Buehring B, Viswanathan R, Binkley N, Busse W. Glucocorticoid-induced osteoporosis: an update on effects and management. J Allergy Clin Immunol. 2013;132(5):1019–30. https://doi.org/10.1016/j.jaci.2013.08.040.
Article
CAS
Google Scholar
Li X, Li YS, Li LJ, et al. Overactivated autophagy contributes to steroid-induced avascular necrosis of the femoral head. Exp Ther Med. 2017;14(1):367–72. https://doi.org/10.3892/etm.2017.4508.
Article
CAS
Google Scholar
Qiang H, Liu H, Ling M, Wang K, Zhang C. Early steroid-induced osteonecrosis of rabbit femoral head and panax notoginseng saponins: mechanism and protective effects. Evid Based Complement Alternat Med. 2015;2015:719370. https://doi.org/10.1155/2015/719370.
Article
Google Scholar
Wang MG, Huang XX, Yao D, An Q, Deng XQ. Effect of glucocorticoid combined with gamma globulin in treatment of children with myasthenia gravis and its effects on immune globulin and complement of children. Eur Rev Med Pharmacol Sci. 2016;20(11):2404–8.
Google Scholar
Cook AM, Dzik-Jurasz AS, Padhani AR, Norman A, Huddart RA. The prevalence of avascular necrosis in patients treated with chemotherapy for testicular tumours. Br J Cancer. 2001;85(11):1624–6. https://doi.org/10.1054/bjoc.2001.2155.
Article
CAS
Google Scholar
Liang XZ, Luo D, Chen YR, et al. Identification of potential autophagy-related genes in steroid-induced osteonecrosis of the femoral head via bioinformatics analysis and experimental verification. J Orthop Surg Res. 2022;17(1):86. https://doi.org/10.1186/s13018-022-02977-x.
Article
CAS
Google Scholar
Yan Y, Wang J, Huang D, et al. Plasma lipidomics analysis reveals altered lipids signature in patients with osteonecrosis of the femoral head. Metabolomics. 2022;18(2):14. https://doi.org/10.1007/s11306-022-01872-0.
Article
CAS
Google Scholar
Huang C, Wen Z, Niu J, Lin S, Wang W. Steroid-induced osteonecrosis of the femoral head: novel insight into the roles of bone endothelial cells in pathogenesis and treatment. Front Cell Dev Biol. 2021;9:777697. https://doi.org/10.3389/fcell.2021.777697.
Article
Google Scholar
Shen J, Liang BL, Zeng QS, et al. Investigation of proximal femoral marrow with magnetic resonance imaging in recovered patients with severe acute respiratory syndrome. Zhonghua Jie He He Hu Xi Za Zhi. 2006;29(3):189–93.
Google Scholar
Li YM, Wang SX, Gao HS, et al. Factors of avascular necrosis of femoral head and osteoporosis in SARS patients’ convalescence. Zhonghua Yi Xue Za Zhi. 2004;84(16):1348–53.
Google Scholar
Mei R, Chen D, Zhong D, et al. Metabolic profiling analysis of the effect and mechanism of gushiling capsule in rabbits with glucocorticoid-induced osteonecrosis of the femoral head. Front Pharmacol. 2022;13:845856. https://doi.org/10.3389/fphar.2022.845856.
Article
CAS
Google Scholar
Ledford H. How does COVID-19 kill? Uncertainty is hampering doctors’ ability to choose treatments. Nature. 2020;580(7803):311–2. https://doi.org/10.1038/d41586-020-01056-7.
Article
CAS
Google Scholar
Tang C, Wang Y, Lv H, Guan Z, Gu J. Caution against corticosteroid-based COVID-19 treatment. Lancet. 2020;395(10239):1759–60. https://doi.org/10.1016/S0140-6736(20)30749-2.
Article
CAS
Google Scholar
Chen F, Hao L, Zhu S, et al. Potential adverse effects of dexamethasone therapy on COVID-19 patients: review and recommendations. Infect Dis Ther. 2021;10(4):1907–31. https://doi.org/10.1007/s40121-021-00500-z.
Article
Google Scholar
Wang A, Ren M, Wang J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: a systematic review of the literature. Gene. 2018;671:103–9. https://doi.org/10.1016/j.gene.2018.05.091.
Article
CAS
Google Scholar
Wu Z, Ji C, Li H, Qiu G, Gao C, Weng X. Elevated level of membrane microparticles in the disease of steroid-induced vascular osteonecrosis. J Craniofac Surg. 2013;24(4):1252–6. https://doi.org/10.1097/SCS.0b013e3182902dd3.
Article
Google Scholar
Tong P, Wu C, Jin H, et al. Gene expression profile of steroid-induced necrosis of femoral head of rats. Calcif Tissue Int. 2011;89(4):271–84. https://doi.org/10.1007/s00223-011-9516-y.
Article
CAS
Google Scholar
Migliorini F, Maffulli N, Baroncini A, Eschweiler J, Tingart M, Betsch M. Prognostic factors in the management of osteonecrosis of the femoral head: a systematic review. Surgeon. 2022. https://doi.org/10.1016/j.surge.2021.12.004.
Article
Google Scholar
Zhang G, Qin L, Sheng H, et al. A novel semisynthesized small molecule icaritin reduces incidence of steroid-associated osteonecrosis with inhibition of both thrombosis and lipid-deposition in a dose-dependent manner. Bone. 2009;44(2):345–56. https://doi.org/10.1016/j.bone.2008.10.035.
Article
CAS
Google Scholar
Jiang LY, Yu X, Pang QJ. Research in the precaution of recombinant human erythropoietin to steroid-induced osteonecrosis of the rat femoral head. J Int Med Res. 2017;45(4):1324–31. https://doi.org/10.1177/0300060517707076.
Article
CAS
Google Scholar
Ren X, Fan W, Shao Z, Chen K, Yu X, Liang Q. A metabolomic study on early detection of steroid-induced avascular necrosis of the femoral head. Oncotarget. 2018;9(8):7984–95. https://doi.org/10.18632/oncotarget.24150.
Article
Google Scholar
Ren X, Shao Z, Fan W, Wang Z, Chen K, Yu X. Untargeted metabolomics reveals the effect of lovastatin on steroid-induced necrosis of the femoral head in rabbits. J Orthop Surg Res. 2020;15(1):497. https://doi.org/10.1186/s13018-020-02026-5.
Article
Google Scholar
Quaranta M, Miranda L, Oliva F, Aletto C, Maffulli N. Osteotomies for avascular necrosis of the femoral head. Br Med Bull. 2021;137(1):98–111. https://doi.org/10.1093/bmb/ldaa044.
Article
Google Scholar
Sonoda K, Yamamoto T, Motomura G, Nakashima Y, Yamaguchi R, Iwamoto Y. Outcome of transtrochanteric rotational osteotomy for posttraumatic osteonecrosis of the femoral head with a mean follow-up of 12.3 years. Arch Orthop Trauma Surg. 2015;135(9):1257–63. https://doi.org/10.1007/s00402-015-2282-y.
Article
Google Scholar
Migliorini F, La Padula G, Oliva F, Torsiello E, Hildebrand F, Maffulli N. Operative management of avascular necrosis of the femoral head in skeletally immature patients: a systematic review. Life. 2022. https://doi.org/10.3390/life12020179.
Article
Google Scholar
Bernasconi A, Canakoglu A, Masseroli M, Ceri S. The road towards data integration in human genomics: players, steps and interactions. Brief Bioinform. 2021;22(1):30–44. https://doi.org/10.1093/bib/bbaa080.
Article
CAS
Google Scholar
Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5(1):16–8. https://doi.org/10.1038/nmeth1156.
Article
CAS
Google Scholar
Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: mining tens of millions of expression profiles–database and tools update. Nucleic Acids Res. 2007;35(Database issue):D760–5. https://doi.org/10.1093/nar/gkl887.
Article
CAS
Google Scholar
Li T, Zhang Y, Wang R, et al. Discovery and validation an eight-biomarker serum gene signature for the diagnosis of steroid-induced osteonecrosis of the femoral head. Bone. 2019;122:199–208. https://doi.org/10.1016/j.bone.2019.03.008.
Article
CAS
Google Scholar
Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41(Database issue):D808–15. https://doi.org/10.1093/nar/gks1094.
Article
CAS
Google Scholar
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2. https://doi.org/10.1093/bioinformatics/btq675.
Article
CAS
Google Scholar
Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2. https://doi.org/10.1186/1471-2105-4-2.
Article
Google Scholar
Huang DW, Sherman BT, Tan Q, et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183. https://doi.org/10.1186/gb-2007-8-9-r183.
Article
CAS
Google Scholar
Kanehisa M, Symposium NF, Kanehisa M. The KEGG database. Novartis Found Symp. 2002;247:91–252.
Article
CAS
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Cherry JM. Gene ontology: tool for the unification of biology. Gene Ontol Consort Nat Genet. 2000;25(1):25–9. https://doi.org/10.1038/75556.
Article
CAS
Google Scholar
Xu J, Gong H, Lu S, Deasey MJ, Cui Q. Animal models of steroid-induced osteonecrosis of the femoral head-a comprehensive research review up to 2018. Int Orthop. 2018;42(7):1729–37. https://doi.org/10.1007/s00264-018-3956-1.
Article
CAS
Google Scholar
Zhu T, Jiang M, Zhang M, et al. Construction and validation of steroid-induced rabbit osteonecrosis model. MethodsX. 2022;9:101713. https://doi.org/10.1016/j.mex.2022.101713.
Article
CAS
Google Scholar
Xie XH, Wang XL, Yang HL, Zhao DW, Qin L. Steroid-associated osteonecrosis: Epidemiology, pathophysiology, animal model, prevention, and potential treatments (an overview). J Orthop Translat. 2015;3(2):58–70. https://doi.org/10.1016/j.jot.2014.12.002.
Article
Google Scholar
Mont MA, Pivec R, Banerjee S, Issa K, Elmallah RK, Jones LC. High-dose corticosteroid use and risk of hip osteonecrosis: meta-analysis and systematic literature review. J Arthroplasty. 2015;30(9):1506-1512.e5. https://doi.org/10.1016/j.arth.2015.03.036.
Article
Google Scholar
Migliorini F, Maffulli N, Eschweiler J, Tingart M, Baroncini A. Core decompression isolated or combined with bone marrow-derived cell therapies for femoral head osteonecrosis. Expert Opin Biol Ther. 2021;21(3):423–30. https://doi.org/10.1080/14712598.2021.1862790.
Article
CAS
Google Scholar
Sadile F, Bernasconi A, Russo S, Maffulli N. Core decompression versus other joint preserving treatments for osteonecrosis of the femoral head: a meta-analysis. Br Med Bull. 2016;118(1):33–49. https://doi.org/10.1093/bmb/ldw010.
Article
Google Scholar
Meloni MC, Hoedemaeker WR, Fornasier V. Failed vascularized fibular graft in treatment of osteonecrosis of the femoral head. Histopathol Anal Jt. 2016. https://doi.org/10.11138/jts/2016.4.1.024.
Article
Google Scholar
Khan M, Abbas K, Ayling EA, Waqas Ilyas M, Dunlop DG. Autologous stem cell implantation with core decompression for avascular necrosis of the femoral head using a new device. Ann R Coll Surg Engl. 2021;103(7):508–13. https://doi.org/10.1308/rcsann.2021.0026.
Article
Google Scholar
Van ‘t Veer LJ, Dai H, Van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6. https://doi.org/10.1038/415530a.
Article
Google Scholar
Liang F, Li Q, Zhou L. Bayesian neural networks for selection of drug sensitive genes. J Am Stat Assoc. 2018;113(523):955–72. https://doi.org/10.1080/01621459.2017.1409122.
Article
CAS
Google Scholar
Paloneva J, Manninen T, Christman G, et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet. 2002;71(3):656–62. https://doi.org/10.1086/342259.
Article
CAS
Google Scholar
Paloneva J, Mandelin J, Kiialainen A, et al. DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J Exp Med. 2003;198(4):669–75. https://doi.org/10.1084/jem.20030027.
Article
CAS
Google Scholar
Dai Y, Chen W, Huang J, et al. FCGR2A could function as a prognostic marker and correlate with immune infiltration in head and neck squamous cell carcinoma. Biomed Res Int. 2021;2021:8874578. https://doi.org/10.1155/2021/8874578.
Article
CAS
Google Scholar
Bournazos S, Hart SP, Chamberlain LH, Glennie MJ, Dransfield I. Association of FcgammaRIIa (CD32a) with lipid rafts regulates ligand binding activity. J Immunol. 2009;182(12):8026–36. https://doi.org/10.4049/jimmunol.0900107.
Article
CAS
Google Scholar
Yang J, Liu Z, Liu H, et al. C-reactive protein promotes bone destruction in human myeloma through the CD32-p38 MAPK-Twist axis. SCI Signal. 2017. https://doi.org/10.1126/scisignal.aan6282.
Article
Google Scholar
Pengal RA, Ganesan LP, Fang H, et al. SHIP-2 inositol phosphatase is inducibly expressed in human monocytes and serves to regulate Fcgamma receptor-mediated signaling. J Biol Chem. 2003;278(25):22657–63. https://doi.org/10.1074/jbc.M302907200.
Article
CAS
Google Scholar
Diwan A, Wansapura J, Syed FM, Matkovich SJ, Lorenz JN, Dorn GW 2nd. Nix-mediated apoptosis links myocardial fibrosis, cardiac remodeling, and hypertrophy decompensation. Circulation. 2008;117(3):396–404. https://doi.org/10.1161/CIRCULATIONAHA.107.727073.
Article
CAS
Google Scholar
Yussman MG, Toyokawa T, Odley A, et al. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med. 2002;8(7):725–30. https://doi.org/10.1038/nm719.
Article
CAS
Google Scholar
Aerbajinai W, Giattina M, Lee YT, et al. The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood. 2003;102(2):712–7. https://doi.org/10.1182/blood-2002-11-3324.
Article
CAS
Google Scholar
Sugimoto Y, Muramatsu H, Makishima H, et al. Spectrum of molecular defects in juvenile myelomonocytic leukaemia includes ASXL1 mutations. Br J Haematol. 2010;150(1):83–7. https://doi.org/10.1111/j.1365-2141.2010.08196.x.
Article
CAS
Google Scholar
Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. https://doi.org/10.1111/j.1365-2141.2009.07697.x.
Article
CAS
Google Scholar
Signorino JA, Jayaseelan DJ, Brindle K. Atypical clinical presentation of rapidly progressing femoral head avascular necrosis. J Orthop Sports Phys Ther. 2017;47(3):217. https://doi.org/10.2519/jospt.2017.6483.
Article
Google Scholar
Osawa Y, Seki T, Takegami Y, et al. Do femoral head collapse and the contralateral condition affect patient-reported quality of life and referral pain in patients with osteonecrosis of the femoral head? Int Orthop. 2018;42(7):1463–8. https://doi.org/10.1007/s00264-018-3867-1.
Article
Google Scholar