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Abstract 

Background:  The presence or absence of an implant has a major impact on the type of joint infection therapy. Thus, 
the aim of this study was the examination of potential differences in the spectrum of pathogens in patients with 
periprosthetic joint infections (PJI) as compared to patients with native joint infections (NJI).

Methods:  In this retrospective study, we evaluated culture-positive synovial fluid samples of 192 consecutive 
patients obtained from January 2018 to January 2020 in a tertiary care university hospital. For metrically distributed 
parameters, Mann–Whitney U was used for comparison between groups. In case of nominal data, crosstabs and Chi-
squared tests were implemented.

Results:  Overall, 132 patients suffered from periprosthetic joint infections and 60 patients had infections of native 
joints. The most commonly isolated bacteria were coagulase-negative Staphylococci (CNS, 28%), followed by Staphy-
lococcus aureus (S. aureus, 26.7%), and other bacteria, such as Streptococci (26.3%). We observed a significant depend-
ence between the types of bacteria and the presence of a joint replacement (p < 0.05). Accordingly, detections of CNS 
occurred 2.5-fold more frequently in prosthetic as compared to native joint infections (33.9% vs. 13.4% p < 0.05). In 
contrast, S. aureus was observed 3.2-fold more often in NJIs as compared to PJIs (52.2% vs. 16.4%, p < 0.05).

Conclusion:  The pathogen spectra of periprosthetic and native joint infections differ considerably. However, CNS 
and S. aureus are the predominant microorganisms in both, PJIs and NJIs, which may guide antimicrobial therapy until 
microbiologic specification of the causative pathogen.
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Background
Due to the increase in joint replacement operations [1], 
PJIs have become a relevant challenge in modern medi-
cine [2]. Regarding NJIs, low incidences of four to ten 
cases per 100,000 individuals per year have been reported 

and a possible increase is still controversial [3, 4]. Never-
theless, both infection types share a high risk for compli-
cations, necessitating differentiated diagnostics [5, 6].

Patients suffering from PJI frequently show recurrences 
[7]. Prolonged hospitalization and delayed functional 
recovery are common consequences and possible reasons 
for the elevated five-year-mortality rate of up to 26% [4, 
6]. NJIs are no less demanding, as they cause a significant 
risk for secondary osteoarthritis and permanent joint 
damage, leading to loss of function in about 40% of cases 
[6, 8].
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An adequate initial empiric antibiotic therapy is there-
fore crucial. However, treating the predominant patho-
gens can be a challenge. Regardless of the infection type, 
blood cultures often remain inconclusive [9] and possible 
contamination in analyses of tissue may provide false-
negative results. Awareness of the expected pathogens in 
periprosthetic, as well as in native joint infections could 
therefore accelerate diagnostic procedures and increase 
the patient’s outcome.

In implant-associated infections, biofilm formation is a 
characteristic pathomechanism. It weakens the effect of 
the physiological immune response and the effect of an 
antimicrobial therapy as well [10]. Certain bacteria, such 
as Staphylococcus epidermidis (S. epidermidis) and S. 
aureus, show a high capacity for biofilm formation [11]. 
Therefore, their detection rate in PJIs is comparatively 
high [12, 13]. In native joints, the emergence of an infec-
tion depends as much on the success or failure of the 
local and systemic immune response. Accordingly, highly 
potent virulence factors and signaling mechanisms char-
acteristic of S. aureus increase the likelihood of infection 
[14]. The literature considers both CNS and S. aureus as 
predominant causatives in periprosthetic and native joint 
infections as well [12, 15]. Evidence for differing pathogen 
distributions, such as a dominance of S. aureus in NJIs 
and of CNS in PJIs, is weak [10, 16]. Therefore, it remains 
inconclusive, whether the presence of a joint replacement 
influences the type of causative bacteria in joint infec-
tions, which could necessitate different empiric antibiotic 
therapies. To this end, we retrospectively examined dif-
ferences in the spectrum of pathogens based on synovial 
fluid analyses in patients with PJI as compared to those 
with NJI.

Materials and methods
Study design and endpoints
In this retrospective level 3 study, we screened all micro-
bial synovial fluid analyses performed at our tertiary care 
university hospital from January 2018 to January 2020. 
Inclusion criteria were a positive culture result in the 
microbiological analysis and that the samples originated 
from a closed joint aspiration. We then investigated 
whether the patient in question had subsequently under-
gone surgery for a joint infection and whether laboratory 
markers of a joint infection were present at the time of 
aspiration, such as an increased CRP concentration in the 
serum and a raised leukocyte count in the synovial fluid. 
If both criteria were not fulfilled, the exclusion criteria 
were met.

The samples were classified depending on the presence 
or absence of a prosthesis in the infected joint. Inter-
group differences in the pathogen spectrum of synovial 
fluid samples were the primary endpoint. In addition, 

the infection sites and the number of mixed infections 
were assessed. Age, gender, previous immunosuppressive 
therapy, diabetes mellitus or renal insufficiency were ana-
lyzed in the context of patient characteristics. Due to the 
anonymized data collection and the retrospective design, 
no ethics application was necessary for the study conduct 
according to Saxonian legislation.

Defined categories of isolated pathogens
The spectrum of isolated pathogens was stratified into 
five groups, based on clinical aspects and the number of 
detections. The group of CNS included S. epidermidis, S. 
capitis, S. hominis, S. lugdunensis and S. caprae. Since it is 
the only coagulase-positive Staphylococcus and because 
of its high detection rate, we defined S. aureus a single 
pathogen class. Within the group of Enterobacterales, we 
subsumed the detected species of E. coli, Enterobacter 
cloacae complex, Proteus spp. and Klebsiella spp.. Oblig-
atory anaerobic pathogens were Anaerococcus spp., Bac-
teroides fragilis, Clostridium difficile and Fusobacterium 
mortiferum. The last group consists of other pathogens, 
such as different species of Enterococci and Streptococci, 
Pseudomonas aeruginosa, and other, rarely detected 
microorganisms.

Statistics
With respect to the patients’ age being a metrically dis-
tributed parameter, a non-normal distribution was 
proven using the Shapiro–Wilk test, and Mann–Whitney 
U was applied for intergroup comparison. For nominal 
data, such as the infection sites and the isolated pathogen 
types, crosstabs and Chi-squared tests were implemented 
using the contingency coefficient (C) to confirm sig-
nificant differences. Regarding associations between the 
presence of renal insufficiency or diabetes mellitus and 
possible differences in the pathogen distribution, a binary 
logistic regression analysis was performed. In general, the 
confidence interval was set to 95%.

Results
Study population and patient characteristics
During the observation period of 2 years, 192 patients 
were diagnosed culture-positive by synovial fluid analy-
ses (Table  1). Of these, 132 had periprosthetic joint 
infections and 60 suffered from native joint infection. 
On average, patients with PJI were significantly older as 
compared to patients with NJI (72 vs. 59.5 years, p < 0.01). 
However, no differences in gender distribution occurred.

In the cohort investigated, the most common localiza-
tion of joint infection was the hip (50%), followed by the 
knee (39.5%), and the shoulder (3.6%) joint. Regarding 
joint replacements, infections occurred more frequently 
in the hip (65.2%) compared to the knee (29.5%) joint. An 
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opposite result was observed in native joints with 61.7% 
of infections being detected in the knee, and 16.7% in the 
hip joint. Overall, 19 patients received immunosuppres-
sive treatment with a rate independent of the presence of 
an endoprosthesis. The rate of diabetes mellitus was sig-
nificantly higher in the PJI group as compared to the NJI 
group (31.1% vs. 16.7%, p = 0.036), while no differences 
occurred regarding the existence of renal insufficiency.

Pathogen spectrum in synovial fluid analyses
In 192 samples, we isolated 232 pathogens with 165 
and 67 of them belonging to the PJI and the NJI group, 
respectively (Table  1). Hence, 33 (25%) mixed infec-
tions occurred in periprosthetic joints and seven (11.7%) 
in native joints. In total, 32 different pathogens were 
isolated. Staphylococcal species were by far the most 
frequently detected pathogens with 83 (50.3%) posi-
tive results in the PJI and 44 (65.7%) in the NJI group 
(Table  2). With a detection rate of 62/232 (26.7%), S. 
aureus was the most commonly isolated pathogen, fol-
lowed by S. epidermidis, being identified in 48 cases 
(20.7%). There was one case of oxacillin-resistant S. 
aureus (MRSA) in the overall study population, detected 
in a PJI patient.

Infections caused by S. aureus were 3.2-fold more fre-
quent in NJIs (52.5%) as compared to PJIs (16.4%, CI 
95%). Contrarily, infections with S. epidermidis occurred 

4.5-fold more often in PJIs (26.7%) as compared to NJIs 
(6%, CI 95%). In general, there were significant differ-
ences in the distribution of pathogen types, depend-
ing on the presence or absence of a prosthesis in the 
infected joint (C = 0.47, P < 0.05). With reference to the 
pathogen classes, CNS (n = 65, 28%) were most common 
(Fig.  1), followed by S. aureus (see above), other patho-
gens (n = 61, 26.3%) and Enterobacterales (n = 36, 15.5%). 
Infections with CNS occurred more frequently in PJIs 
(n = 56, 33.9%) as compared to NJIs (n = 9, 13.4%). Of 
these CNS detections, 37 (66.1%) and four (44.4%) were 
oxacillin-resistant in the PJI and NJI group, respectively, 
without a significant intergroup difference regarding 
their detection rate.

Furthermore, we detected a 2.5-fold increased rate of 
infections with Enterobacterales in periprosthetic joints 
(n = 31, 18.8%) as compared to native joints (n = 5, 7.5%, 
CI 95%). The differences regarding anaerobic and other 
pathogens were minor. Overall, the distribution of path-
ogen classes differs significantly between PJIs and NJIs 
(C = 0.363, p < 0.05).

There was no significant between the presence of 
renal insufficiency or diabetes mellitus and the pathogen 
spectrum in the entire study population as well as in the 
subgroups.

Discussion
In this study, we detected significant differences in the 
pathogen spectrum of PJIs as compared to NJIs. Staph-
ylococcus aureus was isolated 3.2 times more often in 
infections of native joints. Contrarily, infections with 
CNS were 2.5 times more common in PJIs. Besides 
staphylococcal species, we also found a 2.5-fold increased 
detection rate of Enterobacterales in prosthetic as com-
pared to native joint infections.

These results are in accordance with the literature, as 
CNS are considered the predominantly involved micro-
organisms in PJIs with a range in the detection rate of 
27–75% [17, 18]. Regarding infections of native joints, S. 
aureus is a main causative in about 39–60% of cases [19, 
20]. Despite the existence of these data being in line with 
the results of the present study, there is also some contra-
dictory evidence for a prevalent role of S. aureus in PJIs 
[21]. Siu et al. reported a 44.1% detection rate of S. aureus 
in 34 PJIs, of which 70% were late-onset infections, with-
out specific cause clarification. The data situation regard-
ing infections with Enterobacterales in native joints is still 
indecisive, whereas a detection rate of 15% is reported for 
implant associated joint infections [22]. In the present 
study, a large proportion of 66.1% of CNS were oxacillin-
resistant in PJIs, and the literature describes rates of up 
to 77.8% [22]. However, most of these studies were not 

Table 1  Study population, patient characteristics, microbial 
detection rates, and infection sites

SD standard deviation

PJI NJI P Total

Patients (n [%]) 132 [68.8] 60 [31.2] 192 [100]

Patient characteristics

Age (median ± SD) 72 ± 12.1 59.5 ± 24.7 < 0.01 66.3 ± 18.4

Sex

 Male (n [%]) 68 [51.5] 40 [66.7] 108 [56.3]

 Female (n [%]) 64 [48.5] 20 [33.3] 84 [43.7]

Immunosuppression (n [%]) 11 [8.3] 8 [13.3] 19 [9.9]

Diabetes mellitus (n [%]) 41 [31.1] 10 [16.7] 0.036 51 [26.6]

Renal insufficiency (n [%]) 39 [29.5] 12 [20] 51 [26.6]

Microbial detection rates

Pathogen detections (n [%]) 165 [71.1] 67 [28.9] 232 [100]

Mixed infections (n [%]) 33 [25] 7 [11.7] 40 [20.8]

Infection sites

Hip 86 [65.2] 10 [16.7] < 0.01 96 [50]

Knee 39 [29.5] 37 [61.7] < 0.01 76 [39.6]

Shoulder 1 [0.75] 6 [10] 7 [3.6]

Ankle 4 [3] 2 [3.3] 6 [3.1]

Elbow 1 [0.75] 5 [8.3] 6 [3.1]

Wrist 1 [0.75] 0 [0] 1 [0.5]
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primarily designed for detecting variations in the patho-
gen spectrum between the two groups.

Indeed, several studies observed that pre-existing 
comorbidities, such as diabetes mellitus and renal 
insufficiency, increase the risk of infection after joint 

replacement, as well as mortality [23, 24]. Evidence for 
differing pathogen spectra depending on the presence of 
these diseases is weak. Our study results indicate a simi-
lar bacterial distribution in joint infections of patients 
with or without renal insufficiency or diabetes mellitus.

Table 2  Total pathogen spectrum in PJIs and NJIs (n [%])

PJI periprosthetic joint infection, NJI native joint infection

Percentages relate to total detections of the respective group (PJI, NJI and Total)
* Percentages relate to the value of the line above

Pathogen PJI (N = 165) NJI (N = 67) Total (N = 232)

Staphylococcus spp. 83 [50.3] 44 [65.7] 127 [54.7]

 Oxacillin-resistant Staphylococcus spp. 38 [45.8*] 4 [9.1*] 42 [33.1*]

Staphylococcus aureus 27 [16.4] 35 [52.2] 62 [26.7]

 Oxacillin-resistant Staphylococcus aureus 1 [3.7*] 0 [0*] 1 [1.6*]

Coagulase-negative staphylococci 56 [33.9] 9 [13.4] 65 [28]

 Oxacillin-resistant CNS 37 [66.1*] 4 [44.4*] 41 [63.1*]

 Staphylococcus epidermidis 44 [26.7] 4 [6] 48 [20.7]

 Staphylococcus capitis 4 [2.4] 2 [3] 6 [2.6]

 Staphylococcus hominis 3 [1.8] 2 [3] 5 [2.2]

 Staphylococcus lugdunensis 3 [1.8] 1 [1.5] 4 [1.7]

 Staphylococcus caprae 2 [1.2] 0 [0] 2 [0.9]

Enterobacteriaceae 31 [18.8] 5 [7.5] 36 [15.5]

 Escherichia coli 14 [8.5] 3 [4.5] 17 [7.3]

 Enterobacter cloacae complex 11 [6.7] 1 [1.5] 12 [5.2]

 Klebsiella spp. 2 [1.2] 1 [1.5] 3 [1.3]

 Proteus spp. 4 [2.4] 0 [0] 4 [1.7]

Obligatory anaerobic pathogens 7 [4.2] 1 [1.5] 8 [3.4]

 Bacteroides fragilis 3 [1.8] 0 [0] 3 [1.3]

 Anaerococcus spp. 2 [1.2] 0 [0] 2 [0.9]

 Clostridium difficile 1 [0.6] 1 [1.5] 2 [0.9]

 Fusobacterium mortiferum 1 [0.6] 0 [0] 1 [0.4]

Other pathogens 44 [26.7] 17 [25.4] 61 [26.3]

 Enterococcus faecalis 8 [4.8] 4 [6] 12 [5.2]

 Pseudomonas aeruginosa 7 [4.2] 1 [1.5] 8 [3.4]

 Streptococcus dysgalactiae 4 [2.4] 4 [6] 8 [3.4]

 Propionibacterium acnes 6 [3.6] 1 [1.5] 7 [3]

 Streptococcus agalactiae 4 [2.4] 0 [0] 4 [1.7]

 Enterococcus faecium 4 [2.4] 0 [0] 4 [1.7]

 Streptococcus pneumoniae 0 [0] 3 [4.5] 3 [1.3]

 Streptococcus gallolyticus 3 [1.8] 0 [0] 3 [1.3]

 Streptococcus oralis 1 [0.6] 1 [1.5] 2 [0.9]

 Streptococcus pyogenes 1 [0.6] 1 [1.5] 2 [0.9]

 Acinetobacter baumannii 0 [0] 1 [1.5] 1 [0.4]

 Candida albicans 1 [0.6] 0 [0] 1 [0.4]

 Listeria monocytogenes 1 [0.6] 0 [0] 1 [0.4]

 Morganella morganii 0 [0] 1 [1.5] 1 [0.4]

 Streptococcus anginosus 1 [0.6] 0 [0] 1 [0.4]

 Streptococcus constellatus 1 [0.6] 0 [0] 1 [0.4]

 Streptococcus salivarius 1 [0.6] 0 [0] 1 [0.4]

 Streptococcus sanguinis 1 [0.6] 0 [0] 1 [0.4]
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While detecting potentially causative bacteria in joint 
infections is a key element in diagnostics, in addition to 
a proper surgical therapy, the patients’ outcome largely 
depends on an adequate antimicrobial drug therapy. 
Early empiric antibiotic therapy is therefore considered a 
significant component in the treatment of both, NJIs and 
PJIs [4, 25]. However, due to the heterogeneity of medi-
cal treatment concepts, evidence for a superior effective-
ness of one specific calculated antibiotic regime in NJIs 
is lacking [25, 26]. Regarding early antibiotic therapy in 
infections of prosthetic joints, the literature states diverse 
approaches as well [27, 28]. Despite the knowledge of 
predominantly involved bacteria in PJIs and NJIs, con-
sistent international guidelines for early antibiotic ther-
apy are still missing.

Notably, CNS and S. aureus are the predominant path-
ogen types in both, periprosthetic and native joint infec-
tions. As PJI and NJI patients are usually initially treated 
by the same empiric antibiotic regime, the presence or 
absence of a joint prosthesis seems therefore not to be 
relevant with respect to early calculated anti-infective 
drug therapy concepts.

Nevertheless, novel aspects emerge from this current 
study. With a detection rate of 18.8% of Enterobacterales, 
their importance in PJIs may have been underestimated 
yet. Thus, it may be an option also to include antibiot-
ics targeting gram-negative bacteria in early antibiotic 

therapy in PJI. In addition, we found that 2/3 of CNS in 
prosthetic joint infections were oxacillin-resistant. Con-
sequently, broad-spectrum coverage of these pathogens 
in empiric anti-infective medication, such as with van-
comycin in the absence of contraindications, should be 
considered.

This study has some limitations. Regarding PJIs, we 
did not consider whether the synovial fluid analysis was 
performed in an acute or chronic infection, although dif-
fering pathogen spectra are known for these subgroups 
[3]. Furthermore, in NJIs, the primary focus of infection 
was not evaluated and possible differences in the micro-
bial spectrum of iatrogenic, post-traumatic or haema-
togenous infections remain therefore uncertain. Samples 
were collected from closed joint aspirates only, and intra-
operative culture results were not included in the micro-
biological analyses. Hence, there is a risk that the totality 
of pathogens actually involved in joint infections is not 
entirely represented in the study results. Finally, as this is 
a retrospective study, it is limited by its inherent meth-
odological drawback.

Conclusion
Staphylococcus aureus and CNS are the predominantly 
involved microorganisms in PJIs and NJIs. Neverthe-
less, the high rate of oxacillin resistances in CNS, as well 

Fig. 1  Detection rates of pathogen classes in PJI and NJI. PJI: Periprosthetic joint infection. NJI: Native joint infection. OR: Oxacillin resistance. X-axis: 
pathogen classes. Y-axis: detection rates
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as the elevated detection rate of Enterobacterales, may 
necessitate a change in early antibiotic therapy in PJIs.
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