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Abstract 

Background:  Although the automatic diagnosis of fractures using artificial intelligence (AI) has recently been 
reported to be more accurate than those by orthopedics specialists, big data with at least 1000 images or more are 
required for deep learning of the convolutional neural network (CNN) to improve diagnostic accuracy. The aim of this 
study was to develop an AI system capable of diagnosing distal radius fractures with high accuracy even when learn-
ing with relatively small data by learning to use bi-planar X-rays images.

Methods:  VGG16, a learned image recognition model, was used as the CNN. It was modified into a network with two 
output layers to identify the fractures in plain X-ray images. We augmented 369 plain X-ray anteroposterior images 
and 360 lateral images of distal radius fractures, as well as 129 anteroposterior images and 125 lateral images of nor-
mal wrists to conduct training and diagnostic tests. Similarly, diagnostic tests for fractures of the styloid process of the 
ulna were conducted using 189 plain X-ray anteroposterior images of fractures and 302 images of the normal styloid 
process. The distal radius fracture is determined by entering an anteroposterior image of the wrist for testing into the 
trained AI. If it identifies a fracture, it is diagnosed as the same. However, if the anteroposterior image is determined as 
normal, the lateral image of the same patient is entered. If a fracture is identified, the final diagnosis is fracture; if the 
lateral image is identified as normal, the final diagnosis is normal.

Results:  The diagnostic accuracy of distal radius fractures and fractures of the styloid process of the ulna were 
98.0 ± 1.6% and 91.1 ± 2.5%, respectively. The areas under the receiver operating characteristic curve were 0.991 
{n = 540; 95% confidence interval (CI), 0.984–0.999} and 0.956 (n = 450; 95% CI 0.938–0.973).

Conclusions:  Our method resulted in a good diagnostic rate, even when using a relatively small amount of data.
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Background
Distal radius fracture is an injury that occurs frequently 
among the elderly [1]. In the elderly, favorable wrist func-
tion can be maintained through appropriate immobiliza-
tion with a cast or splint for minor displaced fractures. 
However, residual deformations can result in complica-
tions, such as wrist pain, a restriction in the range of wrist 
motion, and decrease in grip strength. Thus, appropriate 

initial diagnosis is essential [2, 3]. Artificial intelligence 
(AI) has been applied to various medical technologies. In 
medical image processing, techniques such as the auto-
matic segmentation of each internal organ from com-
puted tomography (CT) data [4] and diagnosis of lesions 
from skin images [5] are already in practical application. 
The highly accurate automatic diagnosis of fractures 
using plain X-rays by AI has also been investigated [6, 7]. 
One of the obstacles faced while developing high reliable 
AI for diagnosing disease is that big data of at least 1000 
images must be used to train these AIs. Usually, ortho-
pedic surgeons use two-direction plain X-ray images to 
diagnose fractures. In this study, we hypothesized that 
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developing an AI system with a highly accurate diagnos-
tic ability for distal radius fractures using plain two-direc-
tion X-rays is possible even when learning with relatively 
small data.

Methods
This study was approved by the Ethical Review Board 
of our institution (approval number: 18137). We fol-
lowed the principles of the Helsinki Declaration, revised 
in 2000. Each author has affirmed that the organization 
to which they belong has approved the protocols for 
humans. Each step performed in this study follows the 
ethical principles of research.

Data collection
We obtained 369 plain X-ray anteroposterior images and 
360 lateral images of distal radius fractures from 369 
patients of over 18  years of age with distal radius frac-
tures and 129 plain X-ray anteroposterior images and 125 
lateral images of normal wrist of 129 people from three 
affiliated hospitals. Since not all patients with fractures 
had been examined with the plain X-rays of the normal 
wrist, the plain X-ray diagnosed as tenosynovitis (sprain 
of wrist without fractures) was included in the image data 
of normal side. Further, nine lateral fracture images were 
excluded because those were taken in an oblique posi-
tion due to severe wrist pain. The image size of each plain 
X-ray image was 500 pixels × 625 pixels, and the pixel 
size was 0.4 mm × 0.4 mm. The clinical l diagnosis results 

by specialized orthopedic surgeons based on situations 
due to injuries, clinical findings, and imaging from clini-
cal settings were used as the gold standard for fracture 
diagnosis. Images of the normal side of the patients with 
distal radius fracture without existing disorders, such as 
trauma, arthritis, or bone tumor, were used as images of 
normal wrists.

Convolutional neural network
VGG16, which is a model with already learned image rec-
ognition, was used as the CNN. [8] It is an open network 
that is already trained, comprises 16 layers, and identifies 
1000 types of images. It was then modified into a network 
with two output layers to identify the existence of frac-
tures in plain X-ray images (Fig. 1). To execute the CNN, 
we used Python as the programming language and Keras 
and TesorFlow as the software libraries.

Dataset
We used digital imaging and communications in medi-
cine (DICOM) data of plain X-ray of a wrist as the origi-
nal file with 16 bits per pixel. The images of the left wrist 
were reversed to enable every X-ray image to show a 
right wrist. The 729 fracture images (369 anteroposterior 
and 360 lateral images) and 254 normal wrist images (129 
anteroposterior and 125 lateral images) were randomly 
selected to produce the following three patterns of data-
sets (A, B, C) to consider the effect of data selection on 
results. The dataset for training contains 569 fracture 

Fig. 1  Schematic of the network structure. Input the images to determine whether there are fractures
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images (299 anteroposterior and 270 lateral images) and 
174 normal wrist images (91 anteroposterior and 83 lat-
eral images). In addition, the dataset for validation con-
tains 80 fracture images (30 anteroposterior and 50 
lateral images) and 40 normal wrist images (18 anter-
oposterior and 22 lateral images). The dataset for tests 
contains 80 fracture images (40 anteroposterior and 40 
lateral images) and 40 normal wrist images (20 anter-
oposterior and 20 lateral images). These datasets are pre-
sented in Table  1. To increase the learning data, data 
were augmented by adding stretching, rotation, shearing, 
and parallel translation to the original images using affine 

transformation { 
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are the original coordinates; x′ and y′ are the coordinates 
after the conversion; tx and ty are the parallel transla-
tions}. These produced data with 3245 fracture images 
and 3210 normal wrist images are used for training and 
validation (Fig. 2). To adjust VGG16 for learning, conver-
sion into 224 pixels × 224-pixels image size was con-
ducted using a floating point of 32 bits per pixel. 

Moreover, to identify the fractures of the styloid process 
of the ulna, which often accompanies distal radius frac-
tures, 189 anteroposterior images of the fractures of the 
styloid process of ulna and 302 images of the styloid pro-
cess of the ulna without fractures were augmented into 
845 and 1360 images, respectively, and three patterns (A, 
B, C) of datasets were prepared using the same approach 
(Table 1).

Training
Learning was conducted by entering the training data-
set after image augmentation into the network. Subse-
quently, the validation dataset was used for validation, 
and weighting was conducted to enable the output to 
approximate the correct answer using the back-propa-
gation ( w ← w − η ∂E

∂w , b ← b− η ∂E
∂b

 ). Three learnings 
of approximately 40 epochs were conducted with each 
dataset for three patterns (A, B, C) because even if the 
same data set was used for training, there would be slight 
differences in the test results. Thus, nine learnings were 
conducted. The parameter of the epoch number where 

Table 1  Dataset

* Number of augmented data (original data), †number of original data

Clinical diagnosis Direction Training* Validation* Test† Total*

Distal radius fracture (n) Fracture AP 1495 (299) 150 (30) 40 1645 (369)

LT 1350 (270) 250 (50) 40 1600 (360)

Normal AP 1365 (91) 270 (18) 20 1635 (129)

LT 1245 (83) 330 (22) 20 1575 (125)

Ulnar styloid fracture (n) Fracture AP 745 (149) 100 (20) 20 845 (189)

Normal AP 1210 (242) 150 (30) 30 1360 (302)

Fig. 2  Data extension using affine transformation. a Original image. b–e Images that underwent arbitrary rotation, stretching, parallel translation, 
and shearing processing on the xy plane. The following equation was used for conversion. x = sx ∗ xcosθ − sy ∗ ycos(θ + shear)+ t1 , 
y = sx ∗ xsinθ + sy ∗ ycos(θ + shear)+ t2 . s: Stretching (range e−log1.3

− 1.3 ), θ Rotation angle (range − 25° to 25°), t1, 2: Parallel translation 
(range − 50 pixels to 50 pixels), shear: Shearing (range − 20° to 20°)
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the diagnostic rate peaked during each learning was 
adopted, and three diagnostic tests for each pattern (a 
total of nine tests) were conducted. The nonaugmented 
original image data were used for the diagnostic tests of 
distal radius fractures and fractures of the styloid process 
of the ulna.

Test and diagnosis
The method to determine a distal radius fracture involved 
entering an anteroposterior image of the wrist for testing 
into the trained AI. If it identifies a fracture, it is diag-
nosed as the same. When the anteroposterior image 

is determined as normal, the lateral image of the same 
patient is entered. If a fracture is identified in the lateral 
image, the final diagnosis is fracture; if the lateral image is 
identified as normal, final diagnosis is normal (Fig. 3). As 
the fracture in the lateral image of a styloid process of the 
ulna overlaps with the distal radius, making it difficult to 
identify, its identification during diagnosis is conducted 
only with the anteroposterior images (Fig. 4).

Assessment
For the evaluation of the developed AI, we evaluated its 
diagnosis accuracy, sensitivity, and specificity using 40 

Fig. 3  Distal radius fracture identification procedure. Input a plain X-ray anteroposterior image and if it identifies a fracture, it is diagnosed as a 
fracture. If it is determined to be normal, a lateral image of the same patient is input to make final determination regarding whether it is normal or a 
fracture

Fig. 4  Identification procedure for the fractures of the styloid process of the ulna. Input a plain X-ray anteroposterior image to diagnose whether it 
is a fracture or normal
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images of distal radius fractures, 20 images of normal 
wrists, 20 images of fractures of the styloid process of 
the ulna, and 30 images of a normal styloid process of 
the ulna. We used the receiver operating characteristic 
(ROC) curve and area under curve (AUC) to evaluate 
the diagnostic ability. The time required for the pro-
cess, which includes the extraction of the input data 
from the simple X-ray DICOM data and the diagnosis 
by the AI, was evaluated.

Results
The number of epochs with the accuracy peak for vali-
dation in the diagnosis of distal radius fracture was 9, 
3, and 25 for patterns A, B, and C, respectively. Their 
respective diagnostic accuracies were 89.2%, 93.5%, 
and 93.6%. The diagnostic accuracy after this point 
mostly plateaued (Fig.  5). The diagnostic accuracy of 
the anteroposterior images of distal radius fractures in 
the respective optimal epoch number of patterns A, B, 
and C was 95.7 ± 1.7%; the sensitivity and specificity 
were 95.0 ± 3.1% and 97.2 ± 2.6%, respectively. When 
the lateral images were input, the diagnostic accuracy 
increased to 98.0 ± 1.6%; the sensitivity and specific-
ity were 98.6 ± 1.8% and 96.7% ± 3.5, respectively. The 
diagnostic accuracy of fractures of the styloid process 
of the ulna in the respective optimal epoch numbers 
of three patterns was 91.1 ± 2.5%; the sensitivity and 
specificity were 92.2 ± 5.7% and 90.4 ± 3.9%, respec-
tively. Figure 6a shows the ROC of the diagnostic tests 
of distal radius fractures. The AUC of the diagnostic 
test using only the anteroposterior images was 0.990 
{n = 540; 95% confidence interval (CI), 0.984–0.996} 
and that of the test using both anteroposterior and lat-
eral images was 0.991(n = 540; 95% CI 0.984–0.999). 
Figure  6b shows the ROC of diagnostic tests of the 
styloid process fracture of the ulna. The AUC of the 
diagnostic of fractures of the styloid process of the 
ulna using anteroposterior images was 0.956 (n = 450; 
95% CI 0.938–0.973). The time required for image 

Fig. 5  Epoch numbers of learning using datasets A, B, and C, as well 
as validation accuracy

Fig. 6  a ROC curve of the diagnostic tests of distal radius fractures. AUC of diagnoses using plain X-ray anteroposterior images is 0.990, and AUC of 
fracture diagnoses using both the anteroposterior and lateral images is 0.991. b ROC of diagnostic tests for fractures of the styloid process of ulna. 
AUC of fracture diagnoses using the plain X-ray anteroposterior images is 0.956
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conversion from the DICOM data and diagnosis by AI 
was approximately 30 s.

Discussion
The initial diagnosis of trauma, such as distal radius 
fractures, is often performed by medical interns or 
emergency room doctors. It is possible to prevent the dis-
placement of a fracture by appropriately diagnosing and 
performing immobilization with a cast or splint. Thus, 
initial diagnosis and treatment are essential [9]. The 
image recognition accuracy using AI is superior than the 
one by humans, and it has been applied to various fields 
[10]. The AI-based automatic fracture diagnosis system 
enables speedy diagnostic support of traumas and the 
initiation of treatment based on the diagnosis, which can 
be expected to improve the total treatment. Reports on 
existing bone image diagnosis using AI include a pro-
gram that diagnoses bone age by learning the shape of the 
epiphyseal nucleus and bone maturity from the data of 
more than 10,000 plain X-ray images of children’s hands 
[11]. The accuracy of diagnosing bone age is 90.4% within 
1  year and 98.1% within 2  years. Although a physician 
would require a few minutes to diagnose the bone age, AI 
can do so in less than 2 s. There is a report on the fracture 
diagnostic program that learned the location, plain X-ray 
direction, identification of fractures, and identification of 
left and right using data from more than 250,000 plain 
X-ray images of hand and foot [7]. Its accuracy in deter-
mining the location, direction, and left and right is more 
than 90%. The accuracy in identifying fractures is 83%, 
which is the same standard as specialized orthopedic 
surgeons. This result is expected to ensure clinical appli-
cation. Regarding distal radius fractures, an AI that com-
pleted learning using approximately 35,000 plain X-ray 
images of wrists was approved by the United States Food 
and Drug Administration in 2018 [6]. It is a program that 
first diagnoses whether there is a fracture or not. If it 
identifies a fracture, it displays the location of the frac-
ture in a heat map according to the trustworthiness of the 
diagnosis. The AUC of its fracture identification ability is 
0.975, which is highly accurate. It has been reported that 
the support from this program reduced diagnostic error 
rate among emergency room doctors by 47%. Our devel-
oped program used less data for its learning than other 
reports, which was between 1/100 and 1/1000. However, 
with diagnostic accuracy of distal radius fractures at 
98.0 ± 1.6% and AUC at 0.991, we obtained similar results 
with the same standard or even better than the previ-
ous reports. It is inferred that a good diagnostic rate was 
obtained, despite using a relatively small amount of data, 
due to the employment of the trained VGG16 model as 
the base, increasing the learning data up to the optimal 
quantity through image augmentation, and because the 

diagnosis was conducted in two stages using anteropos-
terior and lateral images, as in the case with the diagnosis 
by clinicians. It displayed good sensitivity at 98.6 ± 1.8%; 
hence, it is considered to be useful as a screening tool for 
initial diagnosis. However, although the diagnostic rate of 
fracture of the styloid process of the ulna was lower than 
that of distal radius fractures at 91.1 ± 2.5%, it is inferred 
that its diagnostic accuracy will improve if the number 
of datasets is increased to the same level as that used for 
distal radius fractures.

There are several limitations to this study. First, we 
used a small amount of learning data. It is not shown 
whether the same result can be obtained if the same 
number of data, other than the one used for this study, 
is used for learning. Second, because clinical diagnoses 
by orthopedic surgeons from clinical sites were used as 
the gold standard for correct identification of fractures, 
imaging tests, such as CTs, were not performed for all 
examples. However, the data included in this study were 
diagnosed as fracture by confirming the callus formation 
in the subsequent course even if fractures were diagnosed 
without CT. Third, it did not examine minute fractures 
that can be discovered using CT and other image detec-
tions or old fractures such as distal radius malunions and 
ulnar styloid nonunion. It is necessary to conduct further 
learning using more data, considering the diagnosis of 
fractures with hardly any displacement and old fractures. 
Finally, the data used in this study are from adults over 
18 years, whose epiphyseal lines are already closed. Thus, 
AI cannot identify fractures for children’s bones, where 
epiphyseal lines still remain. A new network must be 
constructed for fractures in children.

Image diagnosis using AI is expected to improve sig-
nificantly in the future. However, although imaging is one 
of the important examinations in the diagnosis of disease, 
comprehensive assessment of other clinical examination 
results, such as clinical histories, physical findings, and 
blood tests, is essential. In addition, it is to be remem-
bered that image diagnosis using AI is only a supple-
mentary diagnosis. Cohort studies and large randomized 
controlled trials are also needed to increase the reliability 
of AI-based diagnostics and predictions of injury in the 
field of orthopedics [12, 13].

Conclusion
In conclusion, our method resulted in a good diagnostic 
rate even when using a relatively small amount of data. 
The image diagnostic technologies using AI are speedy. 
They are highly applicable technologies that can be used 
in the diagnosis of every disease appearing on plain 
X-ray, CT, or magnetic resonance imaging (MRI). Thus, 
further application in clinical sites is expected.
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