Loncar-Dusek M, Pecina M, Prebeg Z: A longitudinal study of growth velocity and development of secondary gender characteristics versus onset of idiopathic scoliosis. Clin Orthop. 1991, 270: 278-282.
PubMed
Google Scholar
Lonstein JE, Carlson JM: The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am. 1984, 66: 1061-1071.
CAS
PubMed
Google Scholar
Little DG, Song KM, Katz D, Herring JA: Relationship of peak height velocity to other maturity indicators in idiopathic scoliosis in girls. J Bone Joint Surg Am. 2000, 82: 685-693.
CAS
PubMed
Google Scholar
Roaf R: The basic anatomy of scoliosis. J Bone Joint Surg Br. 1966, 48: 786-792.
CAS
PubMed
Google Scholar
Stokes IA, Laible JP: Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J Biomech. 1990, 23: 589-595. 10.1016/0021-9290(90)90051-4.
Article
CAS
PubMed
Google Scholar
Millner PA, Dickson RA: Idiopathic scoliosis: Biomechanics and biology. Eur Spine J. 1996, 5: 362-373. 10.1007/BF00301963.
Article
CAS
PubMed
Google Scholar
Roaf R: Rotation movements of the spine with special reference to scoliosis. J Bone Joint Surg Br. 1958, 40: 312-332.
PubMed
Google Scholar
Villemure I, Aubin CE, Dansereau J, Labelle H: Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation. J Biomech Eng. 2002, 124: 784-790. 10.1115/1.1516198.
Article
CAS
PubMed
Google Scholar
Parent S, Labelle H, Skalli W, de Guise J: Vertebral wedging characteristic changes in scoliotic spines. Spine. 2004, 29: E455-462. 10.1097/01.brs.0000142430.65463.3a.
Article
PubMed
Google Scholar
Hunziker EB: Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microscopy research and technique. 1994, 28: 505-519. 10.1002/jemt.1070280606.
Article
CAS
PubMed
Google Scholar
Hunziker EB, Schenk RK: Physiological mechanisms adopted by chondrocytes in regulating longitudinal bone growth in rats. Journal of physiology. 1989, 414: 55-71.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilsman NJ, Farnum CE, Leiferamn EM, Fry M, Barreto C: Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. J Orthop Res. 1996, 14: 927-936. 10.1002/jor.1100140613.
Article
CAS
PubMed
Google Scholar
Noonan KJ, Hunziker EB, Nessler J, Buckwalter JA: Changes in cell, matrix compartment, and fibrillar collagen volumes between growth plate zones. J Orthop Res. 1998, 16: 500-580. 10.1002/jor.1100160416.
Article
CAS
PubMed
Google Scholar
Hunziker EB, Schenk PK, Cruz-Orive LM: Quantitation of chodrocyte performance in growth plate cartilage during longitudinal bone growth. J Bone Joint Surg Am. 1987, 69: 162-173.
CAS
PubMed
Google Scholar
Roaf R: Vertebral growth and its mechanical control. J Bone Joint Surg Br. 1960, 42–B: 40-59.
PubMed
Google Scholar
Stevens DA, Williams GR: Hormone regulation of chondrocyte differentiation and endochondral bone formation. Molecular and cellular endocrinology. 1999, 151: 195-204. 10.1016/S0303-7207(99)00037-4.
Article
CAS
PubMed
Google Scholar
Ballock RT, O'Keefe RJ: The biology of the growth plate. J Bone Joint Surg Am. 2003, 85–A (4): 715-726.
PubMed
Google Scholar
Provot S, Schipani E: Molecular mechanisms of endochondral bone development. Biochemical and Biophysical Research Communications. 2005, 328: 658-665. 10.1016/j.bbrc.2004.11.068.
Article
CAS
PubMed
Google Scholar
Drissi H, Zuscik M, Rosier R, O'Keefe R: Transcriptional regulation of chondrocyte maturation: Potential involvement of transcription factors in OA pathogenesis. Molecular Aspects of Medicine. 2005, 26: 169-179. 10.1016/j.mam.2005.01.003.
Article
CAS
PubMed
Google Scholar
Noordeen MHH, Haddad FS, Edgar MA, Pringle J: Spinal growth and a histological evaluation of the Risser Grade in idiopathic scoliosis. Spine. 1999, 24: 535-8. 10.1097/00007632-199903150-00006.
Article
CAS
PubMed
Google Scholar
Gerstenfeld LC, Shapiro FD: Expression of bone-specific genes by hypertrophic chondrocytes:implications of the complex functions of the hypertrophic chondrocyte during endochondral bone development. Journal of cellular biochemistry. 1996, 62: 1-9. 10.1002/(SICI)1097-4644(199607)62:1<1::AID-JCB1>3.0.CO;2-X.
Article
CAS
PubMed
Google Scholar
Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, Blanke K: Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am. 2001, 83: 1169-1181.
PubMed
Google Scholar
Miller NH: Cause and natural history of adolescent idiopathic scoliosis. Orthop Clin North Am. 1999, 30: 343-352. 10.1016/S0030-5898(05)70091-2.
Article
CAS
PubMed
Google Scholar
Lowe TG, Edgar M, Margulies JY, Miller NH, Raso VJ, Reinker KA, Rivard CH: Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg Am. 2000, 82: 1157-1168.
PubMed
Google Scholar
Dubousset J, Herring JA, Shufflebarger H: The crankshaft phenomenon. J Pediatr Orthop. 1989, 9: 541-550.
Article
CAS
PubMed
Google Scholar
Ylikoski M: Growth and progression of adolescent idiopathic scoliosis in girls. J Pediatr Orthop B. 2005, 14: 320-324.
Article
PubMed
Google Scholar
Dickson RA, Lawton JO, Archer IA, Butt WP: The pathogenesis of idiopathic scoliosis. Biplanar spinal asymmetry. J Bone Joint Surg Br. 1984, 66: 8-15.
CAS
PubMed
Google Scholar
Stilwell DL: Structural deformities of vertebrae. Bone adaptation and modeling in experimental scoliosis and kyphosis. J Bone Joint Surg Am. 1962, 44–A: 611-634.
PubMed
Google Scholar
Michelsson JE: The development of spinal deformity in experimental scoliosis. Acta Orthop Scand Suppl. 1965, Suppl 81 (): 1-91.
McCarroll HR, Costen W: Attempted treatment of scoliosis by unilateral vertebral epiphyseal arrest. J Bone Joint Surg Am. 1960, 42–A: 965-978.
Google Scholar
Lippiello L, Bass R, Connolly JF: Stereological study of the developing distal femoral growth plate. J Orthop Res. 1989, 7: 868-875. 10.1002/jor.1100070613.
Article
CAS
PubMed
Google Scholar
Wilsman NJ, Farnum CE, Green EM, Lieferman EM, Clayton MK: Cell cycle analysis of proliferative zone chondrocytes in growth plates elongating at different rates. J Orthop Res. 1996, 14: 562-572. 10.1002/jor.1100140410.
Article
CAS
PubMed
Google Scholar
Hueter C: Anatomische Studien an den Extremitaetengelenken Neugeborener und Erwachsener. Birkows Archiv Path Anat Physiol. 1862, 25: 572-599.
Article
Google Scholar
Frank P, Castro Jr: Adolescent idiopathic scoliosis, bracing, and the Hueter-Volkmann principle. The Spine Journal. 2003, 3: 180-185. 10.1016/S1529-9430(02)00557-0.
Article
Google Scholar
Stokes IAF, Spence H, Aronsson DD: Mechanical modulation of vertebral body growth: implications for scoliosis progression. Spine. 1996, 21: 1162-7. 10.1097/00007632-199605150-00007.
Article
CAS
PubMed
Google Scholar
Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A: Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol. 2001, 229: 141-162. 10.1006/dbio.2000.9975.
Article
CAS
PubMed
Google Scholar
Guo X, Chau WW, Chen JCY, Cheng JC, Burwell RG, Dangerfield PH: Relative anterior spinal overgrowth in adolescent idiopathic scoliosis-result of disproportionate endochondral-membranous bone growth? Summary of an electronic focus group debate of the IBSE. Eur Spine J. 2005, 14: 862-873. 10.1007/s00586-005-1002-7.
Article
CAS
PubMed
Google Scholar
St-Jacques B, Hammerschmidt M, McMahon AP: Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999, 13: 2072-2086.
Article
PubMed Central
CAS
PubMed
Google Scholar
Minina E, Kreschel C, Naski MC: Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell. 2002, 3: 439-449. 10.1016/S1534-5807(02)00261-7.
Article
CAS
PubMed
Google Scholar
Komori T: Requisite roles of Runx2 and Cbfβ in skeletal development. J Bone Miner Metab. 2003, 21: 193-197.
CAS
PubMed
Google Scholar