Ukon Y, Makino T, Kodama J, Tsukazaki H, Tateiwa D, Yoshikawa H, et al. Molecular-based treatment strategies for osteoporosis: a literature review. Int J Mol Sci. 2019;20(10):2557. https://doi.org/10.3390/ijms20102557.
Article
CAS
Google Scholar
Greenblatt MB, Tsai JN, Wein MN. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem. 2017;63(2):464–74. https://doi.org/10.1373/clinchem.2016.259085.
Article
CAS
Google Scholar
Cvijetic S, Colic BI, Satalic Z. Influence of heredity and environment on peak bone density: a parent-offspring study. J Clin Densitom. 2010;13(3):301–6. https://doi.org/10.1016/j.jocd.2010.03.003.
Article
Google Scholar
Rondanelli M, Faliva MA, Barrile GC, Cavioni A, Mansueto F, Mazzola G, et al. Nutrition, physical activity, and dietary supplementation to prevent bone mineral density loss: a food pyramid. Nutrients. 2022;14(1):74. https://doi.org/10.3390/nu14010074.
Article
CAS
Google Scholar
Sambol SZ, Stimac D, Orlić ZC, Guina T. Haematological, biochemical and bone density parameters in vegetarians and non-vegetarians. West Indian Med J. 2009;58(6):512–7.
CAS
Google Scholar
Begic Z, Balic D, Rizvanovic M. The association between lipid profile and bone density in postmenopausal women. Med Arch. 2012;66(6):378. https://doi.org/10.5455/medarh.2012.66.378-381.
Article
Google Scholar
Brownbill RA, Ilich JZ. Lipid profile and bone paradox: higher serum lipids are associated with higher bone mineral density in postmenopausal women. J Women’s Health (Larchmont, NY 2002). 2006;15(3):261.
Article
CAS
Google Scholar
Sprini D, Rini GB, Di Stefano L, Cianferotti L, Napoli N. Correlation between osteoporosis and cardiovascular disease. Clin Cases Miner Bone Metabol. 2014;11(2):117–9. https://doi.org/10.11138/ccmbm/2014.11.2.117.
Article
Google Scholar
Alkhenizan A, Mahmoud A, Hussain A, Gabr A, Alsoghayer S, Eldali A. The relationship between 25 (OH) D levels (vitamin D) and bone mineral density (BMD) in a Saudi population in a community-based setting. PLoS ONE. 2017;12(1):e169122. https://doi.org/10.1371/journal.pone.0169122.
Article
CAS
Google Scholar
Sun J, Zhao M, Hou Y, Zhang C, Oh J, Sun Z, et al. Circulating serum vitamin D levels and total body bone mineral density: a Mendelian randomization study. J Cell Mol Med. 2019;23(3):2268–71. https://doi.org/10.1111/jcmm.14153.
Article
CAS
Google Scholar
Hu X, Ma S, Yang C, Wang W, Chen L. Relationship between senile osteoporosis and cardiovascular and cerebrovascular diseases. Exp Ther Med. 2019;17(6):4417–20. https://doi.org/10.3892/etm.2019.7518.
Article
CAS
Google Scholar
D’Amelio P, Pescarmona GP, Gariboldi A, Isaia GC. High density lipoproteins (HDL) in women with postmenopausal osteoporosis: a preliminary study. Menopause. 2001;8(6):429–32. https://doi.org/10.1097/00042192-200111000-00008.
Article
Google Scholar
Winzenberg T, Powell S, Shaw KA, Jones G. Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. BMJ (Clin Res ed). 2011;342:c7254. https://doi.org/10.1136/bmj.c7254.
Article
Google Scholar
Sertpoyraz FM, Deniz S. Bone mineral density and vitamin D levels in patients with group a COPD. Aging Male. 2020;23(5):873–8. https://doi.org/10.1080/13685538.2019.1612869.
Article
CAS
Google Scholar
Holick MF. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr. 2004;79(3):362–71. https://doi.org/10.1093/ajcn/79.3.362.
Article
CAS
Google Scholar
Leung HH, Galano J, Crauste C, Durand T, Lee JC. Combination of lutein and zeaxanthin, and DHA regulated polyunsaturated fatty acid oxidation in H2O2-stressed retinal cells. Neurochem Res. 2020;45(5):1007–19. https://doi.org/10.1007/s11064-020-02994-4.
Article
CAS
Google Scholar
Maghbooli Z, Khorrami-nezhad L, Adabi E, Ramezani M, Asadollahpour E, Razi F, et al. Negative correlation of high-density lipoprotein-cholesterol and bone mineral density in postmenopausal Iranian women with vitamin D deficiency. Menopause. 2018;25(4):458–64. https://doi.org/10.1097/GME.0000000000001082.
Article
Google Scholar
Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society. J Clin Endocrinol Metabol. 2011;96(7):1911–30. https://doi.org/10.1210/jc.2011-0385.
Article
CAS
Google Scholar
Hu L, Yin C, Zhao F, Ali A, Ma J, Qian A. Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci. 2018;19(2):360. https://doi.org/10.3390/ijms19020360.
Article
CAS
Google Scholar
Paspaliaris V, Kolios G. Stem cells in osteoporosis: from biology to new therapeutic approaches. Stem Cells Int. 2019;2019:1–16. https://doi.org/10.1155/2019/1730978.
Article
CAS
Google Scholar
Yabing WKSM. Research progress in the mechanism of action of transforming growth factor-β in bone metabolism. Chin J Osteoporos. 2020;26(02):308–12.
Google Scholar
Parhami F, Morrow AD, Balucan J, Leitinger N, Watson AD, Tintut Y, et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol. 1997;17(4):680–7.
Article
CAS
Google Scholar
Hsu Y, Venners SA, Terwedow HA, Feng Y, Niu T, Li Z, et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr. 2006;83(1):146–54.
Article
CAS
Google Scholar
Kha HT, Basseri B, Shouhed D, Richardson J, Tetradis S, Hahn TJ, et al. Oxysterols regulate differentiation of mesenchymal stem cells: pro-bone and anti-fat. J Bone Miner Res. 2004;19(5):830–40. https://doi.org/10.1359/jbmr.040115.
Article
CAS
Google Scholar
Dennison EM, Syddall HE, Aihie Sayer A, Martin HJ, Cooper C. Lipid profile, obesity and bone mineral density: the Hertfordshire Cohort Study. QJM. 2007;100(5):297–303. https://doi.org/10.1093/qjmed/hcm023.
Article
CAS
Google Scholar
Jirapinyo M, Theppisai U, Manonai J, Suchartwatnachai C, Jorgensen LN. Effect of combined oral estrogen/progestogen preparation (Kliogest®) on bone mineral density, plasma lipids and postmenopausal symptoms in HRT-naïve. Acta Obstet Gynecol Scan. 2003;82(9):857–66.
Google Scholar
Mazidi M, Mikhailidis DP, Banach M. Associations between risk of overall mortality, cause-specific mortality and level of inflammatory factors with extremely low and high high-density lipoprotein cholesterol levels among American adults. Int J Cardiol. 2019;276:242–7. https://doi.org/10.1016/j.ijcard.2018.11.095.
Article
Google Scholar
Heikkinen AM, Tuppurainen MT, Niskanen L, Komulainen M, Penttilä I, Saarikoski S. Long-term vitamin D3 supplementation may have adverse effects on serum lipids during postmenopausal hormone replacement therapy. Eur J Endocrinol. 1997;137:495–502.
Article
CAS
Google Scholar
Shi H, Norman AW, Okamura WH, Sen A, Zemel MB. 1α,25-dihydroxyvitamin D3 inhibits uncoupling protein 2 expression in human adipocytes. FASEB J. 2002;16(13):1–20. https://doi.org/10.1096/fj.02-0255fje.
Article
CAS
Google Scholar
Wehmeier K, Beers A, Haas MJ, Wong NCW, Steinmeyer A, Zugel U, et al. Inhibition of apolipoprotein AI gene expression by 1, 25-dihydroxyvitamin D3. Biochem Biophys Acta. 2005;1737(1):16–26.
CAS
Google Scholar
von Mühlen DG, Greendale GA, Garland CF, Wan L, Barrett-Connor E. Vitamin D, parathyroid hormone levels and bone mineral density in community-dwelling older women: the Rancho Bernardo Study. Osteoporos Int. 2005;16(12):1721–6. https://doi.org/10.1007/s00198-005-1910-8.
Article
CAS
Google Scholar
Nadeem SM, Rafique I, Hayder I, Irshad R, Bashir S, Ullah R, et al. Comparison of vitamin D levels with bone density, calcium, phosphate and alkaline phosphatase—an insight from major cities of Pakistan. J Pak Med Assoc. 2018;68(4):543–7.
Google Scholar
Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh J, et al. Molecular mechanisms of vitamin D action. Calcif Tissue Int. 2013;92(2):77–98. https://doi.org/10.1007/s00223-012-9619-0.
Article
CAS
Google Scholar
Buizert PJ, van Schoor NM, Lips P, Deeg DJ, Eekhoff EM. Lipid levels: A link between cardiovascular disease and osteoporosis? J Bone Miner Res. 2009;24(6):1103–9. https://doi.org/10.1359/jbmr.081262.
Article
CAS
Google Scholar
Jeong I, Cho SW, Kim SW, Choi HJ, Park KS, Kim SY, et al. Lipid profiles and bone mineral density in pre- and postmenopausal women in Korea. Calcif Tissue Int. 2010;87(6):507–12. https://doi.org/10.1007/s00223-010-9427-3.
Article
CAS
Google Scholar
Adler RA. Update on osteoporosis in men. Best Pract Res Clin Endocrinol. 2018;32(5):759–72. https://doi.org/10.1016/j.beem.2018.05.007.
Article
Google Scholar
Briot K, Roux C, Thomas T, Blain H, Buchon D, Chapurlat R, et al. 2018 update of French recommendations on the management of postmenopausal osteoporosis. Jt Bone Spine. 2018;85(5):519–30. https://doi.org/10.1016/j.jbspin.2018.02.009.
Article
Google Scholar
Windahl SH, Börjesson AE, Farman HH, Engdahl C, Movérare-Skrtic S, Sjögren K, et al. Estrogen receptor-α in osteocytes is important for trabecular bone formation in male mice. Proc Natl Acad Sci. 2013;110(6):2294–9. https://doi.org/10.1073/pnas.1220811110.
Article
Google Scholar
Kun G, Weiji Y, Quan L, Qinong M, Jinlong Y, Jinquan L, et al. Study on the relationship between the ratio of neutrophil to lymphocyte and osteoporosis. Chin J Osteoporos. 2019;25(08):1134–7.
Google Scholar
Wei SZ, Zhifen HZEA. Effects of estrogen on Wnt16, β-catenin, OPG, RANKL expression in bone tissue of ovariectomized rats. Zhejiang Med. 2017;39(04):245–9.
Google Scholar
Schweiger J, Schweiger U, Hüppe M, Kahl K, Greggersen W, Jauch-Chara K, et al. The use of antidepressive agents and bone mineral density in women: a meta-analysis. Int J Environ Res Public Health. 2018;15(7):1373. https://doi.org/10.3390/ijerph15071373.
Article
CAS
Google Scholar
Sheu Y, Lanteigne A, Stürmer T, Pate V, Azrael D, Miller M. SSRI use and risk of fractures among perimenopausal women without mental disorders. Injury Prev. 2015;21(6):397–403. https://doi.org/10.1136/injuryprev-2014-041483.
Article
Google Scholar
Varì R, Scazzocchio B, D’Amore A, Giovannini C, Gessani S, Masella R. Gender-related differences in lifestyle may affect health status. Annali dell’Istituto superiore di sanita. 2016;52(2):158–66. https://doi.org/10.4415/ANN_16_02_06.
Article
Google Scholar
Nieves JW. Sex-differences in skeletal growth and aging. Curr Osteoporos Rep. 2017;15(2):70–5. https://doi.org/10.1007/s11914-017-0349-0.
Article
Google Scholar
Niu P, Li H, Liu D, Zhang YF, Liu Y, Liang C. Association between HDL-C and bone mineral density: an cross-sectional analysis. Int J Gen Med. 2021;14:8863–72. https://doi.org/10.2147/IJGM.S334972.
Article
CAS
Google Scholar
Zolfaroli I, Ortiz E, García-Pérez M, Hidalgo-Mora JJ, Tarín JJ, Cano A. Positive association of high-density lipoprotein cholesterol with lumbar and femoral neck bone mineral density in postmenopausal women. Maturitas. 2021;147:41–6. https://doi.org/10.1016/j.maturitas.2021.03.001.
Article
CAS
Google Scholar
Zhang Q, Zhou J, Wang Q, Lu C, Xu Y, Cao H, et al. Association between bone mineral density and lipid profile in Chinese women. Clin Interv Aging. 2020;15:1649–64. https://doi.org/10.2147/CIA.S266722.
Article
CAS
Google Scholar
Bin XGZX. The related research of antero-posterior lumbar spine bone mineral density data of 2 205 healthy men in Shanghai. J Southeast Univ (Med Sci Ed). 2016;35(3):301–4.
Google Scholar