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Abstract

Background: Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, and fibroblast-like synoviocytes
(FLSs) are key effector cells in RA development. Mounting evidence indicates that circular RNAs (circRNAS)
participate in the occurrence and development of RA. However, the precise mechanism of circRNA mitogen-
activated protein kinase (circMAPK9) in the cell processes of FLSs has not been reported.

Methods: The expression levels of circMAPK9, microRNA-140-3p (miR-140-3p), and protein phosphatase
magnesium-dependent 1A (PPM1A) were determined by quantitative real-time polymerase chain reaction (gRT-
PCR) or western blot assay. Cell proliferation was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay. Cell apoptosis and cycle distribution were assessed by flow cytometry. Cell migration and
invasion were tested by transwell assay. All the proteins were inspected by western blot assay. Inflammatory
response was evaluated by enzyme-linked immunosorbent assay (ELISA). The interaction between miR-140-3p and
circMAPK9 or PPM1A was verified by dual-luciferase reporter assay.

Results: CircMAPK9 and PPM1TA were upregulated and miR-140-3p was downregulated in RA patients and FLSs
from RA patients (RA-FLSs). CircMAPK9 silence suppressed cell proliferation, migration, invasion, inflammatory
response, and promoted apoptosis in RA-FLSs. MiR-140-3p was a target of circMAPK9, and miR-140-3p
downregulation attenuated the effects of circMAPK9 knockdown on cell progression and inflammatory response in
RA-FLSs. PPM1TA was targeted by miR-140-3p, and circMAPK9 could regulate PPM1A expression by sponging miR-
140-3p. Furthermore, miR-140-3p could impede cell biological behaviors in RA-FLSs via targeting PPMTA.

Conclusion: CircMAPK9 knockdown might inhibit cell proliferation, migration, invasion, inflammatory response, and
facilitate apoptosis in RA-FLSs via regulating miR-140-3p/PPM1A axis, offering a new mechanism for the
comprehension of RA development and a new insight into the potential application of circMAPK9 in RA treatment.
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Introduction

Rheumatoid arthritis (RA) is a common chronic auto-
immune disorder that mainly influences the synovial
joints [1, 2]. Fibroblast-like synoviocytes (FLSs), one
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class of dominating cells in synovial tissues, are reported
to serve a vital role in the pathogenesis of RA [3, 4]. Al-
though several treatment options are available for the
management of RA patients, there is no cure for RA [5].
Thus, it is essential to explore the mechanism of FLSs
progression in order to find new targets for RA
treatment.
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Circular RNAs (circRNAs) are a special class of non-
coding RNAs possessing continuous covalently closed
loops that are produced via back-splicing of precursor
mRNAs [6, 7]. Increasing evidence supported that cir-
cRNAs are concerned with the onset and development
of multiple human diseases [8]. Meanwhile, numerous
circRNAs played vital part in the progression of auto-
immune diseases, including RA [9]. CircRNA mitogen-
activated protein kinase (circMAPK9), also known as
hsa_circ_0001566, is derived from back-splicing of
MAPKY transcript and has been reported to be highly
expressed in peripheral blood mononuclear cells
(PBMCs) from RA patients [10], whereas the exact role
and regulatory mechanism of circMAPK9 in FLSs pro-
gression is indistinct.

MicroRNAs (miRNAs) are defined as small noncoding
molecules that can regulate gene expression through
combining with the 3'untranslated regions (3'UTRs) of
target mRNAs [11]. Generally, circRNAs are known to
work as miRNA molecular sponges to inhibit miRNA
activity by competitively binding to miRNAs [12]. Plenti-
ful miRNAs have been found to be dysregulated and
may serve as biomarkers or therapeutic targets in RA
[13-15]. Furthermore, miR-140-3p abundance was de-
clined in synovial tissue and FLSs from RA patients (RA-
FLSs) and from mice in arthritis models, and miR-140-
3p overexpression in FLSs inhibited cell proliferation
and migration [16]. Moreover, Lee et al. reported that
protein  phosphatase = magnesium-dependent 1A
(PPM1A) was involved in the development of RA [17].
Nevertheless, the relationships among circMAPK9, miR-
140-3p, and PPMI1A in the pathogenesis of RA are
undiscovered.

In this research, circMAPK9 abundance was measured
in RA patients and RA-FLSs. Then, we explored the ef-
fects of circMAPKY9 on cell growth, transferability, and
inflammation in RA-FLSs. Besides, we uncovered the
regulatory network of circMAPK9/miR-140-3p/PPM1A
in RA-FLSs.

Materials and methods

Patient tissue collection

RA synovial tissues were collected from RA patients (n =
22) who underwent knee replacement surgery. Normal
synovial tissues were obtained from patients with trau-
matic knee and no history of autoimmune diseases (n =
22). All subjects were recruited from Ganzhou People’s
Hospital, The Affiliated Ganzhou Hospital of Nanchang
University, and they all signed the written informed con-
sent. After surgical resection, these tissues were pre-
served at — 80 °C until usage. This research was
permitted by the Ethical Committee of Ganzhou Peo-
ple’s Hospital, The Affiliated Ganzhou Hospital of
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Nanchang University. The clinical characteristics of RA
and trauma patients are listed in Table 1.

Cell culture

Fibroblast-like synoviocytes from RA patients (RA-FLSs)
or healthy subjects (H-FLSs) were separated as formerly
mentioned [18]. Briefly, synovial tissue samples were cut
into small debris and digested using 2 mg/mL of collage-
nase (type II, Thermo Fisher Scientific, Waltham, MA,
USA) at 37 °C for 2 h to isolate synoviocytes. FLSs were
cultured in HFLS growth medium (Cell Applications,
San Diego, CA, USA) plus 10% fetal bovine serum (FBS,
HyClone, Logan, UT, USA) in a 37 °C incubator con-
taining 5% CO,. FLSs were separated from all healthy
donors and RA patients for detecting the circMAPK9
expression. Two sets of RA-FLSs were selected for func-
tional assays. Set 1 of RA-FLSs was acquired from three
random-selected RA patients and set 2 of RA-FLS was
acquired from another three random-selected RA pa-
tients. Then, the same number of RA-FLSs was mixed
from these three RA patients. The RA-FLSs were cul-
tured, and set 1 of RA-FLSs was utilized for mechanistic
investigation. In these experiments, cells at passage 3
were used.

Quantitative real-time polymerase chain reaction (qRT-
PCR)

Total RNA was extracted with TRIzol (Invitrogen, Carls-
bad, CA, USA). Next, cDNA was synthesized from RNA
reverse  transcription using M-MLV  Reverse

Table 1 Clinical characteristics of rheumatoid arthritis (RA) and
trauma patients

Clinical data RA patients Trauma patients
Number of subjects 22 22

Sex (male/female) 10/12 8/14

Age (years) 5135+ 15.25 4654 + 1132
Disease duration (years) 865 + 568 /

Tender joints® 1035 + 9.56 /

Swollen joints® 1168 + 9.86 /

CRP (mg/dl) 34.25 + 23.65 /

ESR (mm/h) 4235 + 2568 /

ACPA (RU/mI) 71265 + 51234 /

DAS28 548 £ 1.95 /

DMARD (n) 14 /

NSAID (n) 9 /
Corticosteroid (n) 12

CRP C-reactive protein, ESR erythrocyte sedimentation rate, ACPA anti-
citrullinated protein antibodies, DAS28 disease activity score, DMARD disease-
modifying anti-rheumatic drug, NSAID non-steroidal anti-inflammatory drug, n
number of patients

“Twenty-eight joints were assessed for tenderness, and twenty-eight were
assessed for swelling
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Transcriptase kit (Thermo Fisher Scientific) or TagMan
microRNA Reverse Transcription Kit (Applied Biosys-
tems, Foster City, CA, USA). Then, qRT-PCR were im-
plemented on ABI Prism 7900HT Detection System
(Applied Biosystems) employing SYBR Master Mix
(Takara, Tokyo, Japan) and specific primers (Sangon,
Shanghai, China) with the amplification protocol: 95 °C
for 5 min, 40 cycles of 95 °C for 30 s, 55 °C for 45 s, and
72 °C for 30 s. The relative RNA expression was calcu-
lated with 272" method. The primers were exhibited
as follows: circMAPK9 (F, 5'-CATGGAGCTGGATC
ATGAAA-3'; R, 5'-AGGTTGAGTCTGCCACTTGC-
3'), MAPKO (F, 5'-TACGTGGTGACACGGTACTACC-
3; R, 5'-CACAACCTTTCACCAGCTCTCC-3’), miR-
140-3p (F, 5'-CAGTGCTGTACCACAGGGTAGA-3’;
R, 5'-TATCCTTGTTCACGACTCCTTCAC-3"),
PPM1A (F, 5'-GAAGAAGGAGGCAGAGTTGGAC-3';
R, 5'-GGATGTTCTCACTCGCTAATGTG-3"), U6 (F,
5'-CTCGCTTCGGCAGCACA-3’; R, 5'-AACGCTTC
ACGAATTTGCGT-3’), and B-actin (F, 5'-GTCACCGG
AGTCCATCACGAT-3'; R, 5'-TCACCAACTG
GGACGACATG-3"). B-actin and U6 were served as the
inner references.

RNase R treatment

For detecting the stability of circMAPKY, total RNA (2
pg) was reacted with RNase R (3 U/pg, Geneseed,
Guangzhou, China) at 37 °C for 0.5 h to digest linear
RNA. After that, the treated RNA was used for qRT-
PCR to survey the RNA abundance of circMAPK9 and
linear MAPK9.

Cell transfection

The small interfering RNA (siRNA) against circMAPK9
(si-circMAPK9#1, si-circMAPK9%#2 or si-circMAPK9%#3),
miR-140-3p mimic (miR-140-3p) or miR-140-3p inhibi-
tor (anti-miR-140-3p), and corresponding controls (si-
NC, miR-NC or anti-miR-NC) were acquired from Ribo-
bio (Guangzhou, China). PPM1A overexpression vector
(PPM1A) based on the pcDNA3.1 vector and the empty
pcDNA3.1 vector (vector) were also acquired from Ribo-
bio. Cell transfection was performed through introdu-
cing the above oligonucleotides (50 nM) or vectors (40
ng) into RA-FLSs (1 x 10°) at 70-80% confluence via
the Lipofectamine 3000 reagent (Invitrogen; 1 pL/each
well).

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay

For proliferation detection, 1 x 10* RA-FLSs were placed
into 96-well plates and incubated for 72 h. Then, the
cells were shifted into fresh medium plus MTT (0.5 mg/
mL, Beyotime, Shanghai, China). After incubation for
another 4 h, the medium was changed to 100 pL
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dimethyl sulfoxide (DMSO; Solarbio, Beijing, China).
The absorbance at 570-nm wavelength was examined via
a microplate reader (Molecular Devices, Sunnyvale, CA,
USA).

Flow cytometry

Flow cytometry analysis was executed for the detection
of cell apoptosis and cycle distribution. For cell apop-
tosis detection, Annexin V-fluorescein isothiocyanate
(FITC) Apoptosis Detection Kit (BD Biosciences, San
Jose, CA, USA) was utilized. Briefly, following transfec-
tion for 48 h, 1 x 10° RA-FLSs were collected and re-
suspended in Annexin binding buffer. Then, cells were
stained with 5 pL. Annexin V-FITC and 5 uL propidium
iodide (PI) in a dark place at 4 °C for 15 min. Subse-
quently, the apoptotic cells were analyzed by a flow cyt-
ometer (BD Biosciences). For cell cycle distribution
detection, RA-FLSs (1 x 10°) after 48-h transfection
were collected and re-suspended in PBS, then added
with PI (BD Biosciences) staining solution in dark place
at 37 °C for 10 min after 70% ethanol fixation. The dis-
tribution of different cell cycle phases (GO/G1, S and
G2/M) was assessed utilizing a flow cytometer (BD
Biosciences).

Transwell assay

Transwell chambers (Costar, Corning, NY, USA) were
used to detect cell migratory and invasive abilities. 5 x
10* RA-FLSs or 1 x 10* RA-FLSs after 48-h transfection
was re-suspend in 200 pL of serum free HFLS medium
and then added into the upper chamber coated with or
without Matrigel (BD Biosciences) to identify cell inva-
sion and migration, respectively. The lower chamber was
added with 0.6 mL complete HFLS medium with 10%
EBS. The non-migrating or non-invading cells were re-
moved after incubation for 24 h, and migratory and in-
vasive cells on the bottom membrane were fastened by
paraformaldehyde (4%, Beyotime) and dyed by crystal
violet solution (0.1%, Beyotime) for 30 min. The migra-
tory or invasive cells were observed and counted using a
microscope (Olympus, Tokyo, Japan) at x 100
magnification.

Western blot

RIPA lysis buffer (Beyotime) and BCA protein assay kit
(Beyotime) were utilized for total protein extraction and
quantification, respectively. Then, equal amount of pro-
tein (20 pg/lane) was segregated by SDS-PAGE gel and
then shifted into PVDF membrane (Solarbio). After
blocked in 5% non-fat milk for 1 h, the membrane was
probed with specific primary antibodies at 4 °C over-
night, and subsequently probed with HRP-conjugated
secondary antibody (1:20,000, ab205718 or ab205719,
Abcam, Cambridge, MA, USA) for 2 h. The blots were
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exposed to enhanced BeyoECL Moon (Beyotime), and
the bands density was assessed via Image ] software
(NIH, Bethesda, MD, USA). The primary antibodies ob-
tained from Abcam included anti-B-cell lymphoma-2
antibody (Bcl-2; 1:1000, ab32124), anti-BCL2-associated
X protein antibody (anti-Bax; 1:1000, ab32503), anti-
matrix metalloproteinase 2 (MMP2) (1:1000, ab86607)
antibody, anti-MMP9 (1:1000, ab137867) antibody, anti-
PPM1A (1:500, ab14824) antibody, and B-actin antibody
(1:5000; ab6276). Relative protein expression was nor-
malized by internal reference -actin.

Enzyme-linked immunosorbent assay (ELISA)

ELISA was performed to inspect the secretion of tumor
necrosis factor alpha (TNF-«), interleukin (IL)-1p and
IL-6 in culture supernatant of RA-FLSs. Briefly, 1 x 10°
RA-FLSs were plated into 12-well plates. Seventy-two
hours post-transfection, culture supernatant of each
group was collected. The concentrations of TNF-«, IL-
1B, and IL-6 in culture supernatant were examined using
corresponding Human TNF-q, IL-1f, or IL-6 ELISA Kit
(Abcam).

Dual-luciferase reporter analysis

The sequence of circMAPK9 or PPM1A 3'UTR carry-
ing wild-type (WT) or mutant (MUT) complementary
sites of miR-140-3p was cloned into pmirGLO vector
(Promega, Madison, WI, USA) to generate cir-
cMAPK9 WT and circMAPK9 MUT, PPM1A 3'UTR
WT, and PPM1A 3'UTR MUT. The sites of cir-
cMAPK9 and PPM1A were mutated using the Quick-
Change XL site-directed mutagenesis kit (Stratagene,
La Jolla, CA, USA). RA-FLSs (1 x 10° cells) were
transfected with the constructed luciferase vector (20
ng) and miR-NC or miR-127-5p (20 nM) for 48 h.
The luciferase activity was examined by Dual-Lumi™
Luciferase Assay Kit (Beyotime), followed by
normalization to the Renilla luciferase.
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Statistical analysis

Statistical analysis was executed using GraphPad Prism 6
(GraphPad Inc., La Jolla, CA, USA). All data from at
least 3 independent biological replications were dis-
played as mean * standard deviation (SD). Difference
was analyzed using Student’s t-test (between 2 groups)
or one-way analysis of variance followed by Tukey test
(among multiple groups) in specific circumstances. Stat-
istical significance was considered when P-value < 0.05.

Results

CircMAPK9 was upregulated in RA patients and RA-FLSs
CircMAPK9 (hsa_circ_0001566) was located on chr5:
179688683-179707608 of chromosome and derived from
exon 16-21 of MAPK9 genome (Fig. 1A). To explore the
potential roles of circMAPK9 in RA, its expression pat-
tern was detected by qRT-PCR in synovial tissues from
RA patients (n = 22) and normal patients (n = 22). The
results showed that circMAPK9 abundance was greatly
increased in RA patients compared to normal patients
(Fig. 1B). Then, the expression of circMAPK9 in RA-
FLSs or normal subjects (H-FLSs) was measured. The
results demonstrated that circMAPK9 level was higher
in RA-FLSs more than triple than control group (Fig.
1C). Furthermore, the stability of circRNA was evaluated
by RNase R digestion assay. As displayed in Fig. 1D, lin-
ear mRNA (MAPK9) was obviously decreased after di-
gestion by RNase R while circMAPK9 expression was
not affected, indicating the cyclic structure of cir-
cMAPKOY. These data indicated that increased expression
of circMAPK9 might be associated with RA progression.

Knockdown of circMAPK9 inhibited cell proliferation,
migration, invasion, inflammation, and promoted
apoptosis in RA-FLSs

To study the effect of circMAPK9 on RA progression,
loss-of-function experiments were performed in RA-
FLSs transfected with siRNAs to knock down cir-
c¢cMAPK9. As displayed in Fig. 2A, relative to si-NC
group, the expression of circMAPK9 was signally
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declined in RA-FLSs transfected with si-circMAPK9#1,
si-circMAPK9#2, or si-circMAPK9#3, especially in si-
circMAPK9#2 group. Therefore, si-circMAPK9#2 was
chosen for further study. Next, the impacts of cir-
cMAPK9 on cell proliferation, apoptosis, cycle distribu-
tion, and invasiveness were investigated. MTT assay
indicated that knockdown of circMAPK9 restrained cell
proliferation in RA-FLSs (Fig. 2B). Flow cytometry assay
showed that circMAPK? silence evidently promoted cell
apoptosis and induced cell cycle arrest at GO/G1 phase
in RA-FLSs (Fig. 2C, D). Moreover, circMAPK9 defi-
ciency markedly restrained the migratory and invasive
abilities of RA-FLSs using transwell analysis (Fig. 2E, F).
Besides, western blot assay exhibited that circMAPK9
interference significantly increased the level of pro-
apoptotic protein Bax, and decreased the expression of
anti-apoptotic protein Bcl-2, migration and invasion-
related proteins (MMP2 and MMP9), further supporting
the effects of circMAPK9 silence on cell apoptosis and
invasiveness (Fig. 2G). Additionally, the inflammatory

response was analyzed in RA-FLSs via ELISA, which pre-
sented that circMAPK9 knockdown visibly reduced the
secretion of pro-inflammatory cytokines (TNF-a, IL-1,
and IL-6) in RA-FLSs (Fig. 2H-]). These results indi-
cated that circMAPK9 downregulation could suppress
cell proliferation, migration, invasion, inflammatory re-
sponse, and accelerate apoptosis of RA-FLSs.

CircMAPK9 acted as a sponge of miR-140-3p

To analyze the potential mechanism of circMAPKY, the
potential target miRNAs of circMAPK9 were predicted
using CircInteractome (https://circinteractome.nia.nih.
gov/mirna_target_sites.html). The results showed that
miR-140-3p had putative binding sequence for cir-
cMAPK9 (Fig. 3A). To validate the relationship between
circMAPK9 and miR-140-3p, dual-luciferase reporter
assay was performed through constructing circMAPK9
WT and circMAPK9 MUT. The results displayed that
miR-140-3p overexpression remarkably decreased the lu-
ciferase activity of circMAPK9 WT but not that of
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circMAPK9 MUT when the binding sites were mutated
(Fig. 3B). Furthermore, the level of miR-140-3p in RA
patients and RA-FLSs was observed. Results showed that
the abundance of miR-140-3p was evidently decreased in
synovial tissues from RA patients and RA-FLSs (Fig. 3C,
D). In addition, the expression of miR-140-3p was pro-
moted after knockdown of circMAPK9 (Fig. 3E). The
above evidence verified that miR-140-3p was a direct
target of circMAPK9.

MiR-140-3p knockdown reversed the effects of si-
circMAPK9#2 on cell proliferation, migration, invasion,
and inflammatory response in RA-FLSs

To explore whether the biological function of circMAPK9
in RA was mediated by miR-140-3p, rescue experiments
were performed. RA-FLSs were transfected with si-NC, si-
circMAPK9#2, si-circMAPK9#2 + anti-miR-NC, or si-
circMAPK9#2 + anti-miR-140-3p. The abundance of
miR-140-3p was increased via circMAPK9 knockdown,
which was reversed by downregulating miR-140-3p (Fig.
4A). Furthermore, the inhibitory effect of circMAPK9
downregulation on cell proliferation and the promoting
effects of circMAPK9 silence on apoptosis and cell cycle
arrest at GO/G1 phase were all mitigated by downregula-
tion of miR-140-3p (Fig. 4B-D). Moreover, miR-140-3p
inhibition abated the effect of circMAPK9 silence-
mediated suppression on cell migration and invasion (Fig.
4E, F). Correspondingly, the enhancement of Bax expres-
sion and decrease of Bcl-2, MMP2, and MMP9 were all

relieved by miR-140-3p deficiency in circMAPK9-silenced
RA-FLSs (Fig. 4G). Additionally, the reduction of TNF-a,
IL-1B, and IL-6 levels in RA-FLSs caused by si-
circMAPK9#2  transfection was restored by co-
transfection with anti-miR-140-3p (Fig. 4H-]). Taken to-
gether, these data illustrated that circMAPK9 exerted its
biological function in RA-FLSs by sponging miR-140-3p.

PPM1A was identified to be a target of miR-140-3p

To further analyze the regulatory network, starBase v2.0
online website (http://starbase.sysu.edu.cn/agoClipRNA.
php?source=mRNA) was utilized to search for the potential
target mRNAs of miR-140-3p. The prediction result sug-
gested that PPM1A 3'UTR shared binding sites for miR-
140-3p (Fig. 5A), suggesting that PPM1A could possibly
interact with miR-140-3p. To confirm this assumption,
PPM1A 3'UTR WT and PPM1A 3'UTR MUT were con-
structed, and then dual-luciferase reporter assay was imple-
mented. The results indicated that miR-140-3p
introduction significantly decreased the luciferase activity of
PPM1A 3'UTR WT, whereas little change was observed in
the luciferase activity of PPM1A 3'UTR MUT (Fig. 5B).
The qRT-PCR and western blot assays results displayed
that PPM1A mRNA and protein abundance was markedly
upregulated in synovial tissues from RA patients and RA-
FLSs (Fig. 5C-F). Next, the relationships among cir-
c¢MAPKY, miR-140-3p, and PPM1A were explored. The re-
sult of qRT-PCR showed that the abundance of miR-140-
3p was strikingly increased in RA-FLSs transfected with
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Annexin FITC-A

miR-140-3p (Fig. 5QG), indicating the high transfection effi-
cacy of miR-140-3p. Meanwhile, overexpression of miR-
140-3p visibly inhibited the mRNA and protein expression
of PPM1A (Fig. 5H, I). Moreover, circMAPK9 silence
markedly reduced the mRNA and protein levels of PPM1A,
which could be reversed by downregulating miR-140-3p
(Fig. 5], K), indicating that circMAPK9 upregulated PPM1A
expression by downregulating miR-140-3p. These data col-
lectively demonstrated that PPM1A was a downstream

target of miR-140-3p, and circMAPK9 could positively
regulate PPM1A expression by sponging miR-140-3p.

MiR-140-3p overexpression could suppress cell
progression and inflammatory response via
downregulating PPM1A in RA-FLSs

To explore whether miR-140-3p exerted its biological
functions in RA-FLSs by targeting PPM1A, RA-FLSs
were transfected with miR-NC, miR-140-3p, miR-140-3p
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+ vector, or miR-140-3p + PPM1A. Western blot assay
showed that miR-140-3p overexpression overtly inhib-
ited the protein expression of PPM1A, which was re-
stored via addition of PPM1A overexpression vector
(Fig. 6A). Moreover, overexpression of miR-140-3p re-
pressed cell proliferation and inducing cycle arrest at
GO/G1 phase and apoptosis, which could be reversed by
introduction of PPM1A (Fig. 6B-D). Also, PPM1A up-
regulation evidently overturned the repressive effect of
miR-140-3p overexpression on cell migration and inva-
sion (Fig. 6E, F). Furthermore, miR-140-3p addition in-
creased the protein level of Bax and decreased the
protein expression of Bcl-2 and MMP2 as well as
MMP9, whereas these effects were abated by upregulat-
ing PPM1A (Fig. 6G). Additionally, the protein levels of
TNEF-a, IL-1B, and IL-6 were significantly reduced in
RA-FLSs after transfection with miR-140-3p, while co-
transfection with PPM1A overexpression vector miti-
gated these effects (Fig. 6H-]J). Altogether, these data
proved that miR-140-3p could inhibit cell proliferation,

migration, invasion, inflammatory response, and facili-
tate apoptosis of RA-FLSs by targeting PPM1A.

Discussion

RA is a common form of inflammatory multisystem dis-
ease with undiscovered etiology [2]. CircMAPK9 was
highly expressed in PBMCs from RA patients and might
act as a possible diagnostic biomarker for RA [10]. FLSs
play a pivotal role in RA etiology by regulating inflam-
matory response and cartilage destruction [19, 20].
Thereby, investigating the tumor-like biologic behaviors
of RA-FLSs is indispensable to develop novel therapies
for RA patients. Meanwhile, noncoding RNAs (ncRNAs)
including circRNAs might serve as promising bio-
markers for RA [21]. In this report, we aimed to study
the biological role of circMAPK9 and explore the under-
lying mechanism in the advancement of RA-FLSs.
Through the verification of functional experiment, we
first clarified that circMAPK9 knockdown repressed



Luo et al. Journal of Orthopaedic Surgery and Research

(2021) 16:395

Page 9 of 12

PPMIA Gy v e wiv
B-actin . =S o o= -»- miR-NC
. = miR-140-3p
oy 3p -+ miR-140-3p+vector
£ Bl miR-140-3p+vector —E1.2 ~+ miR-140-3p+PPM1A
£ 4.5, B3 miR-140-3p+PPM1A c
& g
0.8 *
<5 W
Sa 2
=] S
ge Soas
o & s
3 i
2o
® [a]
< o0l — . . ,
& oh  24h  48h  72h
D miR-NC miR-140-3p
| [l W G0/G1
As Hem o mcm
g Ns = & s
g g
= |8 g Bl miR-NC
2. - B miR-140-3p
€ 0 2 4o 6 8 100 ° 0 20 40 60 8 100 Il miR-140-3p+vector
5 WGo/G1 ' 1004 EE miR-140-3p+PPM1A
g maem
S IS * %
< N s a0 X X
s S5 60
. £35 *
g - — %
- °F =
o 2
£5

o

Channels (FL2-A-PE-A)

miR-140-3p miR-140-3p Go/G1 S G2im
+vector +PPM1A
F miR-NC miR-140-3p
> SN e S
Bl miR-NC
B miR-140-3p

Bl miR-140-3p+vector
B3 miR-140-3p+PPM1A
*

Invasion cell numb

miR-140-3p

+vector +PPM1A
H Bl miR-NC I El miR-NC
B3 miR-140-3p B3 miR-140-3p
EE miR-140-3p+vector Bl miR-140-3p+vector

40-3p+PPM1A 500 B miR-140-3p+PPM1A
T = 400 *
-
5 E
2 S 300
2 = 200
L :
= = 100

0 0

The levels of TNF-q, IL-1B, and IL-6 were analyzed by ELISA. *P < 0.05

G

miR-1403p - +

Fig. 6 The influence of miR-140-3p and PPM1A on cell malignant progression and inflammatory response in RA-FLSs. RA-FLSs were transfected
with miR-NC, miR-140-3p, miR-140-3p + vector, or miR-140-3p + PPM1A. A Western blot assay was performed to detect the protein expression of
PPM1A. Cell proliferation (B), apoptosis (C) and cycle distribution (D), migration (E), and invasion (F) were measured by MTT assay, flow cytometry
analysis, or transwell assay, respectively. G Western blot was carried out to examine the protein expression of Bax, Bcl-2, MMP2, and MMP9. H-J

miR-NC miR-140-3p

SR G1-0R]

GioL

GioL

10t

Bl miR-NC

B miR-140-3p

Il miR-140-3p+vector
B3 miR-140-3p+PPM1A

0 10
5
0 100

©
o

0 10 10t 10f 10 § *
G0 avuR] _ Toror Ao <
® ® 8
© 20
3 B X’
8
® | 10
; e <
b o ans| o0
0 10 10* 10° 10° 010 10 108 o
Annexin FITC-A -
miR-140-3p miR-140-3p
+vector +PPM1A

Bl miR-NC

B miR-140-3p

Il miR-140-3p+vector
= R;M-ﬁip+PPM1A

@
=3
=3

N
=]
=)

-
o
=

Migration cell numbers

0

MiR-140-3p
+PPMIA

+vector

— NS G e~
Bel-2 WD — e —
NMVP2 | i e e au—

El miR-NC

B3 miR-140-3p

Hl miR-140-3p+vector
3 miR-140-3p+PPM1A

*

Bax

MVPO | i e e —

-actin Gy WD Sy W
miRNC  + -

Relative protein expression

Bcl-2 MMP2 MMP9

vector Bax

PPMIA - - -

+ +
+ 0o+

Bl miR-NC

B miR-140-3p

Bl miR-140-3p+vector
600- EE miR-140-3p+PPM1A

*

'S
o
=3

*

IL-6(pg/mL)

N
=3
=3

0

proliferation, invasiveness, and inflammation of RA-FLSs
via circMAPK9/miR-140-3p/PPM1A regulatory network.

The deregulation of circRNAs is identified to be
closely related to the occurrence and development of
autoimmune diseases including RA [22]. For instance,
circ_0088036 promoted the proliferative and migratory
capacities of FLSs via the circ0088036/miR-140-3p/
SIRT1 axis in RA [23]. In keeping with previously report
[10], we also verified that circMAPK9 level was en-
hanced in synovial tissues from RA patients and RA-

FLSs. Thus, we speculated that the disordered level of
circMAPK9 might be connected with RA evolution.
Through implementing loss-of-function experiment in
RA-FLSs, it was evidenced that circMAPK9 silence could
repress cell proliferation, migration, invasion, and accel-
erated apoptosis of RA-FLSs. Many cytokines are associ-
ated with RA progression, including TNF-a, IL-1, IL-6,
and IL-17 [24, 25]. Furthermore, this report also attested
that circMAPK9 knockdown lessened the inflammatory
response of RA-FLSs by decreasing the release of TNEF-
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a, IL-1B, and IL-6. Hence, we deemed that circMAPK9
might contribute to RA malignant development by facili-
tating cell proliferation, migration, invasion, inflamma-
tory response, and hindering cell apoptosis of RA-FLSs.

Accumulating reports have revealed that circRNAs
could modulate the progression of multifarious diseases
via acting as miRNA sponges [26]. As well, miRNAs
have been certified to serve pivotal part in FLSs of RA
[27]. For instance, miR-20a was involved in the modula-
tion of pro-inflammatory cytokines release by controlling
ASK1 expression in RA-FLSs [28]. To validate whether
miRNAs were implicated in circMAPK9-mediated RA
evolution, CircInteractome database was applied to fore-
cast the possible miRNAs of circMAPK9. The prediction
result indicated that miR-140-3p was targeted by cir-
cMAPK9 in RA-FLSs, and the dual-luciferase reporter
assay verified the interacting effect between them
furtherly. Previous studies have demonstrated the sup-
pressive role of miR-140-3p in the progress of bladder
cancer [29], colorectal cancer [30], and so on. Yin et al.
pointed out that the decline of miR-140-3p was corre-
lated with increased osteoarthritis severity [31]. More-
over, Zhong et al. illuminated the participation of miR-
140-3p in the proliferative and migratory processes of
RA-FLSs via SIRT1 in RA [23]. In this research, low ex-
pression of miR-140-3p was observed in synovial tissues
from RA patients and RA-FLSs, which was in agreement
with previous work [16]. Simultaneously, miR-140-3p
could restrain cell propagation, transferability, and in-
flammatory response of RA-FLSs. Besides, miR-140-3p
silence restored the influence of circMAPK9 deficiency
on cell progression and inflammation in RA-FLSs.
Therefore, these findings confirmed that circMAPK9
could modulate the aggressive phenotype of RA-FLSs by
sponging miR-140-3p.

The circRNA/miRNA/mRNA network has been iden-
tified in diversiform diseases, such as hepatocellular car-
cinoma [32], gastric cancer [33], and systemic lupus
erythematosus [34]. To explore the downstream mRNAs
of circMAPK9/miR-140-3p network in RA, the possible
targets of miR-140-3p were sought. Through identifica-
tion, PPM1A was sponged by miR-140-3p. Philippe et al.
attested that miR-19a/b could act as negative regulators
in RA-FLSs by controlling TLR2 expression [35]. Never-
theless, whether miR-140-3p could regulate PPMI1A
level to affect RA progression is still ill-defined. In differ-
ent cancers, PPM1A has been evinced to serve as a
tumor suppresser or promoter [36, 37]. However, the
precise function of PPM1A in RA progression has not
been expounded. Lee et al. has disclosed that PPM1A
was highly expressed in RA, and PPM1A expression was
positively correlated with pro-inflammatory cytokine
TNEF level in RA synovial fluid [17]. In this study, the
data showed that PPM1A enrichment was elevated in
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synovial tissue from RA patients and RA-FLSs, manifest-
ing that PPM1A might be involved in RA progression.
Interestingly, the rescue experiments indicated that
PPMI1A overexpression could abolish the impacts of
miR-140-3p introduction on cell progression and inflam-
mation in RA-FLSs, hinting that miR-140-3p could regu-
late the malignant development of RA via targeting
PPM1A, which was parallel with the previous report
[35]. Moreover, circMAPK9 was attested to positively
regulate PPM1A expression by the crosstalk of miR-140-
3p. Collectively, these data indicated that circMAPK9
might promote RA progression by regulating miR-140-
3p/PPM1A axis.

This research conducted the in vitro experiments
using the primary RA-FLSs, which represented the
physiological function of RA patients. Furthermore, the
involvement of circMAPK9/miR-140-3p/PPM1A net-
work in RA-FLSs dysfunction was firstly confirmed, im-
plying the significance and clinical expectation of this
axis in RA advancement and therapy. Nevertheless, some
limitations were still subsistent in the current study. For
example, a larger number of RA patients and animal
studies are needed in a further study in consideration of
the limited number of patients and the restriction of
in vitro experiments in this study. Besides, nanotechnol-
ogy plays significant role in the area of bone-related
therapy through providing attractive carrier options for
delivery of therapeutic agents [38, 39]. The progressive
damage of articular bone and cartilage was developed in
RA patients, which might cause disability over time [40].
Recent evidence has suggested that bioengineered com-
posite scaffolds and magnetic nanoparticles are effective
promising therapeutic tools for RA remedy [41, 42].
Therefore, the combination of nanotechnology and mo-
lecular targeted drugs might be a most effective method
for RA treatment.

Conclusion

In conclusion, circMAPKY interference constrained RA-
FLSs proliferation, migration, invasion, inflammatory re-
sponse, and expedited apoptosis possibly by enhancing
miR-140-3p and lessening PPM1A expression. Our study
first elucidated the circMAPK9/miR-140-3p/PPM1A
regulatory network in RA-FLSs, offering a new percep-
tion about RA-FLSs progression, and offering a novel
possible target for RA therapy.
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