Morscher EW: European experience with cementless total hip replacements. Hip. 1983, 190-203.
Google Scholar
Yamada H, Yoshihara Y, Henmi O, Morita M, Shiromoto Y, Kawano T, Kanaji A, Ando K, Nakagawa M, Kosaki N, Fukaya E: Cementless total hip replacement: past, present, and future. J Orthop Sci. 2009, 14 (2): 228-41. 10.1007/s00776-008-1317-4.
Article
PubMed Central
PubMed
Google Scholar
Fyhrie DP, Carter DR, Schurman DJ: Effects of ingrowth, geometry, and material on stress transfer under porous-coated hip surface replacements. J Orthop Res. 1988, 6 (3): 425-33. 10.1002/jor.1100060314.
Article
CAS
PubMed
Google Scholar
Ito S, Matsumoto T, Enomoto H, Shindo H: Histological analysis and biological effects of granulation tissue around loosened hip prostheses in the development of osteolysis. J Orthop Sci. 2004, 9 (5): 478-87.
Article
PubMed
Google Scholar
Davies JE: Understanding peri-implant endosseous healing. J Dent Educ. 2003, 67 (8): 932-949.
PubMed
Google Scholar
Davies JE: Bone bonding at natural and biomaterial surfaces. Biomaterials. 2007, 28 (34): 5058-5067. 10.1016/j.biomaterials.2007.07.049.
Article
CAS
PubMed
Google Scholar
Ryan G, Pandit A, Apatsidis DP: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006, 27 (13): 2651-2670. 10.1016/j.biomaterials.2005.12.002.
Article
CAS
PubMed
Google Scholar
Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T: Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials. 2005, 26 (30): 6014-23. 10.1016/j.biomaterials.2005.03.019.
Article
CAS
PubMed
Google Scholar
Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T: Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006, 27 (35): 5892-5900. 10.1016/j.biomaterials.2006.08.013.
Article
CAS
PubMed
Google Scholar
Svehla M, Morberg P, Zicat B, Bruce W, Sonnabend D, Walsh WR: Morphometric and mechanical evaluation of titanium implant integration: comparison of five surface structures. J Biomed Mater Res. 2000, 51 (1): 15-22. 10.1002/(SICI)1097-4636(200007)51:1<15::AID-JBM3>3.0.CO;2-9.
Article
CAS
PubMed
Google Scholar
Chambers B, St Clair SF, Froimson MI: Hydroxyapatite-coated tapered cementless femoral components in total hip arthroplasty. J Arthroplasty. 2007, 22 (4 Suppl 1): 71-4.
Article
PubMed
Google Scholar
Daugaard H, Elmengaard B, Bechtold JE, Jensen T, Soballe K: The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J Biomed Mater Res A. 2009
Google Scholar
Hench LL, Best S: Ceramics, glasses and glass-ceramics. Biomaterials Science. Edited by: Ratner BD, et al. 2004, Elsevier Inc, 153-170.
Google Scholar
Kim KH, Ramaswamy N: Electrochemical surface modification of titanium in dentistry. Dent Mater J. 2009, 28 (1): 20-36. 10.4012/dmj.28.20.
Article
CAS
PubMed
Google Scholar
Simank HG, Stuber M, Frahm R, Helbig L, van Lenthe H, Muller R: The influence of surface coatings of dicalcium phosphate (DCPD) and growth and differentiation factor-5 (GDF-5) on the stability of titanium implants in vivo. Biomaterials. 2006, 27 (21): 3988-94. 10.1016/j.biomaterials.2006.02.041.
Article
CAS
PubMed
Google Scholar
Vereecke G, LemaÓtre J: Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO2-H2O. Journal of Crystal Growth. 1990, 104 (4): 820-832. 10.1016/0022-0248(90)90108-W.
Article
CAS
Google Scholar
Bertollo N, Matsubara M, Shinoda T, Chen D, Kumar M, Walsh WR: Effect of Surgical Fit on Integration of Cancellous Bone and Implant Cortical Bone Shear Strength for a Porous Titanium. Journal of Arthroplasty. 2011,
Google Scholar
Svehla M, Morberg P, Bruce W, Zicat B, Walsh WR: The effect of substrate roughness and hydroxyapatite coating thickness on implant shear strength. The Journal of Arthroplasty. 2002, 17 (3): 304-311. 10.1054/arth.2002.30410.
Article
CAS
PubMed
Google Scholar
Zhang J, Nancollas GH: Interpretation of dissolution kinetics of dicalcium phosphate dihydrate. Journal of Crystal Growth. 1992, 125 (1-2): 251-269. 10.1016/0022-0248(92)90339-K.
Article
CAS
Google Scholar
Bohner M, Theiss F, Apelt D, Hirsiger W, Houriet R, Rizzoli G, Gnos E, Frei C, Auer JA, von Rechenberg B: Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep. Biomaterials. 2003, 24 (20): 3463-3474. 10.1016/S0142-9612(03)00234-5.
Article
CAS
PubMed
Google Scholar
Wang Y, Wei M, Gao J: Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating. Materials Science and Engineering: C. 2009, 29 (4): 1311-1316. 10.1016/j.msec.2008.09.051.
Article
CAS
Google Scholar
Kanzaki N, Onuma K, Treboux G, Ito A: Dissolution kinetics of dicalcium phosphate dihydrate under pseudophysiological conditions. Journal of Crystal Growth. 2002, 235 (1-4): 465-470. 10.1016/S0022-0248(01)01771-7.
Article
CAS
Google Scholar
Duheyne P, Beight J, Cuckler J, Evans B, Radin S: Effect of calcium phosphate coating characteristics on early post-operative bone tissue ingrowth. Biomaterials. 1990, 11 (8): 531-540. 10.1016/0142-9612(90)90073-Y.
Article
Google Scholar
Waris P, Karaharju E, Slatis P, Paavolainen P: Radiographic healing and remodelling of cortical and cancellous bone grafts after rigid plate fixation. Experiments in the rabbit. Acta Radiol Diagn (Stockh). 1980, 21 (1): 107-13.
CAS
Google Scholar
Allori AC, Sailon AM, Pan JH, Warren SM: Biological basis of bone formation, remodeling, and repair-part III: biomechanical forces. Tissue Eng Part B Rev. 2008, 14 (3): 285-93. 10.1089/ten.teb.2008.0084.
Article
CAS
PubMed
Google Scholar
Turner CH, Pavalko FM: Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci. 1998, 3 (6): 346-55. 10.1007/s007760050064.
Article
CAS
PubMed
Google Scholar
Marco F, Milena F, Gianluca G, Vittoria O: Peri-implant osteogenesis in health and osteoporosis. Micron. 2005, 36 (7-8): 630-44. 10.1016/j.micron.2005.07.008.
Article
CAS
PubMed
Google Scholar
Nikolidakis D, Meijer GJ, Oortgiesen DA, Walboomers XF, Jansen JA: The effect of a low dose of transforming growth factor beta1 (TGF-beta1) on the early bone-healing around oral implants inserted in trabecular bone. Biomaterials. 2009, 30 (1): 94-9. 10.1016/j.biomaterials.2008.09.022.
Article
CAS
PubMed
Google Scholar
Nimb L, Gotfredsen K, Steen Jensen J: Mechanical failure of hydroxyapatite-coated titanium and cobalt-chromium-molybdenum alloy implants. An animal study. Acta Orthop Belg. 1993, 59 (4): 333-8.
CAS
PubMed
Google Scholar
Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ: Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br. 1999, 81 (5): 907-14. 10.1302/0301-620X.81B5.9283.
Article
CAS
PubMed
Google Scholar
Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ: Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials. 2006, 27 (27): 4671-81. 10.1016/j.biomaterials.2006.04.041.
Article
CAS
PubMed
Google Scholar
Chappard D, Aguado E, Hure G, Grizon F, Basle MF: The early remodeling phases around titanium implants: a histomorphometric assessment of bone quality in a 3- and 6-month study in sheep. Int J Oral Maxillofac Implants. 1999, 14 (2): 189-96.
CAS
PubMed
Google Scholar
Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC: Biology of implant osseointegration. J Musculoskelet Neuronal Interact. 2009, 9 (2): 61-71.
CAS
PubMed
Google Scholar
Narayanan R, Kim SY, Kwon TY, Kim KH: Nanocrystalline hydroxyapatite coatings from ultrasonated electrolyte: preparation, characterization, and osteoblast responses. J Biomed Mater Res A. 2008, 87 (4): 1053-60.
Article
CAS
PubMed
Google Scholar