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Abstract

Background: Cannulated screws (CS) are one of the most widely used treatments for femoral neck fracture,
however, associated with high rate of complications. In this study, we designed a new type of cannulated screws
called degradable magnesium alloy bionic cannulated screws (DMBCS) and our aim was to compare the
biomechanical properties of DMBCS, the traditionally used titanium alloy bionic cannulated screws (TBCS) and
titanium alloy cannulated screws (TTCS).

Methods: A proximal femur model was established based on CT data of a lower extremity from a voluntary healthy
man. Garden type III femoral neck fracture was constructed and fixed with DMBCS, TBCS, and TTCS, respectively.
Biomechanical effect which three type of CS models have on femoral neck fracture was evaluated and compared
using von Mises stress distribution and displacement.

Results: In the normal model, the maximum stress value of cortical bone and cancellous bone was 76.18 and 6.82
MPa, and the maximum displacement was 5.52 mm. Under 3 different fracture healing status, the stress peak value
of the cortical bone and cancellous bone in the DMBCS fixation model was lower than that in the TTCS and TBCS
fixation, while the maximum displacement of DMBCS fixation model was slightly higher than that of TTCS and TBCS
fixation models. As the fracture heals, stress peak value of the screws and cortical bone of intact models are
decreasing, while stress peak value of cancellous bone is increasing initially and then decreasing.

Conclusions: The DMBCS exhibits the superior biomechanical performance than TTCS and TBCS, whose fixation
model is closest to the normal model in stress distribution. DMBCS is expected to reduce the rates of post-
operative complications with traditional internal fixation and provide practical guidance for the structural design of
CS for clinical applications.
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Introduction
Femoral neck fracture is a common fracture in the
elderly population, accounting for about 60% of hip
fracture [1, 2], and is associated with serious medical
and social consequences [3–5]. In addition to total
hip replacement, osteosynthesis is a well-established
operative method for stabilizing femoral neck fracture
and currently the most widely used internal fixation
instruments were cannulated screws, sliding hip
screws, and proximal femoral locking plates [6]. Espe-
cially, cannulated screws (CS) was estimated to be
used in 78% of nondisplaced/impacted fractures and
46% of the displaced fractures due to its minimal

operative trauma, lower medical care cost, and socio-
economic burden [7, 8]. However, the high rate of
complications have compromised the operative out-
comes, including but not limited to osteonecrosis of
the femoral head (14.3–45%), femoral neck shortening
(15.9–30%), and nonunion (8–19%) [9–13].
In theory, bone union should include both cortical

bone and trabecular bone union, but the role of the lat-
ter has been consistently underestimated or even over-
looked. Trabecular bone is the center metabolism of
bone tissue and also the center of mechanical transmis-
sion, bearing 40% to 70% of the body load in the prox-
imal femur [14]. In one experimental study, researchers

Fig. 1 The model of TTCS (a), models of DMBCS and TBCS (b), the meshed model of proximal femur (c), and loading was acted on the model (d)
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demonstrated the entire process of bone fracture that
1.5–6.4% of trabecular bone fracture occurred initially,
followed by trabecular bone meshwork fracture and fi-
nally the fracture of the cortical bone. Additionally, mul-
tiple complications have demonstrated to be related to
trabecular bone structure change or suboptimal union,
due to decrease of bone mass, premature weight-
bearing, or internal fixation malposition [15, 16]. Some
scholars also suggested that the difficulty in reconstruct-
ing trabecular bone have an important relationship with
internal fixation failure [17–19]. Owing to stress shield-
ing and volume occupancy effects, traditional implant
blocks the reconstruction of trabecular bone, and the
load on the proximal femur cannot be transmitted nor-
mally even when the cortical bone fully heals [20].
Given above, our team proposed the concept of bionic

fixation and designed the bionic implant with porous
structure, which allowed the trabeculae to grow in,
known as the bionic implant. It is speculated that recon-
struction of the trabeculae with use of such device could
improve stress distribution and enhance load conduc-
tion. In this study, we use the finite element method to
address the biomechanical distinction between this

bionic implant and the traditional implants (TBCS and
TTCS), with regard to stress distribution and stability.

Methods and properties
This study has been reviewed and approved by the insti-
tutional review board and that it conformed to the pro-
visions of the Declaration of Helsinki. Written informed
consent was obtained from the volunteers prior to the
study commencement.

Establishing models of proximal femur
A healthy volunteer (male, 35 years old, height 170 cm,
body weight 75 kg) without a history of lower extremity
injury was scanned by computed tomography scanner
(SOMATOM Definition AS Siemens, Germany) with a
slicing distance of 0.625 mm from hip joint to the knee
joint. The three-dimensional femur models were estab-
lished by these images. The geometry and surface were
built and sampled by the Geomagic software. The trad-
itional cannulated screw models were constructed based
on their real dimension, and 4-mm diameter holes were
created on the bionic implant in NX 9.0 (Fig. 1a, b). A
model of Garden type III femoral neck fracture was

Table 1 Material properties of all models in this study

Model Materials Young’s modulus (GPa) Poisson's ratio

Cortical bone Cortical bone 17 0.3

Cancellous bone Cancellous bone 1.5 0.3

TTCS Ti6Al4V 110 0.316

TBCS Ti6Al4V 110 0.316

DMBCS Mg alloy 45 0.316

DMBCS (PO 6 months) Mg alloy 36 0.316

DMBCS (PO 12 months) Mg alloy 9 0.316

PO represents postoperative

Fig. 2 The model of type Garden III femoral neck fracture was established (a), placement of CS in proximal femur (b)
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established by NX 9.0 and fixed with traditional and bi-
onic cannulated screws, respectively (Fig. 2).

Material properties and boundary conditions
The solid models were imported into Hypermesh13.0 for
constructing four-node tetrahedral block-structured meshes
of bones and screws. Four-node tetrahedral block-
structured meshes of all bones and screws were constructed
(Fig. 1c). The models were imported into ABAQUS 6.14.
All bone and implant models were assumed to behave with
homogeneous, isotropic and linear elastic behavior, and
assigned as corresponding material properties according to
reported literatures [21] (Table 1).
In assembly models, screw thread and cortical screw

were bonding with cancellous bone and cortical bone, re-
spectively. The other bone-implant interfaces were set as
contact relationship except for thread/bone and cortical
screw/bone. The coefficient of friction was set at 0.3 [22].
As the volunteer’s body weight was 75 kg, correspond-

ing to 750 N of gravity, the loading forces on the femur
mimicked the loads at the heel strike of normal walking
[23]. Figure 1d shows the head load ({x, y, z} = {1492,
915, 2925}) and abductor force ({x, y, z} = {1342, 832,
2055} N) (4.54 and 3.45 times body weight, respectively).

Evaluation of stress distribution of proximal femoral
cancellous bone
The finite element analysis model will simulate 3 differ-
ent bone healing status: non-healed fracture, partly
healed fracture and fully healed fracture. Contact condi-
tion of non-healed fracture between the fracture surfaces
is simulated as non-sliding but separable, to simulate the

situation after the fracture has been repositioned and
pressurized. The contact condition of partly healed frac-
ture between the fracture surfaces is set to be combined
without slippage or separation for cancellous bone. The
contact condition of fully healed fracture is set to be
combined without slippage or separation. In addition to
the displacement, the analysis records von Mises Stress
distribution in bone and screws to evaluate the effect of
trabecular bone tissue growth into the fixator on the
overall stress distribution.
The von Mises stress on the intact proximal femur

was tested to analyze the mesh convergence. The con-
vergence criterion used was a change of < 5%. The cor-
tical bone and cancellous bone of final model had 22,137
elements and 40, 237 elements, respectively.

Validation of the finite element models
In order to verify the finite element models of proximal
femur, a specimen of normal proximal femur was se-
lected for biomechanical test (Fig. 3a). The same load
condition and boundary conditions were applied. Fur-
ther, 750 N load was applied to proximal femur to rec-
ord strain value of 9 marker points (Fig. 3). The results
of comparisons showed that our modelling method is
appropriate to be used in the further research, and the
difference was not significant (Table 2).

Results
The von Mises stress distribution and displacement of
intact bone
In the normal model, the peak stress values of cortical
bone and cancellous bone was 76.18 MPa and 6.82 MPa,

Table 2 The strain values of the biomechanical test and finite element analysis (10−3)

Maker point a b c d e f g h i

Finite element analysis 4.24 0.02 0.04 1.40 6.53 2.40 5.02 2.52 2.97

Biomechanical test 4.43 0.02 0.04 1.53 6.82 2.75 5.27 2.45 2.67

Fig. 3 Comparison between the biomechanical test (a) and finite element analysis (b)
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respectively. The maximum displacement was 5.52 mm
(Fig. 4).

The von Mises stress distribution, displacement, and
shear stress of different CS fixation models in all three
settings
The maximum stress and stress concentration of cortical
bone and cancellous bone in the degradable magnesium

alloy bionic cannulated screws (DMBCS) fixation model
was lower than that in the titanium alloy cannulated
screws (TTCS) and titanium alloy bionic cannulated
screws (TBCS) fixation models, and the peak bone stress
of the three CS fixation models occurred at the holes ad-
jacent to screws. For the screw, the maximum high-
stress value of the implant was significantly lower than
that in the TTCS and TBCS except a non-healed

Fig. 5 The von Mises stress distribution of cortical bone (a), cancellous bone (b), and screws (c); the displacement of three type of CS fixation
models (d) at a non-healed fracture

Fig. 4 The von Mises stress distribution of cortical bone (a) and cancellous bone (b); the displacement of the intact models (c)
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fracture. High-stress value was located at the middle re-
gion of screws among three variations under 3 different
bone healing status (Figs. 5, 6, and 7) (Table 3).
DMBCS fixation model was higher than TTCS and

TBCS fixation in maximum displacement and shear stress.
The maximum shear stress of fracture in three implant
groups was 16.94 MPa, 17.68 MPa, and 18.89 MPa at a
non-healed fracture (Figs. 5, 6, 7, and 8) (Table 4).

Discussion
Femoral neck fracture is a common fracture in clinical
practice, associated with high post-operative complica-
tions. To overcome this problem, we designed the new
type of CS. In this experiment, the finite element
method was used to analyze the stress distribution and
stability of DMBCS, TBCS, and TTCS fixation models.
Compared with the TTCS and TBCS, the DMBCS has
improved stress distribution of the cortical bone and
cancellous bone. The result indicates that DMBCS is ex-
pected to provide the theory basis for improving clinical
efficacy and biomechanical characters of femoral neck
fracture.
According to the results, the maximum stress of cor-

tical and cancellous bones in TTCS is 1.15 and 1.09
times greater than that of DMBCS at a non-healed

fracture, and 1.35 and 1.78 times greater than that of
DMBCS at fully healed fracture. DMBCS has reduced
the maximum stress and stress concentration of cortical
and cancellous bone in all three settings. The peak value
stress of TTCS is 74%, 1.19 times and 2.41 times of
DMBCS under three healing status. Except for a non-
healed fracture, the stress peak value and stress distribu-
tion of DMBCS model are substantially lower than
TBCS and TTCS models. DMBCS has improved the
stress distribution of fixation models and reduced inter-
ference with the surrounding bone.
There are several biomechanical characteristics of

DMBCS that explain the biomechanical differences from
both traditional and bionic CS. First, the natural elastic
modulus of degradable magnesium alloys is low and they
are expected to slowly degrade over time. The difference
of elastic modulus between cancellous bone and screw is
small, and the stress concentration and stress extreme
value will also be reduced [23]. This feature is also
reflected in the biodegradable internal fixation used for
spinal fractures, and the prior study demonstrated the
biodegradable material could indeed reduce the stress
concentration of the vertebrae during degradation and
the stress distribution was closer to the normal model
[22]. DMBCS will reduce the disadvantages of stress

Fig. 6 The von Mises stress distribution of cortical bone (a), cancellous bone (b), and screws (c); the displacement of three type of CS fixation
models (d) at partly healed fracture
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shielding and the risk of relevant complications [24].
Second, the dynamic change of DMBCS conforms to the
healing process of femoral neck fracture. DMBCS could
provide rigid support for femoral neck fractures, which
contributes to the healing process of bone in the early
stage. The load carried by the DMBCS will gradually de-
crease while the load carried by the femoral neck itself
will gradually increase, providing an appropriate stress
environment for the growth of the trabecular bone [25].
Last but not least, porous structure was consistent with
that of trabecular bone in the proximal femur, which
can reduce the volumetric mass effect during fracture
healing. It can be theoretically speculated that trabecular
bone will gradually replace the screws in DMBCS fix-
ation model, thereby avoiding the surgical removal of
screws and hence reducing the need for bone grafting

procedures [26]. However, the maximum displacement
in TTCS fixation model was 96%, 98%, and 97% of that in
DMBCS fixation model under three healing status. The
maximum displacement and contact/shear stress of
DMBCS fixation model is marginally higher than other
type of CS models because porous structure and lower
modulus of DMBCS reduce stress shielding and volumet-
ric mass effect. We consider that appropriate stress envir-
onment and elastic fixation are beneficial to healing
process of fracture. Excessively rigid structures may re-
duce micromotion at the fracture site, such that it is below
the threshold required for callus formation [27, 28].
At present, porous metals have been widely used in

joint replacement and bone defects, achieving the better
results in terms of prognosis and complications, com-
pared with traditional fixation methods [29–31]. Bionic

Fig. 7 The von Mises stress distribution of cortical bone (a), cancellous bone (b), and screws (c); the displacement of three type of CS fixation
models (d) at a fully healed fracture

Table 3 Maximum stress values of screws, cortical bone, and cancellous bone under three healing status (MPa)

Healing status TTCS TBCS DMBCS

Screws Cortical
bone

Cancellous
bone

Screws Cortical
bone

Cancellous
bone

Screws Cortical
bone

Cancellous
bone

Non-healed Fracture 239.42 149.54 23.12 427.90 135.50 22.69 322.40 130.00 21.19

Partly healed Fracture 204.23 142.04 33.86 315.16 118.68 28.73 170.97 106.23 23.64

Fully healed Fracture 161.61 138.10 23.04 258.41 116.50 18.18 67.07 101.80 12.95
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materials including titanium alloy and tantalum metal
demonstrated to effectively promote the ingrowth of tra-
becular bone [32–34]. However, these metal cannot be
completely removed in joint replacement and bone de-
fects [35]. Degradable magnesium alloys can overcome
the disadvantage. Moreover, the density and elastic
modulus of magnesium alloy are close to bone [36]. In
addition to the good biomechanical properties, magne-
sium is also an essential trace element for the human
body. Also, the release of magnesium ions during deg-
radation induces the growth of bone [37]. Degradable
magnesium alloy screws have been clinically applied in
carpal fractures, thumb valgus, and femoral neck frac-
ture, which show good mechanical properties and bio-
safety [38–40]. Thus, this is our original intention of
designing this device that combines magnesium alloys
with porous materials.
The design concept of DMBCS was derived from the

special structural and mechanical characteristics of the
trabecular bone in the proximal femur. The trabecular
bone of the femoral neck is adapted to their role in
mechanical conduction [14]. Lotz et al. [41] showed that
cancellous bone bears 20%, 4%, 50%, and 70% of the
body load in femoral intertrochanteric, basal, middle,
and subcapital regions of the femoral neck, respectively.
Therefore, decreasing thickness and number of trabecu-
lar bones is one of the most important reasons why eld-
erly patients are prone to femoral neck fractures [42].
Nawathe et al. [19] performed 12 femoral specimens to
investigate the injury mechanism of femoral neck frac-
tures caused by lateral fall violence and found only about
1.5–6.4% of trabecular bone cracked initially. These
studies shown the trabecular bone played an important
“initiating role” in the development of femoral neck

fractures. Therefore, whether the distribution of trabecu-
lar bone after surgery can adapt to the change of exter-
nal environment and whether the reconstruction of
trabecular bone is consistent with the transmission dir-
ection of human load will directly affect the prognosis of
femoral neck fracture treatment. When designing in-
ternal fixation in femoral neck fracture, we need to pay
attention to the biphasic reconstruction of cancellous
bone and cortical bone during the healing process.
Limitations exist in our study. First, this test neglects

that the shape and volume of DMBCS will change dur-
ing degradation, which may affect the results. Second,
the material properties of the cortical bone and cancel-
lous were assumed to be isotropic, linearly elastic, and
homogeneous behavior, whereas bones are really com-
posed of anisotropic viscoelastic material.
In summary, DMBCS fixation model is closest to the

normal model in the stress distribution, and exhibited
better biomechanical performance than the other trad-
itional implants. DMBCS can meet the requirements of
dynamic fixation of femoral neck fractures, and reduce
the interference on cortical and cancellous bone.
DMBCS is a promising internal fixation device for fem-
oral neck fracture.
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