Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin N Am. 2020;104:293–311. https://doi.org/10.1016/j.mcna.2019.10.007.
Article
Google Scholar
Barnett R. Osteoarthritis. Lancet (London, England). 2018;391:1985. https://doi.org/10.1016/s0140-6736(18)31064-x.
Article
Google Scholar
Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA. 2021;325:568–78. https://doi.org/10.1001/jama.2020.22171.
Article
CAS
Google Scholar
Parekh SM, Fernandes GS, Moses JP, et al. Risk factors for knee osteoarthritis in retired professional footballers: a cross-sectional study. Clin J Sport Med Off J Can Acad Sport Med. 2021;31:281–8. https://doi.org/10.1097/jsm.0000000000000742.
Article
Google Scholar
Allen KD, Thoma LM, Golightly YM. Epidemiology of osteoarthritis. Osteoarthr Cartil. 2022;30:184–95. https://doi.org/10.1016/j.joca.2021.04.020.
Article
CAS
Google Scholar
Ratneswaran A, Kapoor M. Osteoarthritis year in review: genetics, genomics, epigenetics. Osteoarthr Cartil. 2021;29:151–60. https://doi.org/10.1016/j.joca.2020.11.003.
Article
CAS
Google Scholar
Quicke JG, Conaghan PG, Corp N, et al. Osteoarthritis year in review 2021: epidemiology and therapy. Osteoarthr Cartil. 2022;30:196–206. https://doi.org/10.1016/j.joca.2021.10.003.
Article
CAS
Google Scholar
Woodell-May JE, Sommerfeld SD. Role of inflammation and the immune system in the progression of osteoarthritis. J Orthop Res Off Publ Orthop Res Soc. 2020;38:253–7. https://doi.org/10.1002/jor.24457.
Article
Google Scholar
Scanzello CR, McKeon B, Swaim BH, et al. Synovial inflammation in patients undergoing arthroscopic meniscectomy: molecular characterization and relationship to symptoms. Arthritis Rheum. 2011;63:391–400. https://doi.org/10.1002/art.30137.
Article
Google Scholar
Guermazi A, Roemer FW, Hayashi D, et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann Rheum Dis. 2011;70:805–11. https://doi.org/10.1136/ard.2010.139618.
Article
Google Scholar
Roemer FW, Guermazi A, Felson DT, et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis. 2011;70:1804–9. https://doi.org/10.1136/ard.2011.150243.
Article
Google Scholar
Miller RJ, Malfait AM, Miller RE. The innate immune response as a mediator of osteoarthritis pain. Osteoarthr Cartil. 2020;28:562–71. https://doi.org/10.1016/j.joca.2019.11.006.
Article
CAS
Google Scholar
Deligne C, Casulli S, Pigenet A, et al. Differential expression of interleukin-17 and interleukin-22 in inflamed and non-inflamed synovium from osteoarthritis patients. Osteoarthr Cartil. 2015;23:1843–52. https://doi.org/10.1016/j.joca.2014.12.007.
Article
CAS
Google Scholar
Lopes EBP, Filiberti A, Husain SA, et al. Immune contributions to osteoarthritis. Curr Osteoporos Rep. 2017;15:593–600. https://doi.org/10.1007/s11914-017-0411-y.
Article
Google Scholar
Rosshirt N, Hagmann S, Tripel E, et al. A predominant Th1 polarization is present in synovial fluid of end-stage osteoarthritic knee joints: analysis of peripheral blood, synovial fluid and synovial membrane. Clin Exp Immunol. 2019;195:395–406. https://doi.org/10.1111/cei.13230.
Article
CAS
Google Scholar
Huang X, Zhou S, Toth J, et al. Cuproptosis-related gene index: a predictor for pancreatic cancer prognosis, immunotherapy efficacy, and chemosensitivity. Front Immunol. 2022;13:978865. https://doi.org/10.3389/fimmu.2022.978865.
Article
CAS
Google Scholar
Xie J, Zheng S, Zou Y, et al. Turning up a new pattern: identification of cancer-associated fibroblast-related clusters in TNBC. Front Immunol. 2022;13:1022147. https://doi.org/10.3389/fimmu.2022.1022147.
Article
CAS
Google Scholar
Wang Q, Huang X, Zhou S, et al. IL1RN and PRRX1 as a prognostic biomarker correlated with immune infiltrates in colorectal cancer: evidence from bioinformatic analysis. Int J Genomics. 2022;2022:2723264. https://doi.org/10.1155/2022/2723264.
Article
CAS
Google Scholar
Cai W, Li H, Zhang Y, et al. Identification of key biomarkers and immune infiltration in the synovial tissue of osteoarthritis by bioinformatics analysis. PeerJ. 2020;8:e8390. https://doi.org/10.7717/peerj.8390.
Article
Google Scholar
Hu X, Ni S, Zhao K, et al. Bioinformatics-led discovery of osteoarthritis biomarkers and inflammatory infiltrates. Front Immunol. 2022;13:871008. https://doi.org/10.3389/fimmu.2022.871008.
Article
CAS
Google Scholar
Griffin TM, Scanzello CR. Innate inflammation and synovial macrophages in osteoarthritis pathophysiology. Clin Exp Rheumatol. 2019;37(Suppl 120):57–63.
Google Scholar
Thomson A, Hilkens CMU. Synovial macrophages in osteoarthritis: the key to understanding pathogenesis? Front Immunol. 2021;12:678757. https://doi.org/10.3389/fimmu.2021.678757.
Article
CAS
Google Scholar
Hu Y, Gui Z, Zhou Y, et al. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic Biol Med. 2019;145:146–60. https://doi.org/10.1016/j.freeradbiomed.2019.09.024.
Article
CAS
Google Scholar
Farinelli L, Aquili A, Mattioli-Belmonte M, et al. Synovial mast cells from knee and hip osteoarthritis: histological study and clinical correlations. J Exp Orthop. 2022;9:13. https://doi.org/10.1186/s40634-022-00446-2.
Article
CAS
Google Scholar
de Lange-Brokaar BJ, Kloppenburg M, Andersen SN, et al. Characterization of synovial mast cells in knee osteoarthritis: association with clinical parameters. Osteoarthr Cartil. 2016;24:664–71. https://doi.org/10.1016/j.joca.2015.11.011.
Article
Google Scholar
Kulkarni P, Harsulkar A, Märtson AG, et al. Mast cells differentiated in synovial fluid and resident in osteophytes exalt the inflammatory pathology of osteoarthritis. Int J Mol Sci. 2022;23:541. https://doi.org/10.3390/ijms23010541.
Article
CAS
Google Scholar
Sun H, Zhang Y, Song W, et al. IgM(+)CD27(+) B cells possessed regulatory function and represented the main source of B cell-derived IL-10 in the synovial fluid of osteoarthritis patients. Hum Immunol. 2019;80:263–9. https://doi.org/10.1016/j.humimm.2019.02.007.
Article
CAS
Google Scholar
Doss F, Menard J, Hauschild M, et al. Elevated IL-6 levels in the synovial fluid of osteoarthritis patients stem from plasma cells. Scand J Rheumatol. 2007;36:136–9. https://doi.org/10.1080/03009740701250785.
Article
CAS
Google Scholar
Falconer J, Murphy AN, Young SP, et al. Review: Synovial cell metabolism and chronic inflammation in rheumatoid arthritis. Arthritis Rheumatol (Hoboken, NJ). 2018;70:984–99. https://doi.org/10.1002/art.40504.
Article
CAS
Google Scholar
Maglaviceanu A, Wu B, Kapoor M. Fibroblast-like synoviocytes: role in synovial fibrosis associated with osteoarthritis. Wound Repair Regen. 2021;29:642–9. https://doi.org/10.1111/wrr.12939.
Article
Google Scholar
Zhang Q, Ouyang Z, Song X, et al. Epigenetic modifications of tumor necrosis factor-alpha in joint cartilage tissue from osteoarthritis patients - CONSORT. Medicine. 2021;100:e27868. https://doi.org/10.1097/md.0000000000027868.
Article
CAS
Google Scholar
Malemud CJ. Matrix metalloproteinases and synovial joint pathology. Prog Mol Biol Transl Sci. 2017;148:305–25. https://doi.org/10.1016/bs.pmbts.2017.03.003.
Article
CAS
Google Scholar
Özler K, Aktaş E, Atay Ç, et al. Serum and knee synovial fluid matrix metalloproteinase-13 and tumor necrosis factor-alpha levels in patients with late-stage osteoarthritis. Acta Orthop Traumatol Turcica. 2016;50:356–61. https://doi.org/10.3944/aott.2015.15.0115.
Article
Google Scholar
Udomsinprasert W, Jinawath A, Teerawattanapong N, et al. Interleukin-34 overexpression mediated through tumor necrosis factor-alpha reflects severity of synovitis in knee osteoarthritis. Sci Rep. 2020;10:7987. https://doi.org/10.1038/s41598-020-64932-2.
Article
CAS
Google Scholar
Liu Y, Peng H, Meng Z, et al. Correlation of IL-17 level in synovia and severity of knee osteoarthritis. Med Sci Monit Int Med J Exp Clin Res. 2015;21:1732–6. https://doi.org/10.12659/msm.893771.
Article
CAS
Google Scholar
Faust HJ, Zhang H, Han J, et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J Clin Investig. 2020;130:5493–507. https://doi.org/10.1172/jci134091.
Article
CAS
Google Scholar
Kim EK, Kwon JE, Lee SY, et al. IL-17-mediated mitochondrial dysfunction impairs apoptosis in rheumatoid arthritis synovial fibroblasts through activation of autophagy. Cell Death Dis 2017; 8:e2565.
Na HS, Park JS, Cho KH, et al. Interleukin-1-interleukin-17 signaling axis induces cartilage destruction and promotes experimental osteoarthritis. Front Immunol. 2020;11:730. https://doi.org/10.3389/fimmu.2020.00730.
Article
CAS
Google Scholar
He WW, Kuang MJ, Zhao J, et al. Efficacy and safety of intraarticular hyaluronic acid and corticosteroid for knee osteoarthritis: a meta-analysis. Int J Surg (London, England). 2017;39:95–103. https://doi.org/10.1016/j.ijsu.2017.01.087.
Article
Google Scholar
Samuels J, Pillinger MH, Jevsevar D, et al. Critical appraisal of intra-articular glucocorticoid injections for symptomatic osteoarthritis of the knee. Osteoarthr Cartil. 2021;29:8–16. https://doi.org/10.1016/j.joca.2020.09.001.
Article
CAS
Google Scholar
Zou J, Li XL, Shi ZM, et al. Effects of C-myc gene silencing on interleukin-1β-induced rat chondrocyte cell proliferation, apoptosis and cytokine expression. J Bone Miner Metab. 2018;36:286–96. https://doi.org/10.1007/s00774-017-0845-4.
Article
CAS
Google Scholar
Lu H, Hou G, Zhang Y, et al. c-Jun transactivates Puma gene expression to promote osteoarthritis. Mol Med Rep. 2014;9:1606–12. https://doi.org/10.3892/mmr.2014.1981.
Article
CAS
Google Scholar
Ye Z, Chen Y, Zhang R, et al. c-Jun N-terminal kinase - c-Jun pathway transactivates Bim to promote osteoarthritis. Can J Physiol Pharmacol. 2014;92:132–9. https://doi.org/10.1139/cjpp-2013-0228.
Article
CAS
Google Scholar
Jian S, Luo D, Wang Y, et al. MiR-337-3p confers protective effect on facet joint osteoarthritis by targeting SKP2 to inhibit DUSP1 ubiquitination and inactivate MAPK pathway. Cell Biol Toxicol. 2021. https://doi.org/10.1007/s10565-021-09665-2.
Article
Google Scholar
Peng HZ, Yun Z, Wang W, et al. Dual specificity phosphatase 1 has a protective role in osteoarthritis fibroblast-like synoviocytes via inhibition of the MAPK signaling pathway. Mol Med Rep. 2017;16:8441–7. https://doi.org/10.3892/mmr.2017.7617.
Article
CAS
Google Scholar
Tang H, Cheng Z, Ma W, et al. TLR10 and NFKBIA contributed to the risk of hip osteoarthritis: systematic evaluation based on Han Chinese population. Sci Rep. 2018;8:10243. https://doi.org/10.1038/s41598-018-28597-2.
Article
CAS
Google Scholar
Cai P, Jiang T, Li B, et al. Comparison of rheumatoid arthritis (RA) and osteoarthritis (OA) based on microarray profiles of human joint fibroblast-like synoviocytes. Cell Biochem Funct. 2019;37:31–41. https://doi.org/10.1002/cbf.3370.
Article
CAS
Google Scholar
Wu Y, Lu X, Shen B, et al. The therapeutic potential and role of miRNA, lncRNA, and circRNA in osteoarthritis. Curr Gene Ther. 2019;19:255–63. https://doi.org/10.2174/1566523219666190716092203.
Article
CAS
Google Scholar
Kong H, Sun ML, Zhang XA, et al. Crosstalk among circRNA/lncRNA, miRNA, and mRNA in osteoarthritis. Front Cell Dev Biol 2021, 9:774370. https://doi.org/10.3389/fcell.2021.774370.
Liu Y, Yang Y, Ding L, et al. LncRNA MIR4435-2HG inhibits the progression of osteoarthritis through miR-510-3p sponging. Exp Ther Med. 2020;20:1693–701. https://doi.org/10.3892/etm.2020.8841.
Article
CAS
Google Scholar
Liu X, Li C, Zhu J, et al. Dysregulation of FTX/miR-545 signaling pathway downregulates Tim-3 and is responsible for the abnormal activation of macrophage in cirrhosis. J Cell Biochem. 2019;120:2336–46. https://doi.org/10.1002/jcb.27562.
Article
CAS
Google Scholar
Liang FQ, Gao JY, Liu JW. C-X-C motif chemokine 16, modulated by microRNA-545, aggravates myocardial damage and affects the inflammatory responses in myocardial infarction. Hum Genomics. 2021;15:15. https://doi.org/10.1186/s40246-021-00314-7.
Article
CAS
Google Scholar
Yan C, Ying J, Lu W, et al. MiR-1294 suppresses ROS-dependent inflammatory response in atopic dermatitis via restraining STAT3/NF-κB pathway. Cell Immunol 2022, 371:104452. https://doi.org/10.1016/j.cellimm.2021.104452.
Pluta L, Yousefi B, Damania B, et al. Endosomal TLR-8 senses microRNA-1294 resulting in the production of NFḱB dependent cytokines. Front Immunol. 2019;10:2860. https://doi.org/10.3389/fimmu.2019.02860.
Article
CAS
Google Scholar