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Abstract 

Background:  The study was performed to evaluate the feasibility of utilizing small intestinal submucosa (SIS) scaf-
folds seeded with adipose-derived mesenchymal stem cells (ADMSCs) for engineered tendon repairing rat Achilles 
tendon defects and to compare the effects of preconditioning treatments (hypoxic vs. normoxic) on the tendon 
healing.

Methods:  Fifty SD rats were randomized into five groups. Group A received sham operation (blank control). In other 
groups, the Achilles tendon was resected and filled with the original tendon (Group B, autograft), cell-free SIS (Group 
C), or SIS seeded with ADMSCs preconditioned under normoxic conditions (Group D) or hypoxic conditions (Group 
E). Samples were collected 4 weeks after operation and analyzed by histology, immunohistochemistry, and tensile 
testing.

Results:  Histologically, compared with Groups C and D, Group E showed a significant improvement in extracellular 
matrix production and a higher compactness of collagen fibers. Group E also exhibited a significantly higher peak 
tensile load than Groups D and C. Additionally, Group D had a significantly higher peak load than Group C. Immuno-
histochemically, Group E exhibited a significantly higher percentage of MKX + cells than Group D. The proportion of 
ADMSCs simultaneously positive for both MKX and CM-Dil observed from Group E was also greater than that in Group 
D.

Conclusions:  In this animal model, the engineered tendon grafts created by seeding ADMSCs on SIS were superior 
to cell-free SIS. The hypoxic precondition further improved the expression of tendon-related genes in the seeded cells 
and increased the rupture load after grafting in the Achilles tendon defects.

Keywords:  Adipose-derived mesenchymal stem cells, Small intestinal submucosa, Hypoxic, Achilles tendon, Tissue 
engineering
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Introduction
Achilles tendon rupture is a common injury of the mus-
culoskeletal system. In the UK, it is estimated to affect 
0.113% of the population annually [1]. Current treat-
ments include drug administration, physiotherapy, and 
autografting, but the outcome is frequently unsatisfac-
tory as the tendon is poorly vascularized and cellular-
ized. Autografting is relatively effective in restoring the 
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function of damaged tendons, but its use is limited by 
the availability of autografts and donor-site damage [2, 
3]. Tissue engineering is emerging as a new option of 
managing tendon injuries. In this technique, cells are 
seeded on a scaffold and cultured in  vitro to induce 
their proliferation and differentiation to a desired phe-
notype, creating an analog of autograft for implantation 
[4]. The scaffold material, cells, and culture conditions 
are all critical for the success of this technique.

Many materials have been studied for tendon tissue 
engineering, such as polypropylene mesh, human amni-
otic membrane (HAM), and small intestinal submucosa 
(SIS). Polypropylene mesh is commercially available 
and has generally satisfactory mechanical properties, 
but it is non-degradable in  vivo. HAM supports cell 
adhesion, migration, and proliferation; unfortunately, 
its biomechanical properties are unsatisfactory, espe-
cially in the early stage of healing [5]. SIS is an extra-
cellular matrix (ECM) containing abundant collagen 
fibers, proteoglycans, and growth factors [6] that play 
important roles in tissue repair [7–10]. In  vitro, SIS 
was reported to promote the adhesion, proliferation, 
and differentiation of stem cells [11]. In vivo, SIS-based 
scaffolds have been studied for repairing defects of tis-
sues such as the vocal cords, dura mater, and tendons 
[7–10].

Mesenchymal stem cells (MSCs) are multipotent cells 
able to self-renew while remaining undifferentiated [12]. 
Studies have demonstrated that, under appropriate con-
ditions, MSCs can differentiate into different pheno-
types such as osteoblasts, chondrocytes, and fibroblasts 
[13, 14]. Bone marrow-derived mesenchymal stem cells 
(BMSCs) have been commonly used as seed cells for the 
engineering of various tissues such as the bone, myo-
cardium, and tendon [15–17]. Nevertheless, BMSCs are 
associated with technical disadvantages such as inva-
sive procedures of isolation and low BMSC concentra-
tion in the bone marrow [18]. Recently, MSCs derived 
from adipose tissue (ADMSCs) have gained increasing 
attention because of their less invasive harvesting, rela-
tively abundance, and higher proliferative capacity [19]. 
Furthermore, ADMSCs are particularly suitable for tis-
sue engineering when a large number of seed cells are 
required. In an injury model of horse flexor tendonitis, 
after injection of ADMSCs, the tissue structure of col-
lagen fibers was improved and the properties of tendons 
were enhanced [20]. In a rabbit model, defects of Achil-
les tendons were repaired with platelet-rich plasma (PRP) 
or a mixture of PRP and ADMSCs. At week 4, the ten-
dons repaired with the PRP-ADMSCs mixture were sig-
nificantly stronger than those receiving PRP alone [21]. 
These results suggest ADMSCs to be promising cells for 
the repair of soft tissues. Currently, however, no study 

has investigated the use of ADMSCs combined with SIS 
for the tissue engineering of tendons.

In addition to scaffolds and seed cells, the environ-
ment in which the cells proliferate and differentiate is 
also crucial for the success of tissue engineering. For 
example, hypoxic conditions have been found to pro-
mote the secretion of factors (e.g., vascular endothelial 
growth factor, hypoxia-inducible factors) by MSCs and, 
thus, considered a potential strategy to improve the sur-
vival of transplanted MSCs [22]. Huang et  al. [23] cul-
tured BMSCs under hypoxic or normoxic conditions, and 
injected the cells into experimental defects created in rat 
Achilles tendons. Four weeks after injection, the defects 
repaired with BMSCs cultured under hypoxic conditions 
showed a significantly higher ultimate failure load than 
those repaired with the cells cultured under normoxic 
conditions. Other animal studies found that, hypoxic 
preconditioning of ADMSCs promoted wound healing, 
cartilage repair, and angiogenesis [24–26]. However, no 
study has investigated the effects of hypoxic conditioning 
on tendon tissue engineering with ADMSCs.

The present study investigated the repair of rat Achilles 
tendon defects with SIS scaffolds seeded with ADMSCs, 
and compared the effects of preconditioning treatments 
(hypoxic vs. normoxic) on the tendon healing. Our goal 
was to generate fundamental information for improving 
the outcomes of tendon tissue engineering.

Materials and methods
Animals
Sixty male Sprague–Dawley rats (8–10  weeks, 250–
300 g) were purchased from Experimental Animal Center 
of Southwest Medical University. The study protocol was 
approved by Committee of Research Ethics of Southwest 
Medical University, and all procedures followed Experi-
mental Animal Welfare Guidelines of the University.

Cell isolation
The animal was anesthetized by intraperitoneal injec-
tion of 2% (w/w) pentobarbital (30  mg/kg). Inguinal 
adipose tissue was surgically collected bilaterally under 
aseptic conditions. The tissue was washed three times 
with PBS, fragmented, and digested with 0.1% type-I 
collagenase (Sigma, St Louis, MO, USA) under continu-
ous shaking (37  °C, 60  min). Digestion was terminated 
by adding equal volume of complete culture medium 
(CCM; a-MEM supplemented with 16.6% fetal bovine 
serum, 100 U/mL penicillin, 0.1 g/mL streptomycin, and 
2  mM L-glutamine). The resultant mixture was filtered 
with a mesh (pore size: 75  µm; Sigma), and the filtrate 
was diluted with CCM and centrifuged (1500  r/min, 
5 min). The supernatant was aspirated off, and the cells 
were resuspended in PBS and centrifuged again (1500 r/
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min, 5  min). After removing the supernatant again, the 
cells were resuspended in CCM, seeded in Petri dishes 
(1 × 105  cell/cm2), and incubated (37  °C, 5% CO2, 20% 
O2, relative humidity 95%) with a renewal of CCM every 
3 days.

Flow cytometry
When the cells at passage 3 reached 80–90% confluency, 
the medium was replaced with 2  ml of 0.25% trypsin 
(Gibco). After digestion for 30 min, the cells were trans-
ferred to a 15-ml Eppendorf tube and treated by two 
cycles of: centrifugation (5 min, 1000 r/min), supernatant 
removal, and resuspension of the pellet in 5  ml of PBS. 
The antibodies to CD29-APC, CD90-PE-Cy7, CD34- PE, 
CD45-PerCP, CD31-PE and homotype control antibody 
were added into the suspension. After incubation (room 
temperature, 0.5  h), the cells were analyzed by flow 
cytometry (BD FACSAria, BD, San Jose, CA, USA).

Cell preconditioning
Cells at passage 3 were seeded in Petri dishes (1 × 105 cell/
cm2) and incubated under either normoxic (20% O2, 75% 
N2, 5% CO2) or hypoxic conditions (2% O2, 93% N2, and 
5% CO2) for up to 7 days.

Fluorescence labeling
To track the differentiation of ADMSCs in vivo, the cells 
were labeled with Dilute Vybrant CM-DiI cell-labeling 
solution (Invitrogen, Carlsbad, CA, USA). Subsequently, 

the cells were incubated at 37 °C for 30 min, and then at 
4 °C for 15 min.

Preparation of SIS scaffolds
Porcine SIS was prepared following a previous study 
[27, 28]. Briefly, porcine jejunum was obtained from a 
local market, cut into strips (length: ~ 10 cm), and rinsed 
carefully with saline. The tunica serosa and tunica mus-
cularis were harvested by mechanical scraping, defatted 
by immersion in a solution of methanol/chloroform (v: 
v = 1:1) for 12  h, rinsed repeatedly with distilled water, 
and disinfected with 0.1% peracetic acid for 30  min. 
All samples were freeze-dried at − 55  °C for 48  h. The 
obtained SIS was kept in vacuum-sealed bags and steri-
lized by ethylene oxide fumigation.

Cell seeding
The SIS strips were cut into rectangular samples 
(~ 1 × 1.5 cm) and rehydrated by placing in 6-well plates 
containing PBS for 24  h. The labeled cells were added 
into the culture medium and seeded on the SIS samples 
(1.5 × 106 cells/scaffold) according to our previous expe-
rience [27, 28]. Then, they were cultured (37 °C, 5% CO2, 
20%O2) for 48 h.

Animal grouping and operation
Fifty SD rats were randomized into five groups (n = 20/
group) as shown in Fig. 1. The animal was anesthetized 
by intraperitoneal injection of sodium pentobarbital 

Fig. 1  Schematic showing grouping of animals
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(30 mg/kg). A longitudinal incision was made on the pos-
terior aspect of each hind leg above the ankle to expose 
the Achilles tendon. For Group A (sham operation), the 
wound was simply closed layer by layer. For the other 
four groups, a 5-mm segment was resected from the 
mid-tendinous region (Fig. 2A). For Group B (autograft), 
the defect was rinsed with 2 ml of penicillin (1: 10,000) 
and 3 ml of lincomycin (1: 1000). The removed segment 
was immersed in penicillin (1: 10,000) and lincomycin (1: 
1000) solutions each for 15 min, and then sutured back 
to the original location by a modified Kessler method. 
For the other three groups, bilateral defects were created 
similarly; SIS scaffolds were rolled into cylinders (diam-
eter: ~ 2–2.5  mm, length: 5  cm), placed into the defects 
(Fig.  2B), and sutured identically to Group B. The scaf-
folds used in Group C were cell-free (Fig.  1), and those 
in Group D and E were loaded with ADMSCs (1.5 × 106 
cells/scaffold) preconditioned under normoxic or 
hypoxic conditions (Sect. 2.4).

Four weeks after operation, all rats were killed by 
intravenous injection of pentobarbital (100  mg/kg). All 
Achilles tendons were harvested for biomechanical and 
histological evaluations. Samples retrieved from Groups 
D and E were also investigated by immunohistochemical 
and immunofluorometric examinations.

Sample processing and examinations
For histology, harvested samples were immediately fixed 
in 4% paraformaldehyde, dehydrated in ethanol series, 
embedded in paraffin, and sectioned sagittally (thick-
ness: ~ 5 µm). The sections were stained with hematoxy-
lin–eosin (HE) and Masson’s Trichrome reagents.

For immunohistochemical examination, paraffin-
embedded sections from Groups D and E were de-
paraffinized with xylene and rehydrated. They were 

immersed in 3% H2O2/methanol (v: v = 1:9) for 15 min to 
block endogenous peroxidase and rinsed thrice with PBS. 
Subsequently, the sections were probed with the primary 
monoclonal antibodies [rabbit antibody to Tenomodu-
lin (Abcam) and rabbit antibody to Mohawk homeobox 
(Sigma)]. After three rinses with PBS, they were probed 
again with Dako REAL EnVision detection kits (Dako, 
Glostrup, Denmark) following manufacturer instruc-
tions. Then, diaminobenzidine (Boster Bio, Pleasanton, 
CA, USA) was added for color development, and the sec-
tions were counterstained with hematoxylin.

For immunofluorescent examination, the samples 
were cryogenically sectioned (thickness: 10  µm). The 
sections were fixed in cold acetone, rinsed thrice with 
PBS, and probed sequentially with rabbit antibody to 
CD31 (Abcam) and rabbit antibody to Mohawk home-
obox (Sigma) (each 37 °C for 2 h). After three rinses with 
PBS, they were probed with fluorescein isothiocyanate 
(FITC)-labeled goat- anti-rabbit IgG (secondary anti-
body, 37 °C, 1 h). Finally, they were counterstained with 
4’,6-diamidino-2-phenylindole (DAPI). Stained sections 
were observed under a fluorescence microscope, and five 
random fields were taken and counted for triple-immu-
nostained cells.

For biomechanical test, the samples were harvested 
from the calcaneus to 1  cm above the proximal suture 
and rinsed carefully with saline. The collected sample 
was further dissected to remove irrelevant connective tis-
sues. Thirty grafts (six specimens/group) were randomly 
selected and tested by tension to rupture (10  mm/min; 
Instron 5967, load cell: 100  N; Instron, Norwood, MA, 
USA). Both ends of the sample were secured in a screw 
grip. The peak failure load was recorded, and the site of 
sample rupture was observed.

Fig. 2  Photographs showing the experimental procedures; A surgical exposure of the Achilles tendon to be resected; B tissue-engineered graft (in 
this case an ADMSCs-seeded SIS) sutured to the defect in replacement of the resected tendinous tissue
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Statistical analysis
Data from two groups were compared by t test (SPPSS 
17.0, SPSS, Chicago, IL, USA). Data from > 2 group were 
analyzed by analysis of variance (ANOVA) and Tukey 
multiple comparison test. A p value < 0.05 was considered 
statistically significant.

Results
ADMSCs culture and identification
After culture of the primary ADMSCs for 24 h (Fig. 3A), 
the cells adhered to culture dishes and grew in colonies; 
most cells appeared round. After culture for 7 days, most 

cells became spindle-like (Fig. 3B). After three passages, 
the cells maintained the spindle-like morphology. Flow 
cytometry found that, > 95% of the cells were CD90+ and 
CD29+, whereas < 5% were CD31−, CD34−, and CD45− 
(Fig. 4). These characteristics compare favorably with the 
surface marker profiles of MSCs reported by other stud-
ies [29, 30].

Gross examination
Four weeks after operation, all grafts (Groups C–E) or 
the native tendon (Group A) showed different degrees 
of adhesion to the surrounding fascia, with the lightest 
adhesion observed in Group A and most severe adhesion 
in Group B. Groups C, D, and E had similar degrees of 
adhesion. All grafts (Groups C–E) were connected inti-
mately to the adjacent tendinous tissue.

Histology
HE staining
The sections of Group A (Fig. 5A) showed a small num-
ber of spindle-shaped tenocytes distributed in a dense 
matrix of oriented collagen fibers. Group B had abun-
dant spindle-shaped cells distributed in collagen fibers 
lacking an orientation (Fig.  5B). Group C–E all showed 

abundant cells aligned along a matrix of oriented col-
lagen fibers (Fig.  5C–E). In Group C, the majority of 
cells were rounded with a small proportion appearing 
spindle-shaped, whereas in Groups D and E the cells 
were predominantly spindle-shaped. Groups D and E 
showed generally oriented collagen fibers and increased 
extracellular matrix (ECM) production compared with 
Group C, with Group E outperforming Group D in 
ECM content. Moreover, Group D appeared to display a 
slightly greater cellularity than Group E. The difference 
between the two groups needs to be further analyzed by 
immunohistochemistry.

Masson’s trichrome staining
After Masson’s trichrome staining, collagen fibers stained 
blue; the cytoplasm red; and the nuclei black (Fig.  6). 
In Group A, a small number of cells were dispersed in 
compact and well oriented collagen fibers. In Group 
B, cells were distributed along collagen fibers that were 
less oriented (vs. Group A). Groups C–E appeared gen-
erally similar, with cells distributed along collagen fibers 
arranged in parallel bundles. Careful observation sug-
gested that, the compactness of collagen fibers appeared 
to vary slightly, following an order of Group E > Group 
D > Group C.

Immunohistochemical staining
Tenomodulin (Tnmd) has been identified as a type-II 
transmembrane glycoprotein principally expressed in 
tendons and ligaments [31]. Transcription factor Mohawk 
homeobox (MKX) is an important regulator of tenogenic 
differentiation [32, 33]. Recent studies reported that, col-
lagen type I expression and Achilles tendon in mice were 
defective when the MKX gene was knocked out [32, 
34]. Given the importance of Tnmd and MKX in ten-
don development, we performed immunohistochemical 

Fig. 3  Micrographs of A, B primary ADMSCs cultured for 24 h and B 7 days and C cells at the third passage
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Fig. 4  Identification of ADMSCs surface markers

Fig. 5  Photomicrographs of sections from Groups A–E (HE staining)
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staining of the two proteins to compare the outcome of 
tendon repair in Groups D and E.

Four weeks after operation, extensive production of 
Tnmd and MKX was detected in the regenerated tendon-
like tissues in Groups D and E (Fig.  7A), with Group E 
exhibiting a more intense (vs. Group D) staining of Tnmd 
and MKX. Image analysis of the sections found that, 
Group E had a significantly higher percentage of MKX+ 
cells than Group D (p = 0.001) (Fig.  7B). This suggests 
that, compared with Group D, Group E supported an 
improved generation of tendon-like tissue in this model.

Immunofluorescent staining
Four weeks after operation, numerous CM-Dil-labeled 
ADMSCs were seen in sections from Groups D and E, 
with those in Group E appearing more aligned and nar-
rower. MKX+ cells were also detected in the two groups 
by triple immunofluorescence microscopy (Fig.  8A). 
Image analysis found that, compared with Group D, 
Group E had a higher proportion of ADMSCs simulta-
neously positive for both MKX and CM-Dil (p = 0.003) 
(Fig.  8B). These findings suggest that, ADMSCs seeded 

in the SIS scaffolds differentiated into MKX+ cells in the 
regenerated tendon-like tissue, and the hypoxic precon-
ditioning enhanced their differentiation.

Tensile load
Four weeks after operation (Fig.  9), the peak load 
(i.e., force at rupture) of samples from Group E 
(32.34 ± 2.71  N) was significantly higher than those 
from Group D (27.78 ± 2.11 N) (p = 0.003) and Group C 
(20.33 ± 1.47  N) (p < 0.001). The ultimate load recorded 
from Group D was significantly higher than that that of 
Group C (p < 0.001). Additionally, the ultimate load of 
Group A (41.12 ± 1.23  N) was significantly higher than 
that of Group B (37.62 ± 1.54 N) (p = 0.027). The ultimate 
load of Group E reached 78% (p < 0.001) of that of Group 
A and 85% (p < 0.001) of that of Group B, although both 
differences remained statistically significant. All samples 
failed at the middle third. These indicate that, seeding 
of ADMSCs significantly increased the strength of the 
regenerated tendon-like tissue (vs. grafting of cell-free 
SIS scaffolds) at Week 4, and the hypoxic preconditioning 
further significantly improved the strength.

Fig. 6  Photomicrographs of sections from Groups A to E (Masson trichrome staining, 4 weeks after operation)
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Discussion
The current study found that, (1) compared with the 
grafts of cell-free SIS, grafting of SIS containing seeded 
ADMSCs yielded tendon-like tissue with improved his-
tological and mechanical properties, and (2) compared 
with normoxic preconditioning, hypoxic pre-condition-
ing of ADMSCs increased the ultimate load and histo-
logical characteristics of the new tissue.

SIS is a natural, acellular ECM hosting a partially 
aligned collagen type-I matrix and a variety of growth 
factors [35]. Previous studies reported positive results 
from the use of cell-free SIS in managing soft tissue 
defects in animal models (e.g., Achilles tendon [10], 
flexor tendon [36], rotator cuff [35], patellar [37]). Other 

studies seeded ADMSCs on decellularized tendon scaf-
folds, and observed increased tendon marker gene 
expression, enhanced type-I collagen synthesis, and 
improved mechanical and biological characteristics [38–
40]. However, no previous study has explored the seeding 
of ADMSCs on SIS for tendon repair.

ADMSCs from subcutaneous adipose tissues are 
similar to BMSCs in morphology and cell surface mark-
ers. Additionally, both cells possess the ability of self-
renewal and multilineage potential [33, 41]. Behfar and 
Nixon et  al. [20, 42] managed flexor tendon injury by 
injection of ADMSCs, and observed improved collagen 
fiber organization, tendon structure, and yield loads. 
Park et  al. [43] reported the expression of scleraxis and 

Fig. 7  A Photomicrographs of sections from Groups D and E immunohistochemically stained for Tnmd and MKX; B Comparison of the proportions 
of MKX + cells measured from photomicrographs in A (n = 5). (**p < 0.01)
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Fig. 8  A Photomicrographs of sections from Groups D and E immunofluorescently stained for MKX; B comparison of the proportions of MKX+ cells 
measured from photomicrographs in A (n = 5) (**p < 0.01)
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Tenomodulin in cultured ADMSCs treated with IGF-1 
and TGFβ or GDF-5. Kryger et  al. [44] reported that, 
ADMSCs and BMSCs behaved similarly in adhesion and 
proliferation on scaffolds. These suggest ADMSCs to be a 
possible and less invasively available substitute to BMSCs 
in tendon tissue engineering.

Compared with the new tendon-like tissue regenerated 
in Group C, those in Group D and E possessed higher col-
lagen fiber alignment and ultimate loads, suggesting that 
ADMSCs may have contributed to the production of the 
new tendon-like tissues. Wang et  al. [45] reported that, 
the BMSCs seeded in SIS significantly increased pancre-
atic islet function in rats. Hodde et al. [46] found that SIS 
retained significant bioactivity and had low immunogenic-
ity to support murine fibroblasts attachment and stimu-
late pheochromocytoma cell differentiation. In a porcine 
in vivo epicardial study, Chang et al. [8] observed that seed-
ing of BMSCs on SIS reduced the in vivo adaptive immune 
response to SIS. In the present study, no macrophages 
were not observed in HE-stained sections surrounding 
the implanted scaffolds with or without ADMSCs. Addi-
tionally, no sign of fibrous encapsulation or scar formation 
was observed in gross or histological examination. These 
suggested the absence of evident immune rejection of 
the scaffolds, which may be explained by several factors. 
First, decellularized biomaterials were reported to elicit 
a relatively weak immune rejection [47]. Second, the SIS 
scaffolds were isolated from young pigs, and biomaterials 
harvested from young animals are associated with more 
tissue remodeling response than immune rejection [48]. 
Moreover, earlier studies have been reported that ADM-
SCs are relatively immunogenic [49, 50].

Previous studies have reported that, hypoxic pre-
conditioning of ADMSCs enhanced their proliferation, 
stemness, and angiogenic potential [37, 51, 52]. The 
present study found that, hypoxic pre-conditioning 
improved histological characteristics, ultimate tensile 
load, and expression of tendon-related gene markers 
in the regenerated tendon-like tissue (Groups E vs. 
D), consistent with an earlier report [53] that hypoxia 
enhanced the tenocytic differentiation of AMDSCs. 
The present study did not investigate the molecu-
lar mechanisms underlying these improvements, but 
several possibilities may be suggested. First, the oxy-
gen partial pressure in the adipose tissue is ~ 2–8% 
[54], and the oxygen tension in the tendon defect 
area is also low [55]. Thus, pre-conditioning at 2% 
O2 tension may have increased the in vivo viability of 
ADMSC after grafting into the defect. Second, hypoxic 
pre-conditioning may have enhanced the potential of 
ADMSCs to differentiate into tenocytes [51, 56]. Addi-
tionally, hypoxia may have upregulated the secretion of 
cytokines (e.g., TGFs, angiogenic factor, VEGF, SDF-1/
CXCR4, FGF), which play roles in tendon regeneration 
[29].

CM-DiI has been used to label the cell membrane 
for fluorescence microscopy due to several advantages, 
and it does not affect the proliferation and differentia-
tion of the cells [57]. The CM-DiI labels can be retained 
stably on the cell membrane and detected in daughter 
cells during their proliferation. Moreover, the efficiency 
of CM-DiI labeling is relatively high. Thus, this proce-
dure has been considered as a convenient and effective 
method for steadily tracking cells during in vivo experi-
ments [58]. Four weeks after operation, CM-DiI-labeled 
ADMSCs were detected in the regenerated tissues in 
Groups D and E, indicating that they were still viable 
and their cellular morphology could be identified after 
staining by DAPI. Triple immunofluorescent staining 
of CM-DiI, DAPI, and MKX further demonstrated that 
CM-DiI-labeled ADMSCs in both Groups D and E were 
positive for MKX, a tenocyte-specific protein. This 
demonstrates that the ADMSCs preconditioned under 
either hypoxic or normoxic conditions differentiated 
into tenocyte-like cells. Furthermore, the proportion 
of the differentiated ADMSCs was higher in the ADM-
SCs treated by hypoxic preconditioning compared with 
those receiving normoxic one.

This study involves several limitations. First, the sign-
aling pathways underlying the positive effects of the 
hypoxic pre-conditioning were not investigated. Sec-
ond, only single O2 pressure, time, and cell seeding dose 
were used during pre-conditioning; as a result, optimal 
conditions and curative effects were not established. 
Moreover, as in vivo study was completed at Week 4, it 

Fig. 9  Ultimate tensile failure loads measured at Week 4 (n = 6) 
(*p < 0.05, **p < 0.01)
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remains unknown how the regenerated tissue compares 
with the intact one on a longer time scale. These need 
to be answered by systematic studies in the future.

Conclusion
The engineered tendon graft created by seeding ADM-
SCs on SIS is superior to cell-free SIS.

The hypoxic precondition further improved the expres-
sion of tendon-related genes by the seeded ADMSCs in 
SIS, and increased the rupture load after grafting in the 
Achilles tendon defects. Finally, ADMSCs seeded on 
SIS can survive and differentiate into tenocyte-like cells 
in vivo, and hypoxia may promote the progress of differ-
entiation. These new findings support the application of 
ADMSCs and hypoxic preconditioning in tendon tissue 
engineering.
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