Gastrocnemius contracture has been described as “the most profound causal agent in foot pathomechanics,” and “the primary causal agent in a significant proportion of foot pathology” [1].
Equinus is defined as ankle dorsiflexion < 10° with the knee extended [2,3,4,5,6,7,8,9,10,11].
Barouk et al. [12] described the Silfverskiöld maneuver as the appropriate technique for differentiating gastrocnemius equinus from gastrocnemius-soleus equinus. DiGiovanni et al. recommended a definition based on their study: ankle joint dorsiflexion < 5° with the knee extended for gastrocnemius equinus and < 10° with the knee flexed for gastrocnemius-soleus equinus is considered as abnormal [13].
Isolated gastrocnemius contracture is believed to lead to numerous pathological conditions of the foot and ankle and has been associated with more than 30 lower limb disorders, including plantar heel pain/plantar fasciitis, Achilles tendonitis/tendinosis, adult flat foot deformity, metatarsalgia, hallux abductus valgus, hammer toe/claw toe, hallux limitus/rigidus, and forefoot nerve entrapment [1, 8, 14].
In children, the deformity has been associated with clubfoot, spasticity, and cerebral palsy [2].
Therefore, gastrocnemius recession, either alone or in combination with other techniques, has many well-documented indications.
It is considered indicated in adults with dorsiflexion < 10° with the knee extended [15, 16].
Gastrocnemius muscle lengthening was first described in 1913 by Vulpius and Stoeffel [17] and subsequently by Silfverskiöld and other authors, who described surgical approaches at different anatomical levels of the gastrocnemius complex [18,19,20,21].
Gastrocnemius recession can be performed proximally or distally as open surgery, as an endoscopic procedure, or as ultrasound-guided surgery [11, 22]. While many open techniques have been described, these are associated with poor cosmetic results, neurovascular compromise, and wound dehiscence. Complications can lead to patient dissatisfaction [11, 11,22,23,24,25,26,27].
Endoscopic gastrocnemius recession appears to be less invasive and may have advantages over open procedures in terms of skin damage, smaller incisions, shorter recovery times, fewer complications, and reduced morbidity [28], although sural nerve injury and the need for limb exsanguination may be limitations [29].
Open and endoscopic procedures require epidural anesthesia, lower limb ischemia, and sutures.
Various ultrasound-guided surgical techniques for gastrocnemius resection have been described [11, 22, 30]. In 2016 Villanueva et al [11], first described ultrasound-guided gastrocnemius resection, which consists of sectioning the gastrocnemius tendon through anatomical level II, as in the "Strayer technique". In 2018, the same authors described proximal resection of the medial head of the calf muscle [11, 22].
Ultrasound-guided gastrocnemius recession is performed without ischemia and with local anesthesia plus sedation and does not require stitches. The potential benefits include shorter recovery time, fewer complications, reduced morbidity, and the possibility of performing bilateral procedures alone or in combination with other ultrasound-guided surgical techniques on an outpatient basis [11, 22].
Ultrasound-guided gastrocnemius resection appears to be the most advantageous of currently used techniques. The incision is 1 mm, and ischemia is unnecessary, thus minimizing the complications typical of open and endoscopic surgery. In addition, since it enables direct and continuous visualization of all structures, the possibility of neurovascular damage is reduced [11, 22].
Complications were minimal in our series, mainly hematomas that were reabsorbed at 3–4 weeks. Proximal recession was necessary in only one patient, who experienced slight cutaneous dysesthesia in the proximal third of the calf [28].
We previously applied aponeurotomy for Dupuytren’s disease and needle-based plantar fasciotomy. Ultrasound-guided release of the carpal tunnel was described by McShane et al. 10 years ago. To our knowledge, needle-based gastrocnemius lengthening has not been previously described. We believe that this viable and reproducible surgical procedure warrants further consideration [31,32,33].
The objective of this study was to evaluate the safety and efficacy of ultrasound-guided recession of the gastrocnemius tendon at level II using an Abbocath.
We evaluated the range of dorsiflexion before and after the procedure and assessed possible complications, including neurovascular injuries.