MacEwen GD: Experimental scoliosis. Clin Orthop. 1973, 93: 69-74. 10.1097/00003086-197306000-00009.
Article
PubMed
Google Scholar
Ponseti IV: Skeletal lesions produced by aminonitriles. Clin Orthop. 1957, 9: 131-144.
CAS
PubMed
Google Scholar
Lalich JJ, Angevine DM: Dysostosis in adult rats after prolonged B-aminopropionitrile feeding. Arch Pathol. 1970, 90: 22-28.
CAS
PubMed
Google Scholar
Ingalls T, Curley F: Principles governing the genesis of congenital malformations induced by mice in hypoxia. N Engl J Med. 1957, 257: 1121-1127.
Article
CAS
PubMed
Google Scholar
Duraiswami P: Experimental causation of congenital skeletal defects and its significance in orthopedic surgery. Bone Joint Surg. 1952, 34B: 646-648.
Google Scholar
HAAS SL: Experimental production of scoliosis. Bone Joint Surg. 1939, 21: 963-968.
Google Scholar
Nachlas IW, Jesse N: The cure of experimental scoliosis by directed growth control. Bone Joint Surg. 1951, 33: 24-32.
Google Scholar
Carpintero , Pedro : Scoliosis induced by asymmetric lordosis and rotation: an experimental study. Spine. 1997, 22 (19): 2202-2206. 10.1097/00007632-199710010-00002.
Article
CAS
PubMed
Google Scholar
Thomas S, Dave PK: Experimental scoliosis in monkeys. Acta Orthop Scand. 1985, 56 (1): 43-46.
Article
CAS
PubMed
Google Scholar
Sevastik J, Agadir M, Sevastik B: Effects of rib elongation on the spine. I. Distortion of the vertebral alignment in the rabbit. Spine. 1990, 15 (8): 822-825. 10.1097/00007632-199008010-00015.
CAS
PubMed
Google Scholar
Sevastikoglou JA, Aaro S, Lindholm TS, Dahlborn : Experimental scoliosis in growing rabbits by operations on the rib cage. Clin Orthop. 1978, 136: 282-286.
PubMed
Google Scholar
Barrios C, Tunon MT, Salis JA: Scoliosis induced by medullary damage: an experimental study in rabbits. Spine. 1987, 12 (5): 433-439. 10.1097/00007632-198706000-00003.
Article
CAS
PubMed
Google Scholar
Olsen GA, Rosen H, Stoll S, Brown G: The use of muscle stimulation for inducing scoliotic curves. A preliminary report. Clin Orthop Relat Res. 1975, 113: 198-211. 10.1097/00003086-197511000-00031.
Article
PubMed
Google Scholar
Joe T: Studies of experimental scoliosis produced by electrical stimulation. With special reference to the histochemical properties of the muscle. Nippon Ika Daigaku Zasshi. 1990, 57 (5): 416-426.
Article
CAS
PubMed
Google Scholar
Machida M, Dubousset J, Imamura Y: An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine. 1993, 18: 1609-1615. 10.1097/00007632-199309000-00007.
Article
CAS
PubMed
Google Scholar
Machida M, Dubousset J, Imamura Y: Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. Bone Joint Surg. 1995, 77: 134-138.
CAS
Google Scholar
Machida M, Murai I, Miyashita Y: Pathogenesis of idiopathic scoliosis: experimental study in rats. Spine. 1999, 24 (19): 1985-1989. 10.1097/00007632-199910010-00004.
Article
CAS
PubMed
Google Scholar
Wang XP, Moreau M, Raso VJ: Changes in serum melatonin levels in response to pinealectomy in the chicken and its correlation with development of scoliosis. Spine. 1998, 23 (22): 2377-2382. 10.1097/00007632-199811150-00002.
Article
CAS
PubMed
Google Scholar
Braun JT, Ogilvie JW, Akyuz E: Fusionless scoliosis correction using a shape memory alloy staple in the anterior thoracic spine of the immature goat. Spine. 2004, 29 (18): 1980-1989. 10.1097/01.brs.0000138278.41431.72.
Article
PubMed
Google Scholar
Braun JT, Ogilvie JW, Akyuz E: Experimental scoliosis in an immature goat model: A method that creates idiopathic-type deformity with minimal violation of the spinal elements along the curve. Spine. 2003, 28 (19): 2198-2203. 10.1097/01.BRS.0000085095.37311.46.
Article
PubMed
Google Scholar
Braun JT, Akyuz E: Prediction of curve progression in a goat scoliosis model. Spinal Disord Tech. 2005, 18 (3): 272-276.
Google Scholar
Braun JT, Akyuz E, Ogilvie JW: The use of animal models in fusionless scoliosis investigations. Spine. 2005, 30 (17): 35-45. 10.1097/01.brs.0000175187.61474.9a.
Article
Google Scholar
Braun JT, Ogilvie JW, Akyuz E: Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether. Spine. 2006, 31 (13): 1410-1414. 10.1097/01.brs.0000219869.01599.6b.
Article
PubMed
Google Scholar
Braun JT, Hoffman M, Akyuz E: Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model. Spine. 2006, 31 (12): 1314-1320. 10.1097/01.brs.0000218662.78165.b1.
Article
PubMed
Google Scholar
Braun JT, Akyuz E, Udall H: Three-dimensional analysis of 2 fusionless scoliosis treatments: A flexible ligament tether versus a rigid-shape memory alloy staple. Spine. 2006, 31 (3): 262-268. 10.1097/01.brs.0000197569.13266.fe.
Article
PubMed
Google Scholar
Kallemeier PM, Buttermann GR, Beaubien BP: Validation, reliability, and complications of a tethering scoliosis model in the rabbit. Eur Spine. 2006, 15: 449-456. 10.1007/s00586-005-1032-1.
Article
Google Scholar
Kim YJ, Lenke LG, Cho SK: Comparative analysis of pedicle screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine. 2004, 29: 2040-2048. 10.1097/01.brs.0000138268.12324.1a.
Article
PubMed
Google Scholar
Frank P, Castro JR: Adolescent idiopathic scoliosis, bracing, and the Hueter-Volkmann principle. Spine. 2003, 3: 180-185. 10.1016/S1529-9430(02)00557-0.
Article
Google Scholar
Mente PL, Stokes AF, Spence HBS: Progression of vertebral wedging in an asymmetrically loaded rat tail model. Spine. 1997, 22 (12): 1292-1296. 10.1097/00007632-199706150-00003.
Article
CAS
PubMed
Google Scholar
Stokes Ian AF, Spence HBS: Mechanical modulation of vertebral body growth: Implications for scoliosis progression. Spine. 1996, 21 (10): 1162-1167. 10.1097/00007632-199605150-00007.
Article
Google Scholar
Stokes Ian AF: Analysis of symmetry of vertebral body loading consequent to lateral spinal curvature. Spine. 1997, 22 (21): 2495-2503. 10.1097/00007632-199711010-00006.
Article
Google Scholar
Oda I, Kuniyoshi A, Duosai L: Biomechanical role of the posterior elements, costovertebral joints, and rib cage in the stability of the thoracic spine. Spine. 1996, 21 (12): 1423-1429. 10.1097/00007632-199606150-00005.
Article
CAS
PubMed
Google Scholar