Several published reports on the preliminary results of total hip arthroplasty demonstrated that a superior and lateral position of the hip rotation center can lead to early aseptic loosening [9, 10, 23, 24]. All of these reports, excepting the study from Pospula et al., observed patients with cemented prostheses. Lachiewicz et al. found that an acetabular cup placed 5 mm or more above the anatomical rotation center correlated with more frequent aseptic loosening. It has also been reported that a mispositioning of the hip rotation center can lead to a dislocation several years later [25]. Based on these reports, reconstruction of the exact anatomical position of the hip rotation center appears to be important.
The aim of our study was to assess the influence of fixation technique on the position of the hip rotation center. This study suggests that the technique used for fixation of the cup by itself does not necessarily influence the position of the hip rotation center. Both techniques can be used to reconstruct a physiological center of rotation (Figure 5). The difference between the cemented and cementless cup fixation techniques is that during the cementing procedure, the subchondral sclerotic zone must usually be partially penetrated or sometimes even removed to allow cement to penetrate into the bone for solid fixation. In view of this, we speculated that the rotation center of cups fixed with the cemented technique would be higher compared with cementless acetabular fixation. Interestingly, there was no significant difference in the position of the hip rotation center (Table 2). This is also supported by the close to equal distribution of patients with either fixation technique between the optimal and suboptimal reconstruction groups. These findings were confirmed in the study by Atilla et al., who reviewed patients with total hip arthroplasty reconstruction (cemented and cementless) with femoral bone autograft because of hip dysplasty. They observed that implant survival was significantly correlated with the position of the cup regardless of the fixation technique. A greater number of patients with a superolateral cup position experienced aseptic implant loosening [26]. We assume that the potential loss of the subchondral sclerotic zone was compensated for, at least in some cases, by the bone cement mantle which keeps the hip rotation center in the original position.
Pospula et al. observed a higher loosening rate if a cemented cup was used in comparison to cementless cup fixation [24]. Based on the results we present here, however, it is more likely that the position of the hip rotation center was the reason for the earlier loosening of cemented cups. Although, other reasons, such as errors within the cementing technique or greater bone loss during surgery, cannot be ruled out [27]. Osteonecrosis is another source that could affect cup loosening. The incidence of osteonecrosis is higher in patients receiving cup cementation because of the high temperatures required to set the cement and the leaking of toxic monomers from the cement [28]. Cement mantle fracture due to cement impurities or loss of strength of the cement over time could also be a reason for aseptic loosening [29]. The problem of increased Osteonecrosis could also be observed in other studies [30], although long-term results are better for cemented prostheses than for cementless prostheses [16]. The reason for this difference in outcome is unknown. It is possible that an unrecognized fracture occurring during surgery or enhanced wear after implantation of cementless prostheses could play a role. Patients receiving cementless prostheses have been reported to have a higher rate of revision because of fracture in the first year after surgery [16]. This could, at least in part, be because bone is more vulnerable after cementless fixation since it is not stabilized by the cement and because cementless prostheses are more often used in younger patients, who have a greater activity level [31]. It can be expected that wear will play a lesser role in patients operated on after 2000, since Bjerkholt et al. could show that the wear produced on new cementless prostheses is no longer different than for cemented ones [32].
If the hip rotation center is displaced by ≥ 1 cm from the anatomical position of the hip rotation center, the total hip failure rate is 6.44 times higher [26]. But none of the surgeries in our study resulted in a reconstructed hip rotation center ≥ 1 cm from the anatomical one (Tables 1 and 2). Nearly all surgeries in our series restored the hip rotation center more medial to the anatomical position. This often occurs as a result of losing floor osteophytes localized in the acetabulum near the pulvinar by normal reaming during the implantation procedure to reach the level of cortical bone and achieve good contact between the implant and bone [33].
The post-operative mean flexion in our patient cohort was 86°, which was nearly the same as pre-operative flexion (87°). Interestingly, flexion in the cemented group was significantly better than in the cementless group (table 4). This probably results from the higher vertical difference of the postoperative hip rotation center in the cementless group compared with the cemented group (0.6 vs. 0.41 mm), which also shortens the limb more in the cementless group, and is probably the root of the significant antipropotional correlation between the vertical hip rotation center and post-operative flexion in the group of patients with good reconstruction of the anatomical hip rotation center (p < 0.05 r = −0.401, Table 5). Since this correlation only occurred in patients with optimal, and not suboptimal, reconstruction, this could mean that limb length only affects post-operative flexion up to a point, at which it is no longer an effect. This correlation may also only be a random effect, since the power of this observation is limited by the fact that values are obtained during the hospital stay shortly after the surgery and the correlation coefficient is low (−0.405). Longer observation times could relate that differences are no longer significant later in recovery, but this situation was not considered in our study.
Our study has several limitations, the most important being the small number of patients which could be included. All exclusions were made because the original center of rotation could not be unequivocally determinated before surgery since its position was affected by underlying illness and its reconstruction would have made additional procedures necessary during surgery causing a bias for this patient group. The power of our study only reaches 0.15 with the small number of patients. To achieve a power of 0.6, 244 patients would need to be analyzed per group. Since data was generated only within one facility, it should be less influenced by institutional differences that are difficult to identify but, of course, cannot be extrapolated to all patients treated at all institutions. A total of six surgeons operated on the patients in the present study, but the influence of the surgeon could not be analyzed due to the small number of patients. It is conceivable, however, that one or more of the surgeons could have created a bias that clouded our results. Our study was also not randomized since it was carried out in retrospect, which limits its power. The influence of the position of the hip rotation center on prosthesis survival time or aseptic loosening was not assessed because sufficient follow-up data for this patient cohort was unavailable. Thus, we could not calculate the likelihood of aseptic loosening or other end points, such as fracture, infection or dislocation, for a non-anatomical position of the hip rotation center after arthroplasty. Because the coin used to normalize all measurments in x-rays for all patients on level of the film, it is possible that we created a bias in our measurements because patients with more tissue have a greater enlargement factor of their organs than thin patients (higher distance to film). Although BMI, age, hip flexion contracture, abductor muscle strength/weakness, surgical approach and bone density have also been reported to affect the hip rotation center, we did not analyze these factors here [34]. Patient age and bone density were not addressed in the study since we use cemented cups more often in elderly patients, thus, introducing a bias in the mean age that is a function of our descision process. The bone density should be poorer in the cemented group because of the higher age. Muscle strength was not directly analyzed, but we excluded all patients with a diagnosis other than primary osteoarthritis, and therefore, should not be a major factor within the patient group analyzed in our report. The surgical approach has not been considered because we only used the lateral approach to the hip.
The anteversion and inclination were not considered for two reasons. No effect on the position of the rotation center is expected from the middle of a spherical ball, which is the femoral head, and anteversion or inclination would only lead to a rotation around the rotation center and a higher rate of dislocation [7, 8]. Even regarding the drawbacks of this single-site retrospective study, our data signal a necessity for further analyses of this type at other sites in order to improve the standing time and function of artificial hip joints and to answer the question which fixation method is the best for which patients.
We found no significant difference between the two fixation techniques on the position of the hip rotation center in patients treated at our center in 2007. The hip rotation center was similarly restored by both cemented and cementless fixation. Based on these results, we plan to maintain the strategy of using cementless fixation in young patients and cemented in older patients. While our results cannot be extrapolated to all patients receiving hip replacements in European or even German centers, it provokes the need for further assessment in more patients to increase the statistical power, and clarify this point for general recommendations for hip replacement surgery.