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TECHNICAL NOTE

3D surface reconstruction of the femur 
and tibia from parallel 2D contours
Bigui Lin1, Dadi Jin2*   and Miguel Angel Socorro Borges3 

Abstract 

Background:  Segmented structures, such as bones, are typically stored as 2D contours contained on evenly spaced 
images (slices). Contour interpolation algorithms to turn 2D contours into a 3D surface may differ in their results, caus-
ing discrepancies in analysis. This study aimed to create an accurate and consistent algorithm for the interpolation of 
femur and tibial contours that can be used in computer-assisted surgical navigation systems.

Methods:  The implemented algorithm performs contour interpolation in a step-by-step manner, determining an 
optimal surface between each pair of consecutive contours. Determining such a surface is reduced to the problem 
of finding certain minimum-cost cycles in a directed toroidal graph. The algorithm assumes that the contours are 
ordered. The first step in the algorithm is the determination of branching patterns, followed by the removal of key-
holes from contours, optimization of a target function based on the surface area, and mesh triangulation based on 
the optimization results and mesh seal.

Results:  The algorithm was tested on contours segmented on computed tomography images from femoral and 
tibial specimens; it was able to generate qualitatively good 3D meshes from the set of 2D contours for all the tested 
examples.

Conclusion:  The contour interpolation algorithm proved to be quite effective using optimization based on minimiz-
ing the area of the triangles that form the 3D surface. The algorithm can be used for the 3D reconstruction of other 
types of 2D cuts, but special attention must be paid with the branches, since the proposed algorithm is not designed 
for complex branching structures.
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Introduction
Total knee arthroplasty (TKA) can be performed via 
surgery using computer-assisted surgical navigation 
systems, with the goal of improving surgical accuracy 
and precision. These types of surgeries need to register 
the patient’s anatomy in the application; after bone seg-
mentation, an accurate bone model surface must be 
generated. Segmented bones are typically stored as 2D 
contours contained on evenly spaced images (slices). 

Contour-interpolation algorithms turn 2D contours into 
a 3D surface; however, the results can differ between 
algorithms, causing discrepancies in analysis [1]. This 
study’s goal was to create an accurate and consistent con-
tour interpolation algorithm that can generate a good 
3D surface for use during computer-assisted TKA. The 
process of generating a 3D model or surface from a set of 
parallel slices is a difficult process widely discussed in the 
scientific literature; this process is associated with several 
problems, as follows [2]:

•	 The correspondence problem involves deciding 
which contours from two different sections should 
be linked together in the generated surface. This 

Open Access

*Correspondence:  nyorthop@163.com
2 Orthopedics Department of the Third Affiliated, Hospital of Southern 
Medical University, Guangzhou City 510630, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4146-0519
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13018-022-02994-w&domain=pdf


Page 2 of 7Lin et al. Journal of Orthopaedic Surgery and Research          (2022) 17:145 

is solved by determining the topological adjacency 
relationships between the contours of a set of slices. 
A solution to the correspondence problem deter-
mines the coarse topology of the final surface.

•	 The branching problem arises when an object is 
represented by a different number of contours 
in adjacent sections, in which case the standard 
method for solving the tiling problem cannot be 
used directly. A solution to the tiling and branching 
problems determines the topology of the surface 
and its coarse geometry.

•	 The keyhole problem arises when there are non-
adjacent points that are very close to each other. 
This is solved by closing the keyhole.

•	 The surface-fitting problem involves fitting the 
“best” surface to the mesh computed by solving the 
above-mentioned problems. A solution to the sur-
face-fitting problem produces a detailed descrip-
tion of the geometry of the reconstructed surface.

•	 The tiling problem consists of generating the “best” 
topological adjacency relationships between the 
points on pairs of contours from adjacent slices by 
constructing a triangular mesh from their points. 
A commonly chosen metric for determining the 
“best” topological adjacency is the minimization of 
the resulting surface area.

•	 The seal mesh problem arises after the triangula-
tion is complete, because some gaps remain in the 
surface model; these gaps need to be sealed. These 
gaps in the surface are caused by the contours that 
reside on the top and bottom of the 3D model.

For several years, different solutions to these prob-
lems have been proposed in general; some of the main 
solutions are as follows:

Keppel [3] first minimized the problem of matching 
points in successive contours to a search problem on 
a toroidal graph; he used a metric based on enclosed 
volume and investigated heuristic methods for deal-
ing with the problems associated with this metric. The 
major problems with this work were associated with 
the choice of “Maximize Volume” as the objective func-
tion to be optimized.

Fuchs et  al. [4] provided an extensive analysis of 
the search problem and developed an efficient search 
method. They formalized Keppel’s approach and 
applied a divide-and-conquer technique to speed the 
search. They used minimal surface area as an example 
metric, avoiding many of the problems associated with 
Maximize Volume. The former is intuitively appealing 
and probably as good as any metric. However, this solu-
tion does not consider the keyhole problem.

Christiansen and Sederberg [5] described a greedy 
method based on “Minimizing Span Length.” Their 
method incorporated the normalization of size and 
position and was extended to handle branching struc-
tures. The method fails in some fairly common cases 
[6].

Cook [7] used a greedy algorithm to produce a surface 
with a metric based on direction vectors from centroids 
to individual points. The application of this technique is 
relevant to medical imaging; it is intuitively appealing 
for convex objects, but there are problems with severely 
concave objects.

Ganapathy and Dennehy [8] introduced a new heuris-
tic, based on “Normalized Arc Length.” Their immedi-
ate application was in the ultrasonic detection of flaws 
in pressure vessels. The nature of their heuristic virtu-
ally required that they use a greedy search algorithm. 
The metric and algorithm were well matched. Their 
approach traded correctness for speed, apparently to 
good effect. However, this method produced unaccep-
table tilings for rather common situations [6].

Sunderland [1] used a triangulation algorithm based 
on the minimization of the length of edges spanning the 
contours via dynamic programming. The algorithm was 
tested on contours segmented on computed tomog-
raphy (CT) images. The algorithm was able to appro-
priately handle individual occurrences of the issues of 
rapid changes in shape and branching and keyhole con-
tours; however, the presence of several of these issues 
in the same location simultaneously was found to cause 
problems for the final surface mesh.

Moriconi [9] combined information extracted from 
both voxel image segmentation and implicit surface-
streaming methods employed in computer graphics. 
This was done by first extracting a dense cluster of ori-
ented points from the binary segmentation of the organ 
and then streaming the 3D surface from the oriented 
points using a wavelet-based reconstruction algorithm. 
This algorithm showed poor image quality in cases 
where there were several rapid changes in shape.

Solutions to the problem associated with pairs of 
contours with a similar shape are handled well by the 
methods discussed above. When the contours have dis-
similar shapes or similar shapes oriented differently, 
most or all of these methods, especially those not based 
on an optimization process, fail to produce acceptable 
results.

The algorithm proposed in this work seeks to find a 
suitable solution to the 3D reconstruction of the femur 
and tibia; this algorithm is based on an area minimiza-
tion approach.
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Methods
The algorithm described herein was designed with the 
intent to preserve the original points and to avoid intro-
ducing new points. There is only one case in which this 
rule is not fulfilled, and this is during the keyhole han-
dling process, because the points need to be removed 
from within the channel. The 3D mesh construction pro-
cedure is shown in the data flow diagram in Fig. 1.

The algorithm performs the contour interpolation in 
a step-by-step manner, determining an optimal surface 
between each pair of consecutive contours. These sur-
faces can be constructed from elementary triangular 
tiles, each defined between two consecutive points on the 
same contour and a single point on an adjacent contour 
[4]. Determining such a surface is reduced to the problem 
of identifying certain minimum-cost cycles in a directed 
toroidal graph. This algorithm assumes that the contours 
are ordered. Each of the processes described below are 
applied for each pair of consecutive contours, except for 
the last process (seal mesh), which is performed when all 
the contours have been triangulated.

Branching
An instance of the branching problem exists when a 
local area of an object represented by m contours in one 
section is represented by n contours in an adjacent sec-
tion where m ≠ n and n > 0 [6]. To solve this problem, 
this study uses a method that will handle non-complex 
branching structures. The key idea is joining the sections 
of the contours with branching problems, adding one 
edge between the nearest points, as shown in Fig. 2.

Keyholes
The existence of keyholes within contours can cause 
problems with the process of triangulation, as they can 
cause the triangulation algorithm to incorrectly connect 
to points contained within the channel. To remove the 
keyholes from the contours, each contour is addressed 

individually in a pre-processing step, comparing each 
point in the contour to all other points in the same con-
tour. If two points within a contour are within a specified 
threshold distance from each other and not considered 
to be adjacent to each other, these two points are noted 
to be in conflict with each other [1]. Once all the points 
in the current contour have been assessed, the algorithm 
walks through the list of points for the current contour, 
rebuilding the contour and removing the points inside 
keyholes and adding additional edges as is necessary to 
remove the keyholes.

Surface fitting and triangulate contours
The main goal of triangulating contours (tiling) and 
solving the surface-fitting problem is finding the best 
correspondence between points in successive contours. 
This problem can be reduced to a search problem on 
a toroidal graph, as demonstrated in a previous study 
[3]; in the aforementioned study, contours are repre-
sented by ordered lists of data points. Edges connecting 
neighboring points within the same contour are called 
Contour Segments. Edges connecting a point from one 
contour to a point from the other contour are called 
Spans. Spans are represented by nodes in the graph. 
Tiles are represented by arcs between nodes in the 
graph. Tiling is found by finding a minimal-cost cycle 
in the graph, as shown in Fig.  3. Both problems are 

Fig. 1  Data flow diagram. The process of converting a set of ordered 2D contours into a corresponding surface mesh

Fig. 2  A simple case of the branching problem. Two contours in 
one slice merge into one contour in an adjacent slice using an edge 
between the nearest points
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severely constraining, and many surfaces could solve 
them [10]. To choose one correct surface, it is neces-
sary to perform an optimization process with respect to 
an objective function [11]. The chosen objective func-
tion should capture some notions of what a good sur-
face is and should be easy to compute. Previous studies 
have reported the use of different metric functions to 
distinguish good surfaces from bad; some of the best-
known metric functions are as follows:

•	 Maximize Volume: It is an obvious metric only 
for convex objects but is difficult to use. It calcu-

lates the contribution of a single tile to an objective 
function related to the total volume of an object.

•	 Minimize Area: It is a good metric. However, special 
care must be taken to handle certain cases with com-
plex geometries or very distant slices, for example, in 
cases where there are two identical circular cross sec-
tions positioned in parallel planes, with their centers 
offset one diameter apart. Some of the metrics listed 
above will produce something like a double cone 
joined at a line, rather than the obvious skewed cylin-
der. The solution to this problem is to normalize the 
two cross sections such that their centers lie on an 
axis perpendicular to the planes of section [12]. The 
Minimize Area method is easy to compute and can 
be improved using normalized contours for the posi-
tion and radius [2]; this is our metric of choice.

To normalize each slice with respect to its position, the 
midpoint of the contour is calculated in order to move 
the contour to the coordinate (0,0) as the center. For nor-
malization with respect to its radius, a rectangular win-
dow that encloses the contour will be defined; using the 
length and width of this window, the contour coordinates 
are scaled according to a previous study [5], as shown in 
Fig. 4 and below:

In the above equation,  and  are the new coordinates. 
Since the objective function to be used is a function that 
minimizes the surface area, the total sum of the area of 
all the triangles generated on the surface must be mini-
mized. Given three possible points, A, B, and C, to define 
a triangle, the area is calculated using the magnitude of 
the cross product of two vectors defined by these points 
as follows:

To start the tiling algorithm, the two closest points 
between each pair of consecutive slices are searched; 
these closest points will be the starting points of the tri-
angulation and the first node of the graph. The weight 
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Fig. 3  Tiling process. The tiling process is performed by finding a 
minimum-cost cycle in the graph; as a result, a triangulated surface is 
obtained. Each edge of the graph represents a triangle on the surface. 
The weight of each edge is the area of the triangle it represents
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(W) of each edge is given by the area of the triangle it 
represents; the minimum path from the first node P(0,0) 
to the last node of the graph P(n,m) , where n is the total 
number of points of one of the consecutive contours and 
m is the total number of points of the other contour, is 
the solution that is sought. This minimal path guides how 
the triangulation between the two consecutive slices can 
be made. Due to the characteristics of the graph from 
a node P(i,j) , it is only possible to advance to the nodes 
P(i+1,j) and P(i,j+1) ; thus, all possible paths are generated. 
Each generated edge will contain a weight associated 
with the area of the triangle it represents. When repeat-
ing nodes are found, only the node that was reached by 
the shortest path will be taken; the others will be dis-
carded (Fig. 5). As can be seen in Fig. 5, node (1, 1) can 
be reached in two different ways: through a path A [(0, 
0) −> (1, 0) −> (1, 1)], with a weight of W(1,0) +W(1,1) = 5 
and through a path B [(0, 0) −> (0, 1) −> (1, 1)], with a 
weight of W(0,1) +W(1,1) = 6 . Because path A is shorter, 
path B can be discarded. The algorithm ends when the 
node P(n,m) is reached. The shortest path that leads to 

node P(n,m) is the path sought and the solution to the tri-
angulation problem between the two contours.

Seal mesh
The gaps in the surface caused by the contours that reside 
on the top and bottom of the 3D model should be closed. 
For this case, it is enough to use a 2D triangulation algo-
rithm, such as the Delaunay triangulation.

Results
In this study, a set of Digital Imaging and Communica-
tions in Medicine (DICOM) images of femoral and tibial 
specimens were used. These images were used to gener-
ate 3D images of both these bones, and then, these 3D 
images were segmented. The segmented bones were 
stored as 2D contours contained in evenly spaced sagit-
tal or axial images (slices). Then, the algorithm proposed 
in this paper was used to convert the 2D contours into 
3D surfaces. Different spacing distances (from 1 to 5 
mm) between the slices were used to test the results of 
the algorithm. The algorithm was developed in the pro-
gramming language C++, and the VTK library was 
used to visualize the results. We chose to use qualitative 
analysis on the mesh since quantitative analysis was too 
complex for implementation in our timeframe. Several 
femur and tibia specimens were used to test the recon-
struction ability of our algorithm. The algorithm was 
found to produce qualitatively good 3D meshes for all 
the set contours with different slice densities, as shown 
in the examples in Fig. 6. Some interesting observations 
were noted when there were rapid changes from one con-
tour to the next; the contours were not similar in shape 
or size. These cases often caused some triangles on the 
mesh to converge toward a single point at the edge of the 

Fig. 4  Contour normalization. a Original contour with its rectangular window. b Normalized contour

Fig. 5  Possible paths. The right paths are indicated in blue. W(i,j) is 
the edge weight example that represents the triangle area
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smaller contour. This can be a subjective issue, since the 
meshes are still qualitatively acceptable when rasterized.

Discussion
Our results showed that our algorithm is capable of pro-
ducing very good results for the 3D reconstruction of 
the surfaces of the femur and tibia. It is recommended 
that the algorithm be used with axial or sagittal slices to 
avoid the appearance of complex branches in the con-
tours; these branches cannot be handled correctly by the 
algorithm unless the procedure chosen for branching is 
modified. Because there are different ways to achieve cor-
rect triangulation between two adjacent contours, there 
may be a degree of ambiguity with regard to the results 
of other reconstruction methods. When the two con-
tours are similarly shaped, the ambiguity is negligible and 
the reasonable solutions will be similar. However, as the 
respective shapes of the serial sections become increas-
ingly divergent, the ambiguity increases. To reduce this 
ambiguity, it is recommended that the contours be close 
enough, such that there is minimal variation between 
adjacent contour lines. This approach has the advantage 
of tending toward an exact description; however, in prac-
tice, such data may not be available. The algorithm tries 
to avoid this problem by performing a previous normali-
zation of the contours. It is advisable to perform a quanti-
tative study of the results obtained, since we have limited 

ourselves to only performing a qualitative analysis of the 
results, as well as improving the process of handling ram-
ifications in the contours.

Conclusions
In this work, a solution to the problem associated with 
the 3D reconstruction of femur and tibia models from a 
set of parallel and ordered sagittal or axial slices was pro-
posed. The reconstruction proved to be quite effective 
using optimization based on minimizing the area of the 
triangles that form the 3D surface. In the tested exam-
ples, no significant improvements were shown when 
combining the optimization with a contour-normaliza-
tion process, but as this study mentions, the use of nor-
malization is recommended to avoid possible failures in 
the 3D reconstruction of more complex contours. The 
algorithm described herein can be used for the 3D recon-
struction of other types of 2D cuts, but special attention 
must be paid with regard to the branches, because the 
proposed algorithm is designed for non-complex branch-
ing structures.

The problem of the correspondence between slices or 
looking for adjacent slices is not addressed in this study 
because this problem can be fixed keeping a control on 
the generated slices during segmentation to know the 
correct order between them. The use of coronal cuts 
is not recommended because these cuts can generate 

Fig. 6  Surface reconstruction. 3D surface reconstruction of the femur and tibia for different slice densities
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complex unconnected areas in adjacent sections that the 
algorithm cannot handle adequately.

There is an increased interest in computer-aided sur-
gery in total knee arthroplasty [13] and in minimally 
invasive management of traumatic conditions around the 
knee [14, 15]. The opportunity to produce anatomically 
correct models preoperatively should help surgeons to 
better plan the procedures and improve outcomes.
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