Horwitz IB, Lenobel MI. Artificial hip prosthesis in acute and nonunion fractures of the femoral neck: follow-up study of seventy cases. J Am Med Assoc. 1954;155:564–7. https://doi.org/10.1001/jama.1954.03690240030009.
Article
CAS
PubMed
Google Scholar
Finlayson G, Tucker A, Black ND, McDonald S, Molloy M, Wilson D. Outcomes and predictors of mortality following periprosthethic proximal femoral fractures. Injury. 2019;50:438–43. https://doi.org/10.1016/j.injury.2018.10.032.
Article
PubMed
Google Scholar
Della Rocca GJ, Leung KS, Pape HC. Periprosthetic fractures: epidemiology and future projections. J Orthop Trauma. 2011;25(Suppl 2):S66-70. https://doi.org/10.1097/BOT.0b013e31821b8c28.
Article
PubMed
Google Scholar
Berry DJ. Epidemiology. Orthop Clin North Am. 1999;30:183–90. https://doi.org/10.1016/S0030-5898(05)70073-0.
Article
CAS
PubMed
Google Scholar
Garbuz DS, Masri BA, Duncan CP. Periprosthetic fractures of the femur: principles of prevention and management. Instr Course Lect. 1998;47:237–42.
CAS
PubMed
Google Scholar
Lewallen DG, Berry DJ. Periprosthetic fracture of the femur after total hip arthroplasty: treatment and results to date. Instr Course Lect. 1998;47:243–9.
CAS
PubMed
Google Scholar
Younger AS, Dunwoody J, Duncan CP. Periprosthetic hip and knee fractures: the scope of the problem. Instr Course Lect. 1998;47:251–6.
CAS
PubMed
Google Scholar
Sidler-Maier CC, Waddell JP. Incidence and predisposing factors of periprosthetic proximal femoral fractures: a literature review. Int Orthop. 2015;39:1673–82. https://doi.org/10.1007/s00264-015-2721-y.
Article
PubMed
Google Scholar
Meek RM, Norwood T, Smith R, Brenkel IJ, Howie CR. The risk of peri-prosthetic fracture after primary and revision total hip and knee replacement. J Bone Joint Surg Br. 2011;93:96–101. https://doi.org/10.1302/0301-620X.93B1.25087.
Article
CAS
PubMed
Google Scholar
Duncan CP, Masri BA. Fractures of the femur after hip replacement. Instr Course Lect. 1995;44:293–304.
CAS
PubMed
Google Scholar
Rayan F, Dodd M, Haddad FS. European validation of the Vancouver classification of periprosthetic proximal femoral fractures. J Bone Joint Surg Br. 2008;90:1576–9. https://doi.org/10.1302/0301-620X.90B12.20681.
Article
CAS
PubMed
Google Scholar
Parvizi J, Vegari DN. Periprosthetic proximal femur fractures: current concepts. J Orthop Trauma. 2011;25(Suppl 2):S77-81. https://doi.org/10.1097/BOT.0b013e31821b8c3b.
Article
PubMed
Google Scholar
Pike J, Davidson D, Garbuz D, Duncan CP, O’Brien PJ, Masri BA. Principles of treatment for periprosthetic femoral shaft fractures around well-fixed total hip arthroplasty. J Am Acad Orthop Surg. 2009;17:677–88. https://doi.org/10.5435/00124635-200911000-00002.
Article
PubMed
Google Scholar
Beals RK, Tower SS. Periprosthetic fractures of the femur. An analysis of 93 fractures. Clin Orthop Relat Res. 1996;327:238–46. https://doi.org/10.1097/00003086-199606000-00029.
Article
Google Scholar
Masri BA, Meek RM, Duncan CP. Periprosthetic fractures evaluation and treatment. Clin Orthop Relat Res. 2004;420:80–95. https://doi.org/10.1097/00003086-200403000-00012.
Article
Google Scholar
Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002;84:1093–110. https://doi.org/10.1302/0301-620x.84b8.13752.
Article
PubMed
Google Scholar
Wang DX, Xiong Y, Deng H, Jia F, Gu S, Liu BL, et al. Biomechanical analysis and clinical effects of bridge combined fixation system for femoral fractures. Proc Inst Mech Eng H. 2014;228:899–907. https://doi.org/10.1177/0954411914548866.
Article
PubMed
Google Scholar
Schwandt CS. User manual for the 4.5/5.5 mm VetFix: development of a new veterinary internal fixation system, from the prototype to the final version [Thesis]. Switzerland: University of Bern; 2001.
Kang L, Liu H, Ding Z, Ding Y, Hu W, Wu J. Ipsilateral proximal and shaft femoral fractures treated with bridge-link type combined fixation system. J Orthop Surg Res. 2020;15:399. https://doi.org/10.1186/s13018-020-01929-7.
Article
PubMed
PubMed Central
Google Scholar
Ricci WM. Periprosthetic femur fractures. J Orthop Trauma. 2015;29:130–7. https://doi.org/10.1097/BOT.0000000000000282.
Article
PubMed
Google Scholar
Frigg R. Development of the locking compression plate. Injury. 2003;34(Suppl 2):B6–10. https://doi.org/10.1016/j.injury.2003.09.020.
Article
PubMed
Google Scholar
Papini M, Zdero R, Schemitsch EH, Zalzal P. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. J Biomech Eng. 2007;129:12–9. https://doi.org/10.1115/1.2401178.
Article
CAS
PubMed
Google Scholar
Wähnert D, Grüneweller N, Gehweiler D, Brunn B, Raschke MJ, Stange R. Double plating in Vancouver type B1 periprosthetic proximal femur fractures: a biomechanical study. J Orthop Res. 2017;35:234–9. https://doi.org/10.1002/jor.23259.
Article
CAS
PubMed
Google Scholar
Zdero R, Walker R, Waddell JP, Schemitsch EH. Biomechanical evaluation of periprosthetic femoral fracture fixation. J Bone Joint Surg Am. 2008;90:1068–77. https://doi.org/10.2106/JBJS.F.01561.
Article
PubMed
Google Scholar
O’Connell RS, Owen JR, Hansen EJ, Bashir AS, Wayne JS, Satpathy J, et al. Biomechanical evaluation of osteoporotic proximal periprosthetic femur fractures with proximal Bicortical fixation and allograft struts. J Orthop Trauma. 2018;32:508–14. https://doi.org/10.1097/BOT.0000000000001261.
Article
PubMed
Google Scholar
Lenz M, Windolf M, Mückley T, Hofmann GO, Wagner M, Richards RG, et al. The locking attachment plate for proximal fixation of periprosthetic femur fractures—a biomechanical comparison of two techniques. Int Orthop. 2012;36:1915–21. https://doi.org/10.1007/s00264-012-1574-x.
Article
PubMed
PubMed Central
Google Scholar
Kammerlander C, Pfeufer D, Lisitano LA, Mehaffey S, Böcker W, Neuerburg C. Inability of older adult patients with hip fracture to maintain postoperative weight-bearing restrictions. J Bone Joint Surg Am. 2018;100:936–41. https://doi.org/10.2106/JBJS.17.01222.
Article
PubMed
Google Scholar
Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34:859–71. https://doi.org/10.1016/s0021-9290(01)00040-9.
Article
CAS
PubMed
Google Scholar
Taylor SJ, Walker PS, Perry JS, Cannon SR, Woledge R. The forces in the distal femur and the knee during walking and other activities measured by telemetry. J Arthroplasty. 1998;13:428–37. https://doi.org/10.1016/s0883-5403(98)90009-2.
Article
CAS
PubMed
Google Scholar
Bagheri ZS, El Sawi I, Bougherara H, Zdero R. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography. J Mech Behav Biomed Mater. 2014;35:27–38. https://doi.org/10.1016/j.jmbbm.2014.03.008.
Article
CAS
PubMed
Google Scholar
Fulkerson E, Koval K, Preston CF, Iesaka K, Kummer FJ, Egol KA. Fixation of periprosthetic femoral shaft fractures associated with cemented femoral stems: a biomechanical comparison of locked plating and conventional cable plates. J Orthop Trauma. 2006;20:89–93. https://doi.org/10.1097/01.bot.0000199119.38359.96.
Article
PubMed
Google Scholar
Lenz M, Lehmann W, Wähnert D. Periprosthetic fracture fixation in osteoporotic bone. Injury. 2016;47(Suppl 2):S44-50. https://doi.org/10.1016/S0020-1383(16)47008-7.
Article
PubMed
Google Scholar
Lenz M, Perren SM, Gueorguiev B, Höntzsch D, Windolf M. Mechanical behavior of fixation components for periprosthetic fracture surgery. Clin Biomech (Bristol, Avon). 2013;28:988–93. https://doi.org/10.1016/j.clinbiomech.2013.09.005.
Article
Google Scholar
Lenz M, Perren SM, Gueorguiev B, Richards RG, Hofmann GO, Fernandez dell’Oca A, et al. A biomechanical study on proximal plate fixation techniques in periprosthetic femur fractures. Injury. 2014;45(Suppl 1):S71–5. https://doi.org/10.1016/j.injury.2013.10.027.
Article
PubMed
Google Scholar
Gwinner C, Märdian S, Dröge T, Schulze M, Raschke MJ, Stange R. Bicortical screw fixation provides superior biomechanical stability but devastating failure modes in periprosthetic femur fracture care using locking plates. Int Orthop. 2015;39:1749–55. https://doi.org/10.1007/s00264-015-2787-6.
Article
PubMed
Google Scholar
Lenz M, Gueorguiev B, Joseph S, van der Pol B, Richards RG, Windolf M, et al. Angulated locking plate in periprosthetic proximal femur fractures: biomechanical testing of a new prototype plate. Arch Orthop Trauma Surg. 2012;132:1437–44. https://doi.org/10.1007/s00402-012-1556-x.
Article
PubMed
Google Scholar
Min BW, Cho CH, Son ES, Lee KJ, Lee SW, Min KK. Minimally invasive plate osteosynthesis with locking compression plate in patients with Vancouver type B1 periprosthetic femoral fractures. Injury. 2018;49:1336–40. https://doi.org/10.1016/j.injury.2018.05.020.
Article
PubMed
Google Scholar