Hsu HC, Luo ZP, Rand JA, An KN: Influence of lateral release on patellar tracking and patellofemoral contact characteristics after total knee arthroplasty. J Arthroplasty. 1997, 12: 74-83. 10.1016/S0883-5403(97)90051-6.
Article
CAS
PubMed
Google Scholar
Hefzy MS, Jackson WT, Saddemi SR, Hsieh YF: Effects of tibial rotations on patellar tracking and patello-femoral contact areas. J Biomed Eng. 1992, 14: 329-343. 10.1016/0141-5425(92)90008-9.
Article
CAS
PubMed
Google Scholar
Chew JT, Stewart NJ, Hanssen AD, Luo ZP, Rand JA, An KN: Differences in patellar tracking and knee kinematics among three different total knee designs. Clin Orthop Relat Res. 1997, 87-98.
Google Scholar
Sakai N, Luo ZP, Rand JA, An KN: In vitro study of patellar position during sitting, standing from squatting, and the stance phase of walking. Am J Knee Surg. 1996, 9: 161-166.
CAS
PubMed
Google Scholar
Goh JC, Lee PY, Bose K: A cadaver study of the function of the oblique part of vastus medialis. J Bone Joint Surg Br. 1995, 77: 225-231.
CAS
PubMed
Google Scholar
Sandmeier RH, Burks RT, Bachus KN, Billings A: The effect of reconstruction of the medial patellofemoral ligament on patellar tracking. Am J Sports Med. 2000, 28: 345-349.
CAS
PubMed
Google Scholar
Heegaard J, Leyvraz PF, Van Kampen A, Rakotomanana L, Rubin PJ, Blankevoort L: Influence of soft structures on patellar three-dimensional tracking. Clin Orthop Relat Res. 1994, 235-243.
Google Scholar
van Kampen A, Huiskes R: The three-dimensional tracking pattern of the human patella. J Orthop Res. 1990, 8: 372-382. 10.1002/jor.1100080309.
Article
CAS
PubMed
Google Scholar
Ahmed AM, Duncan NA, Tanzer M: In vitro measurement of the tracking pattern of the human patella. J Biomech Eng. 1999, 121: 222-228. 10.1115/1.2835107.
Article
CAS
PubMed
Google Scholar
Kwak SD, Ahmad CS, Gardner TR, Grelsamer RP, Henry JH, Blankevoort L, Ateshian GA, Mow VC: Hamstrings and iliotibial band forces affect knee kinematics and contact pattern. J Orthop Res. 2000, 18: 101-108. 10.1002/jor.1100180115.
Article
CAS
PubMed
Google Scholar
Bockrath K, Wooden C, Worrell T, Ingersoll CD, Farr J: Effects of patella taping on patella position and perceived pain. Med Sci Sports Exerc. 1993, 25: 989-992.
Article
CAS
PubMed
Google Scholar
Larsen B, Andreasen E, Urfer A, Mickelson MR, Newhouse KE: Patellar taping: a radiographic examination of the medial glide technique. Am J Sports Med. 1995, 23: 465-471. 10.1177/036354659502300417.
Article
CAS
PubMed
Google Scholar
Merchant AC, Mercer RL, Jacobsen RH, Cool CR: Roentgenographic analysis of patellofemoral congruence. J Bone Joint Surg Am. 1974, 56: 1391-1396.
CAS
PubMed
Google Scholar
Sikorski JM, Peters J, Watt I: The importance of femoral rotation in chondromalacia patellae as shown by serial radiography. J Bone Joint Surg Br. 1979, 61-B: 435-442.
CAS
PubMed
Google Scholar
Tyler TF, Hershman EB, Nicholas SJ, Berg JH, McHugh MP: Evidence of abnormal anteroposterior patellar tilt in patients with patellar tendinitis with use of a new radiographic measurement. Am J Sports Med. 2002, 30: 396-401.
PubMed
Google Scholar
Stein LA, Endicott AN, Sampalis JS, Kaplow MA, Patel MD, Mitchell NS: Motion of the patella during walking: a video digital-fluoroscopic study in healthy volunteers. AJR Am J Roentgenol. 1993, 161: 617-620.
Article
CAS
PubMed
Google Scholar
Lafortune MA, Cavanagh PR, Sommer HJ, Kalenak A: Three-dimensional kinematics of the human knee during walking. J Biomech. 1992, 25: 347-357. 10.1016/0021-9290(92)90254-X.
Article
CAS
PubMed
Google Scholar
Koh TJ, Grabiner MD, De Swart RJ: In vivo tracking of the human patella. J Biomech. 1992, 25: 637-643. 10.1016/0021-9290(92)90105-A.
Article
CAS
PubMed
Google Scholar
Veress SA, Lippert FG, Hou MC, Takamoto T: Patellar tracking patterns measurement by analytical x-ray photogrammetry. J Biomech. 1979, 12: 639-650. 10.1016/0021-9290(79)90014-9.
Article
CAS
PubMed
Google Scholar
Laprade J, Lee R: Real-time measurement of patellofemoral kinematics in asymptomatic subjects. Knee. 2005, 12: 63-72. 10.1016/j.knee.2004.02.004.
Article
PubMed
Google Scholar
Schutzer SF, Ramsby GR, Fulkerson JP: The evaluation of patellofemoral pain using computerized tomography. A preliminary study. Clin Orthop Relat Res. 1986, 286-293.
Google Scholar
Pinar H, Akseki D, Genc I, Karaoglan O: Kinematic and dynamic axial computerized tomography of the normal patellofemoral joint. Knee Surg Sports Traumatol Arthrosc. 1994, 2: 27-30. 10.1007/BF01552650.
Article
CAS
PubMed
Google Scholar
Fellows RA, Hill NA, Gill HS, MacIntyre NJ, Harrison MM, Ellis RE, Wilson DR: Magnetic resonance imaging for in vivo assessment of three-dimensional patellar tracking. J Biomech. 2005, 38: 1643-1652. 10.1016/j.jbiomech.2004.07.021.
Article
CAS
PubMed
Google Scholar
Hinterwimmer S, von Eisenhart-Rothe R, Siebert M, Welsch F, Vogl T, Graichen H: Patella kinematics and patello-femoral contact areas in patients with genu varum and mild osteoarthritis. Clin Biomech (Bristol, Avon). 2004, 19: 704-710. 10.1016/j.clinbiomech.2004.04.011.
Article
CAS
Google Scholar
Kujala UM, Osterman K, Kormano M, Komu M, Schlenzka D: Patellar motion analyzed by magnetic resonance imaging. Acta Orthop Scand. 1989, 60: 13-16.
Article
CAS
PubMed
Google Scholar
von Eisenhart-Rothe R, Siebert M, Bringmann C, Vogl T, Englmeier KH, Graichen H: A new in vivo technique for determination of 3D kinematics and contact areas of the patello-femoral and tibio-femoral joint. J Biomech. 2004, 37: 927-934. 10.1016/j.jbiomech.2003.09.034.
Article
CAS
PubMed
Google Scholar
Powers CM, Ward SR, Fredericson M, Guillet M, Shellock FG: Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther. 2003, 33: 677-685.
Article
PubMed
Google Scholar
Powers CM, Shellock FG, Pfaff M: Quantification of patellar tracking using kinematic MRI. J Magn Reson Imaging. 1998, 8: 724-732. 10.1002/jmri.1880080332.
Article
CAS
PubMed
Google Scholar
Shellock FG, Mink JH, Deutsch AL, Foo TK, Sullenberger P: Patellofemoral joint: identification of abnormalities with active-movement, "unloaded" versus "loaded" kinematic MR imaging techniques. Radiology. 1993, 188: 575-578.
Article
CAS
PubMed
Google Scholar
Sheehan FT, Zajac FE, Drace JE: Using cine phase contrast magnetic resonance imaging to non-invasively study in vivo knee dynamics. J Biomech. 1998, 31: 21-26. 10.1016/S0021-9290(97)00109-7.
Article
CAS
PubMed
Google Scholar
Sheehan FT, Zajac FE, Drace JE: In vivo tracking of the human patella using cine phase contrast magnetic resonance imaging. J Biomech Eng. 1999, 121: 650-656. 10.1115/1.2800868.
Article
CAS
PubMed
Google Scholar
Brossmann J, Muhle C, Schroder C, Melchert UH, Bull CC, Spielmann RP, Heller M: Patellar tracking patterns during active and passive knee extension: evaluation with motion-triggered cine MR imaging. Radiology. 1993, 187: 205-212.
Article
CAS
PubMed
Google Scholar
Rebmann AJ, Sheehan FT: Precise 3D skeletal kinematics using fast phase contrast magnetic resonance imaging. J Magn Reson Imaging. 2003, 17: 206-213. 10.1002/jmri.10253.
Article
PubMed
Google Scholar
Dupuy DE, Hangen DH, Zachazewski JE, Boland AL, Palmer W: Kinematic CT of the patellofemoral joint. AJR Am J Roentgenol. 1997, 169: 211-215.
Article
CAS
PubMed
Google Scholar
Fregly BJ, Rahman HA, Banks SA: Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy. J Biomech Eng. 2005, 127: 692-699. 10.1115/1.1933949.
Article
PubMed Central
PubMed
Google Scholar
Tashman S, Anderst W: In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. J Biomech Eng. 2003, 125: 238-245. 10.1115/1.1559896.
Article
PubMed
Google Scholar
Bey MJ, Zauel R, Brock SK, Tashman S: Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng. 2006, 128: 604-609. 10.1115/1.2206199.
Article
PubMed Central
PubMed
Google Scholar
Bull AM, Katchburian MV, Shih YF, Amis AA: Standardisation of the description of patellofemoral motion and comparison between different techniques. Knee Surg Sports Traumatol Arthrosc. 2002, 10: 184-193. 10.1007/s00167-001-0276-5.
Article
CAS
PubMed
Google Scholar
ASTM: Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods. 1996, West Conshohocken, PA,
Google Scholar
Powers CM: Patellar kinematics, part II: the influence of the depth of the trochlear groove in subjects with and without patellofemoral pain. Phys Ther. 2000, 80: 965-978.
CAS
PubMed
Google Scholar
Baldwin JL, House CK: Anatomic dimensions of the patella measured during total knee arthroplasty. J Arthroplasty. 2005, 20: 250-257. 10.1016/j.arth.2004.09.027.
Article
PubMed
Google Scholar
Ward SR, Shellock FG, Terk MR, Salsich GB, Powers CM: Assessment of patellofemoral relationships using kinematic MRI: comparison between qualitative and quantitative methods. J Magn Reson Imaging. 2002, 16: 69-74. 10.1002/jmri.10124.
Article
PubMed
Google Scholar
Muhle C, Brossmann J, M. H: Kinematic MRI of the knee using a specially designed positioning device. J Comput Assist Tomogr. 1996, 20: 522-525. 10.1097/00004728-199607000-00003.
Article
CAS
PubMed
Google Scholar