Open Access

Wound drains in posterior spinal surgery: a meta-analysis

Contributed equally
Journal of Orthopaedic Surgery and Research201611:16

https://doi.org/10.1186/s13018-016-0351-8

Received: 13 December 2015

Accepted: 19 January 2016

Published: 22 January 2016

Abstract

Background

The use of drains following posterior spinal surgery is controversial. Thus, the aim of this meta-analysis was to review the advantages and adverse effects of closed suction drainage systems in posterior spinal surgery.

Methods

All randomized and non-randomized controlled trials comparing the use of closed suction drainage with no drainage in posterior spinal surgery were sought in PubMed, Medicine, Embase, and other Internet databases. All of the literature was searched and assessed by two independent reviewers, according to the standards of Cochrane systematic reviews. Data on functional and radiological outcomes in the two groups were pooled, which were then analyzed with RevMan software, version 5.2.

Results

Four randomized controlled trials (RCTs) and four non-RCTs met the inclusion criteria. Meta-analysis revealed that no significant differences were found regarding wound infection (P = 0.83), hematoma (P = 0.48), neurological injury (P = 0.21), estimated blood loss (P = 0.59), or dry and moderate dressing drainage between the groups. The number of patients with saturated dressings was larger in the no drainage group (P = 0.002).

Conclusions

There is no obvious evidence to support the application of closed suction drains for posterior spinal surgery. Because of the limited quality of the evidence currently available, more high-quality RCTs with better experimental designs and larger patient samples should be performed.

Keywords

Spine Posterior Drain Meta-analysis

Background

Level of evidence: III

Closed suction drainage is commonly used in orthopedic surgery. The aim of using closed suction drainage is the prevention of the formation of hematomas [1]. Postoperative hematoma in the operative field can increase tension on incisions, delay wound healing, and lead to wound infection [2]. Moreover, epidural hematoma can lead to spinal cord compression and even paralysis in spinal surgery [35]. However, a few studies have demonstrated that closed suction drainage has no benefit in joint arthroplasty and spinal surgery [6, 7]. In contrast, closed suction drainage could cause retrograde infection, increase postoperative blood loss, and the need for transfusion [8, 9].

The use of closed suction drainage in posterior spinal surgery remains controversial [1015]. Therefore, we conducted a meta-analysis, pooling the data from randomized controlled trials (RCTs) and non-RCTs to provide an evidence-based judgment regarding the use of closed suction drainage in posterior spinal surgery.

Methods

Search strategy

Electronic databases, including the Cochrane Library, Medline (1966–2015.10), PubMed (1966–2015.10), Embase (1980–2015.10), and ScienceDirect (1985–2015.10), were searched. Gray studies were identified from the references of the included literature. No language restrictions were applied. The search process was conducted as illustrated in Fig. 1. The keywords “Drain OR Drainage”, “spine OR spinal,” and “posterior” were used in combination with the Boolean operators AND and OR.
Fig. 1

Flowchart of the study selection process

Selection criteria

Studies were considered eligible for inclusion if they met the following criteria: (1) the patients underwent primary posterior spinal surgery, (2) the intervention was the use of drainage compared to no drainage, (3) the outcomes included blood loss, transfusion, and complication, and (4) the study was a published or unpublished controlled clinical trial.

Exclusion criteria: Patients were excluded from the meta-analysis if they had a neoplastic etiology (i.e., metastasis or myeloma), infection, traumatic fracture, serious osteoporosis, metal sensitivity, or mental illness.

Quality assessment

Two reviewers completed the search process independently. Disagreement was resolved by consulting a third reviewer. Quality assessment for randomized trials was conducted according to a modification of the generic evaluation tool used by the Cochrane Bone, Joint and Muscle Trauma Group [16] and the index for non-randomized studies (MINORS) form for non-randomized clinical trials [17]. The methodological quality of each trial was scored from 0 to 24.

Data extraction

Two researchers independently extracted the data from the included literature. In cases of incomplete data, the study authors were consulted for details. The following data were extracted: first author name, year of publication, intervening measures, comparable baseline data, sample size, and outcome measurements. Other relevant parameters were also extracted from individual studies.

Data analysis and statistical methods

The pooled data were analyzed using RevMan software, version 5.1 (The Cochrane Collaboration, Oxford, United Kingdom). Heterogeneity was estimated depending on the values of P and I 2 using the standard chi-square test. When I 2 > 50 %, P < 0.1 was considered to indicate significant heterogeneity. Therefore, a random-effects model was applied for data analysis. A fixed-effects model was used when no significant heterogeneity was found. In cases of significant heterogeneity, subgroup analysis was performed to investigate sources. For continuous outcomes, mean differences (MDs) and 95 % confidence intervals (CIs) are presented. Risk difference (RD) and 95 % CIs were calculated for dichotomous data.

Results

Literature search

A total of 396 potential studies were identified with the primary search strategy. Of these studies, 388 reports were excluded according to the eligibility criteria. No additional studies were obtained after the reference review. Ultimately, four non-RCTs and four RCTs [1015, 18, 19] were eligible for data extraction and meta-analysis, as indicated by the flowchart in Fig. 1. These studies involved a total of 1133 patients in the drainage group and 771 patients in the no drainage group.

Study characteristics

The main characteristics of the included studies are reported in Table 1. Statistically, similar baseline characteristics were observed between the two groups. The sample sizes of included studies ranged from 30 to 560 patients. The surgical procedures of the four studies were single-level lumbar decompression surgeries [1315, 18]. The surgical procedures of three studies were posterior spinal fusion and instrumentation [10, 12, 19]. In Brown’s studies, the surgical procedure was extensive lumbar spine surgery [11].
Table 1

Characteristics of included studies

Studies

Design

Cases (D/C)

Mean age (D/C)

Male (D/C)

Surgical procedure/patient population

Follow-up

Payne et al. [14]

RCT

103/97

NA

NA

Single-level lumbar laminectomy

2 weeks

Blank et al. [10]

RCT

18/12

13.9

18

Posterior spinal fusion and instrumentation

Discharge

Brown and Brookfield [11]

RCT

42/41

67.4/67.4

NA

Extensive lumbar spine surgery

Discharge

Sen et al. [15]

PCT

41/38

46.4

45

Unilateral, single-level lumbar disc herniation

6–12 months

Mirzai et al. [18]

RCT

22/28

47/47

16/17

Hemipartial laminectomy and flavectomy

6 months

Kanayama et al. [13]

CCT

298/262

44/48

190/168

Single-level lumbar decompression surgery

Discharge

Walid 2011

CCT

285/117

57.3

173

Posterior lumbar interbody fusion

Discharge

Diab et al. [12]

PCT

324/176

15.7/15.6

59/43

Posterior spinal fusion and instrumentation

2 years

D drainage, C no drainage, RCT randomized controlled trial, PCT prospective controlled trial, CCT case controlled trial, NA no available

Risk of bias assessment

The quality of the RCTs was assessed according to the Cochrane Handbook for Systematic Review of Interventions. Four RCTs met the inclusion criteria. Mirzai et al. reported that randomization was performed by flipping a coin; the three other RCTs provided randomization methods. Adequate concealment of allocation was unclear for two RCTs [10, 18]. None of the RCTs reported blinding methods. The MINORS scores were 17–19 for the non-RCTs [12, 13, 15, 19]. The methodological quality assessment is illustrated in Fig. 2 (RCTs) and Table 2 (non-RCTs).
Fig. 2

The summary of bias risk of randomized controlled trials

Table 2

Quality assessment for non-randomized trials

Quality assessment for non-randomized trials

Sen et al. [15]

Kanayama et al. [13]

Walid 2011

Diab et al. [12]

A clearly stated aim

2

2

2

2

Inclusion of consecutive patients

2

1

1

2

Prospective data collection

2

2

2

2

Endpoints appropriate to the aim of the study

1

1

1

1

Unbiased assessment of the study endpoint

1

1

1

0

A follow-up period appropriate to the aims of study

2

2

2

2

Less than 5 % loss to follow-up

2

2

2

2

Prospective calculation of the sample size

0

0

0

0

An adequate control group

2

2

2

2

Contemporary groups

1

0

1

1

Baseline equivalence of groups

2

2

2

2

Adequate statistical analyses

2

2

2

1

Total score

19

17

18

17

Outcomes for meta-analysis

Wound infection

Details regarding wound infection were available in seven studies [1015, 19]. There was significant heterogeneity (χ 2 = 1.87, df = 6, I 2 = 0 %, P = 0.93); therefore, a fixed model was applied. Pooling of the results demonstrated that wound infection showed no significant difference between the two groups (RD = −0.0; 95 % CI, −0.01 to 0.01; P = 0.83; Fig. 3).
Fig. 3

Forest plot of wound infection between the two groups

Hematoma

Five articles reported the incidence of hematoma [10, 11, 13, 14, 19]. Significant heterogeneity was found, so a fixed model was used (χ 2 = 0.72, df = 4, I 2 = 0 %, P = 0.72). There was no significant difference between the drain group and the no drain group regarding hematoma (RD = 0.0; 95 % CI, −0.01 to 0.01; P = 0.48; Fig. 4).
Fig. 4

Forest plot of hematoma between the two groups

Postoperative neurological injury

Relevant data regarding postoperative neurological injury were documented in three articles [11, 12, 14]. Significant heterogeneity was found, so a fixed model was used (χ 2 = 1.09, df = 2, I 2 = 0 %, P = 0.58). There was no significant difference between the drain group and the no drain group regarding postoperative neurological injury (RD = 0.01; 95 % CI, −0.00 to 0.02, P = 0.21; Fig. 5).
Fig. 5

Forest plot of postoperative neurological injury between the two groups

Estimated blood loss

Three studies reported estimated blood loss [1012]. Significant heterogeneity was found, so a random-effects model was used (χ 2 = 5.19, df = 2, I 2 = 61 %, P = 0.07). There was no significant difference between the drain group and the no drain group regarding postoperative neurological injury (MD = −37.12; 95 % CI, −171.11 to 96.88; P = 0.59; Fig. 6).
Fig. 6

Forest plot of estimated blood loss between the two groups

Postoperative dressing saturation

Postoperative dressing saturation was reported in two trials [10, 11]. For dry dressing drainage, significant heterogeneity was shown between the pooled results; thus, a random-effects model was performed. There was no significant difference between the groups (RD = 0.19; 95 % CI, −0.20 to 0.58; P = 0.33). For moderate dressing drainage, significant heterogeneity was shown between the pooled results; thus, a random-effects model was performed. There was no significant difference between the groups (RD = 0.00; 95 % CI, −0.40 to 0.40; P = 0.99). For saturated dressing drainage, no significant heterogeneity was shown between the pooled results; thus, a fixed model was performed. There were significant differences between the groups (RD = −0.23; 95 % CI, −0.38 to −0.09; P = 0.002).

Discussion

The most important finding of the present meta-analysis was that the use of drainage in posterior spinal surgery decreased saturated dressing drainage, but it did not reduce postoperative wound infection, hematoma, neurological injury, or estimated blood loss. Furthermore, no significant differences were found in dry or moderate dressing drainage.

Followed strict searching, four non-RCTs [12, 13, 15, 19] and four RCTs [10, 11, 14, 18] met the inclusion criteria for the meta-analysis. There were biases for randomization, concealment of allocation, and blinding methods in the RCTs. The quality assessment scores of non-RCTs ranged from 17 to 19. No prospective calculation of the sample sizes was described in the non-RCTs. In addition, the contemporary groups were biased. All of these shortcomings weakened the level of evidence and should be considered when interpreting the findings of the present meta-analysis.

Wound infection is a common complication after posterior spinal surgery, increasing morbidity and medical costs. Spinal surgeons have advocated closed suction drainage due to a fear of infection [20, 21]. The present meta-analysis found no significant difference in the incidence of wound infection. The incidence of infection was 1.68 % in the closed suction drainage group and 1.32 % in the no drainage group.

In theory, a hematoma in the wound is an excellent culture medium for bacterial growth. In spinal surgery, symptomatic epidural hematomas can cause spinal cord compression and even paralysis [22]. The present meta-analysis found no significant difference in the incidence of hematomas. In Mirzai et al.’s study, epidural hematomas were measured by magnetic resonance imaging (MRI) examinations [18]. They found that the group with drains had significantly fewer patients with hematomas and significantly more patients with no hematomas. However, none of the hematomas had significant effects on the recovery of any patients.

Two of the included studies reported postoperative dressing saturation from the wounds [10, 11]. The pooled data demonstrated that the number of patient with saturated dressings was larger in the no drainage group. Saturated dressings reflected leakage of blood from wounds without drainage without the formation of hematoma.

Some studies showed that drainage was associated with significant blood loss and transfusion requirements [19]. In our meta-analysis, the pooled data demonstrated that drainage did not increase blood loss. Blank et al. reported that the transfusion requirements were similar for both groups [10]. In Walid et al.’s study, an increased rate of allogeneic blood transfusion was noted with posthemorrhagic anemia and drain use [19].

There were several potential limitations of our meta-analysis: (1) only four RCTs and four non-RCTs were identified, and the sample sizes of the included studies were relatively small; (2) there were some methodological weaknesses in the included studies; and (3) some data were incomplete, and we failed to conduct meta-analysis of factors such as transfusion requirements.

Conclusions

In summary, the use of drainage in posterior spinal surgery did not decrease infection, hematoma, or postoperative neurological injury. There was no obvious evidence to support the application of closed suction drains for posterior spinal surgery. Because of the limited quality of the evidence currently available, more high-quality RCTs with better experimental designs and larger patient samples should be performed.

Declarations

Acknowledgements

None.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Department of Spine Surgery, Tianjin Hospital
(2)
Department of Rehabilitation, Tianjin Hospital

References

  1. Holt BT, Parks NL, Engh GA, Lawrence JM. Comparison of closed-suction drainage and no drainage after primary total knee arthroplasty. Orthopedics. 1997;20(12):1121–4. discussion 24-5.PubMedGoogle Scholar
  2. Kim YH, Cho SH, Kim RS. Drainage versus nondrainage in simultaneous bilateral total knee arthroplasties. Clin Orthop Relat Res. 1998;Feb(347):188–93.Google Scholar
  3. Li ZJ, Fu X, Xing D, Zhang HF, Zang JC, Ma XL. Is tranexamic acid effective and safe in spinal surgery? A meta-analysis of randomized controlled trials. Eur Spine J. 2013;22(9):1950–7.PubMed CentralView ArticlePubMedGoogle Scholar
  4. Awad JN, Kebaish KM, Donigan J, Cohen DB, Kostuik JP. Analysis of the risk factors for the development of post-operative spinal epidural haematoma. J Bone Joint Surg (Br). 2005;87(9):1248–52.View ArticleGoogle Scholar
  5. Kou J, Fischgrund J, Biddinger A, Herkowitz H. Risk factors for spinal epidural hematoma after spinal surgery. Spine (Phila Pa 1976). 2002;27(15):1670–3.View ArticleGoogle Scholar
  6. Parker MJ, Roberts CP, Hay D. Closed suction drainage for hip and knee arthroplasty. A meta-analysis. J Bone Joint Surg Am. 2004;86-A(6):1146–52.PubMedGoogle Scholar
  7. Scuderi GJ, Brusovanik GV, Fitzhenry LN, Vaccaro AR. Is wound drainage necessary after lumbar spinal fusion surgery? Med Sci Monit. 2005;11(2):CR64–6.PubMedGoogle Scholar
  8. Chen ZY, Gao Y, Chen W, Li X, Zhang YZ. Is wound drainage necessary in hip arthroplasty? A meta-analysis of randomized controlled trials. Eur J Orthop Surg Traumatol. 2014;24(6):939–46.View ArticlePubMedGoogle Scholar
  9. Zhang QD, Guo WS, Zhang Q, Liu ZH, Cheng LM, Li ZR. Comparison between closed suction drainage and nondrainage in total knee arthroplasty: a meta-analysis. J Arthroplasty. 2011;26(8):1265–72.View ArticlePubMedGoogle Scholar
  10. Blank J, Flynn JM, Bronson W, Ellman P, Pill SG, Lou JE, et al. The use of postoperative subcutaneous closed suction drainage after posterior spinal fusion in adolescents with idiopathic scoliosis. J Spinal Disord Tech. 2003;16(6):508–12.View ArticlePubMedGoogle Scholar
  11. Brown MD, Brookfield KF. A randomized study of closed wound suction drainage for extensive lumbar spine surgery. Spine (Phila Pa 1976). 2004;29(10):1066–8.View ArticleGoogle Scholar
  12. Diab M, Smucny M, Dormans JP, Erickson MA, Ibrahim K, Lenke LG, et al. Use and outcomes of wound drain in spinal fusion for adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2012;37(11):966–73.View ArticleGoogle Scholar
  13. Kanayama M, Oha F, Togawa D, Shigenobu K, Hashimoto T. Is closed-suction drainage necessary for single-level lumbar decompression?: review of 560 cases. Clin Orthop Relat Res. 2010;468(10):2690–4.PubMed CentralView ArticlePubMedGoogle Scholar
  14. Payne DH, Fischgrund JS, Herkowitz HN, Barry RL, Kurz LT, Montgomery DM. Efficacy of closed wound suction drainage after single-level lumbar laminectomy. J Spinal Disord. 1996;9(5):401–3.View ArticlePubMedGoogle Scholar
  15. Sen O, Kizilkilic O, Aydin MV, Yalcin O, Erdogan B, Cekinmez M, et al. The role of closed-suction drainage in preventing epidural fibrosis and its correlation with a new grading system of epidural fibrosis on the basis of MRI. Eur Spine J. 2005;14(4):409–14.PubMed CentralView ArticlePubMedGoogle Scholar
  16. Handoll HH, Gillespie WJ, Gillespie LD, Madhok R. The Cochrane Collaboration: a leading role in producing reliable evidence to inform healthcare decisions in musculoskeletal trauma and disorders. Indian J Orthop. 2008;42(3):247–51.PubMed CentralView ArticlePubMedGoogle Scholar
  17. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73(9):712–6.View ArticlePubMedGoogle Scholar
  18. Mirzai H, Eminoglu M, Orguc S. Are drains useful for lumbar disc surgery? A prospective, randomized clinical study. J Spinal Disord Tech. 2006;19(3):171–7.View ArticlePubMedGoogle Scholar
  19. Walid MS, Abbara M, Tolaymat A, Davis JR, Waits KD, Robinson 3rd JS, et al. The role of drains in lumbar spine fusion. World Neurosurg. 2012;77(3-4):564–8.View ArticlePubMedGoogle Scholar
  20. Chimenti P, Molinari R. Post-operative spinal epidural hematoma causing American Spinal Injury Association B spinal cord injury in patients with suction wound drains. J Spinal Cord Med. 2013;36(3):213–9.PubMed CentralView ArticlePubMedGoogle Scholar
  21. Sokolowski MJ, Garvey TA, Perl 2nd J, Sokolowski MS, Cho W, Mehbod AA, et al. Prospective study of postoperative lumbar epidural hematoma: incidence and risk factors. Spine (Phila Pa 1976). 2008;33(1):108–13.View ArticleGoogle Scholar
  22. Amiri AR, Fouyas IP, Cro S, Casey AT. Postoperative spinal epidural hematoma (SEH): incidence, risk factors, onset, and management. Spine J. 2013;13(2):134–40.View ArticlePubMedGoogle Scholar

Copyright

© Liu et al. 2016

Advertisement