Mater. 2021;123:104775. https://doi.org/10.1016/j.jmbbm.2021.104775.
Article
CAS
Google Scholar
Van Horn MR, Beard R, Wang W, Cunningham BW, Mullinix KP, Allall M, Bucklen BS. Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model. Spine J. 2021;21(12):2097–103. https://doi.org/10.1016/j.spinee.2021.05.018.
Article
Google Scholar