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Abstract

Purpose: To evaluate the operation and early clinical effect in primary total knee arthroplasty (TKA) about the novel
combination of CT-based patient-specific three-dimensional (3D) preoperative design and conventional osteotomy
instruments, compared with the conventional method.

Methods: After a 1:1 propensity score-matching (PSM), patients were matched to the novel technique group and
the conventional group, 109 cases in each group. The conventional group adopted a preoperative design based on
a full-length radiograph (FLX) and received TKA with conventional osteotomy instruments. The novel technique
group used a CT-based patient-specific 3D preoperative design combined with conventional osteotomy
instruments; during the surgery, the femoral entry point, femoral valgus osteotomy angle, the fix point of tibial
plateau extramedullary guide pin, and the position of tibial extramedullary positioning rod were accurately selected
according to the preoperative 3D design to ensure accurate intraoperative implementation. The lower limb
alignment, component position, operation time, tourniquet time, hospital stay, blood loss volume, incidence of
postoperative complications, visual analog scale (Vas) score, and New Knee Society Score System (NEW-KSS) at 1
day before operation and 1, 6, and 12 months after operation were recorded and compared.
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Results: The novel technique group was significantly better than the conventional group in controlling lateral tibial
component angle (LTC) (P < 0.001), and the novel technique group had lower percentages of hip-knee-ankle angle
(HKA) outliers (P < 0.001) and overcorrection (P = 0.003). The operation time, tourniquet time, and hospital stay of
the novel technique group was shorter (P < 0.05). In 1 month after the operation, the novel technique group
achieved a significantly better VAS score (P < 0.05), but a similar NEW-KSS score (P > 0.05) when compared with the
conventional group. But in 6 and 12 months after surgery, no statistical differences were seen in the above two
scores (P > 0.05).

Conclusion: The novel technique of CT-based patient-specific 3D preoperative design combined with conventional
instruments can improve the accuracy of osteotomy in primary total knee arthroplasty, with benefits of significantly
reducing pain and rapid recovery during the early postoperative period, but having no obvious effect on outcome

after a 1-year follow-up.
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Introduction

Restoring the neutral mechanical alignment is usually
considered as one of the prerequisites for a successful
total knee arthroplasty (TKA). Previous literature has
shown that malalignment or malposition of the compo-
nents are often closely associated with complications
such as polyethylene wear and aseptic loosening [1-3].
However, the incidence of the lower limb malalignment
or malposition of the components after conventional
TKA is as high as 20-30% [4, 5].

To overcome the limitations of the conventional
method for TKA, many modified surgical techniques
have been adopted. The proponents of computer naviga-
tion believe that this method can achieve more accurate
osteotomy by adding about 10 min of registration time
during the surgery [6, 7]. And robotics can reduce the
occurrence of outliers in the lower limb [8—10]. How-
ever, compared with conventional methods, there are
deficiencies in computer navigation and robotics such as
longer surgical time [8, 11], higher surgery costs [8, 12],
a substantial learning curve [8, 10], and more complica-
tions. Furthermore, during the surgery, the percentage
of temporarily changing from robotic technology to con-
ventional method due to various reasons is as high as
22% [13]. Patient-specific instrumentation (PSI) is
regarded to enable better component positions and
lower limb alignment with decreased operative steps,
less blood loss and fat embolism, and shorter operative
time [14, 15]. However, more and more literatures have
shown that compared with the conventional method,
PSI has no obvious advantages in lower limb alignment,
component position, and postoperative knee function
[14, 16-19]. Some authors even argued that PSI was
worse at the control of the lateral tibial component
(LTC) angle [17-20].

In this study, on the basis of summarizing the princi-
ples, advantages, and disadvantages of the conventional
method and the modified techniques, we adopted a

novel technique of CT-based patient-specific three-
dimensional preoperative design combined with conven-
tional osteotomy instruments. The advantages of this
technique include personalized preoperative design, pre-
cise intraoperative positioning, no need to purchase new
equipment, better control of the surgical time and cost,
and easier application due to similar procedures with the
conventional method.

Patients were divided into the novel technique group
and the conventional group to evaluate the operation
and early clinical effect of the novel technique compared
with the conventional method.

Materials and methods

Patients

Relevant medical records and examination results of pa-
tients admitted to our center from January 2016 to June
2019 who met the inclusion criteria and did not meet
the exclusion criteria were retrospectively collected. The
novel technique group included those who had received
novel surgery with patient-specific 3D preoperative de-
sign, and the conventional group included those who
had received conventional surgery with conventional
preoperative design. The exclusion criteria in both the
novel technique group and the conventional group were
(1) patients without full-length radiographs (FLX) before
and after surgery; (2) patients with any diseases that af-
fected the alignment of the lower limbs, such as previous
fractures, deformities, and congenital abnormalities; (3)
patients with multiple joint lesions or weak bodies that
affect the accurate evaluation of function; and (4) pa-
tients with incomplete follow-up data. A total of 398
cases were included, of which 196 were in the novel
technique group and 202 in the conventional group.

To reduce the effects of selection bias and potential
confounding factors [21-24], we used age, gender, left
and right, etiology, ethnicity, body mass index (BMI),
and preoperative hemoglobin to perform a one-to-one
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propensity score matching (PSM) using a 0.02-caliper
width. In the end, 109 patients were matched in each
group by PSM.

Preoperative design and surgical techniques

The conventional group adopted a preoperative design
based on a full-length radiograph (FLX) and used nerve
block anesthesia. With the patient in the supine position,
a pad was placed under the foot to help maintain knee
flexion before disinfection and draping. A midline inci-
sion of 12-14 cm was cut, and the Insall’s medial para-
patellar approach was conducted crossing the patellar
surface to avoid cutting the fibers of the patellar exten-
sor apparatus. Part of the fat pad was removed to
complete the exposure. After the dislocation of the tibia,
the distal end of the extramedullary positioning rod was
aimed with the second toe and the proximal end with 1/
3 of the tibial tubercle. The position of the positioning
rod and the retroversion angle of the components were
evaluated. An osteotomy of 8-10mm was first con-
ducted referring to the lateral plateau in the varus knees,
and an osteotomy of 6—8 mm was first conducted refer-
ring to the medical plateau in the valgus knees. For dis-
tal femoral osteotomy, the apex of the intercondylar
notch was used as the intramedullary positioning rod
entry point, and the appropriate valgus angle was se-
lected according to the hip-knee-shaft angle (HKS) mea-
sured on the FLX to perform a standard distal
osteotomy of 9 mm. Extramedullary test of the lower
limb alignment was performed; the cruciate ligament,
osteophyte, and residual meniscus tissues were removed
to balance the extension gap, and appropriate lateral re-
lease was conducted if necessary as described by Kim
and Ranawat [25, 26]. After the extension gap was well
balanced, the femoral osteotomy at the flexion position
was conducted referring to the Whiteside’s line, then re-
ferring to the tibial plateau osteotomy surface and the
extension gap to balance the flexion gap. After the four-
in-one osteotomy, femoral intercondylar osteotomy, and
lateral tibial preparation were completed, the test model
of the component was installed to determine the lateral
stability at the flexion position. After obtaining a stable
balance, bone cement was used to fix the component,
and the polyethylene pad was installed. The flexion-
extension gap was tested after the bone cement was set.
Finally, the joint cavity was rinsed, the drainage tube was
placed, and the incision was closed. A tourniquet was
applied before the skin incision and released after clos-
ing the joint capsule. In order to reduce total blood loss,
tranexamic acid was routinely used in TKA.

The novel technique group used the full-length com-
puted tomography (CT) data of the patients (thin scan
of 1 mm at the knee joint and thick scan of 3 mm at the
rest parts) and performed 3D reconstruction with
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Mimics Research 19.0. With the CATIA 520 and
NX12.0 software, the engineer and the surgeon at our
center formulated the patient-specific 3D preoperative
design. The best spherical fitting of the femoral head
was performed, and the line between the obtained center
point and the apex of the femoral intercondylar notch
was defined as the mechanical axis of the femur; the line
connecting the center points of the femoral medullary
cavity 10 cm and 20 cm above the knee joint line was de-
fined as the anatomical axis of the distal femur [27, 28];
the line between the most prominent point of the lateral
femoral epicondyle and the most concave point of the
medial femoral epicondyle was the surgical trans-
epicondylar axis (STEA) [29]. The plane defined by the
femoral mechanical axis and sTEA was recorded as the
femoral coronal plane (the femoral mechanical axis was
in this coronal plane, and sTEA was parallel to the cor-
onal plane), the plane perpendicular to the femoral
mechanical axis was recorded as the transverse plane,
and the line connecting the center points of the tibial
medullary cavity at 5 cm below the tibial tubercle and 5
cm above the ankle mortise was defined as the tibial
anatomical axis. In the preoperative design, the key in-
formation needed to be obtained were (1) the projection
angle of the HKS on the coronal plane (Fig. 1); (2) the
position where the distal femoral anatomical axis pene-
trated the distal femur, which was recorded as the fem-
oral entry point (Fig. 2a); (3) the projection angle of the
sTEA and the posterior femoral condylar tangents on
the transverse plane, which was recorded as the poster-
ior condylar angle (PCA); (4) the position where the tib-
ial anatomical axis penetrated the tibial plateau, which
was recorded as the fix point of the tibial plateau extra-
medullary guide pin (Fig. 2d); (5) distance between the
midpoint of the ankle mortise and the midpoint of the
medial and lateral malleolus (Fig. 2h); (6) thickness of
the anterior tibial soft tissue at 3 cm above the ankle
mortise (Fig. 2k) and the distance between the anterior
tibial cortex and the distal tibial extramedullary position-
ing rod (Fig. 2l); and (7) the volume of the femoral and
tibial osteotomy. During the surgery, the femoral entry
point was selected strictly according to the preoperative
plan (Fig. 2a, b); the osteotomy angle was selected based
on the projection angle of the HKS on the coronal plane
(Fig. 2¢), and the distal osteotomy was guided according
to the specific osteotomy volume. Based on the pre-
operative plan, the fix point of the tibial plateau extra-
medullary guide pin was selected to determine the
proximal end of the extramedullary positioning rod (Fig.
2d-g). The thickness of the anterior tibial soft tissue at 3
cm above the ankle mortise (Fig. 2k), the distance be-
tween the anterior tibial cortex and the distal tibial
extramedullary positioning rod (Fig. 21) as well as the
distance between the midpoint of the ankle mortise and
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Fig. 1 The projection angle of the hip-knee-shaft on the coronal
plane. The blue plane in the figure was the femoral coronal plane
(the femoral mechanical axis was in this coronal plane, and the
surgical trans-epicondylar axis was parallel to the coronal plane); line
a was the femoral mechanical axis, line b was the anatomical axis of
the distal femur, and line ¢ was the coronal projection of the distal
femoral anatomical axis; the angle between line a and line c is the
projection angle of the HKS on the coronal plane

the midpoint of the medial and lateral malleolus (Fig.
2h) were used to determine the distal end of the rod
(Fig. 2h-n). The tibial osteotomy was conducted accord-
ing to the osteotomy volume. The femoral rotatory oste-
otomy was conducted referring to the PCA. The
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remaining surgical techniques were the same as the con-
ventional group.

For all patients, the aim was to restore the neutral
lower limb alignment on the coronal plane and achieve
90° of the lateral femoral component angle (LFC) and 3°
of the lateral tibial component angle (LTC) on the sagit-
tal plane (Fig. 3). The surgeries in both the conventional
group and the novel technique were performed by the
same senior surgeon at our center, and the same primary
posterior-stabilized component was used (LEGION
Total Knee System, Smith-Nephew, Inc., Memphis, IN,
USA). Except for the preoperative design and surgical
technique, the two groups had the same surgical proce-
dures, postoperative pain management, rehabilitation
training, and discharge standards.

Outcome measurements and data collection

The weight-bearing FLX before and after surgery (the
preoperative ones were taken within 1 month before sur-
gery and the postoperative ones 3 days after surgery) of
the patients were collected via the picture archiving and
communication system (PACS) and imported into Auto-
desk AutoCAD 2019 for measurement of preoperative
hip-knee-ankle (HKA) angles and postoperative frontal
femoral component angle (FFC), lateral femoral compo-
nent angle (LFC) [30], frontal tibial component angle
(FTC), lateral tibial component angle (LTC) [31, 32],
and HKA angles (Fig. 3). Three surgeons specializing in
TKA performed blind measurement twice; in order to
ensure that the raters had sufficient forgetting time, each
was required to measure at an interval for more than 2
weeks [33, 34]. For HKA, the varus was defined as nega-
tive and the valgus positive; for LTC, the retroversion
was positive and the anteversion negative. Values ex-
ceeding the target value by 3° were recorded as outliers,
and the percentage of outliers was calculated. Patients
with varus knee preoperatively who had HKA valgus
greater than 1° after surgery and patients with valgus
knee preoperatively who had HKA varus greater than 1°
after surgery were recorded as overcorrected, and the
percentage of overcorrection was calculated.

Medical records such as the operation time, tourniquet
time, hospital stay, intraoperative bleeding, incidence of
postoperative complications, hemoglobin value 1 day be-
fore the operation, 1 day after the operation, and 3 days
after operation were collected via the electronic medical
record management system. And visual analog scale
(VAS) score and New Knee Society Score (NEW-KSS)
[35] before operation and 1, 6, and 12 months after oper-
ation were recorded.

This study has been approved by the local Ethics
Committee (No. KY2019123).
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Fig. 2 lllustration of the key steps of the novel technology group. a-c The distal femoral osteotomy. The red dot in a was the position where the
anatomical axis of the distal femur penetrated the distal femur cortex on the preoperative 3D model, ie, the femoral entry point; b the accurate
positioning of the femoral entry point during surgery; ¢ the intramedullary positioning rod was inserted from the femoral entry point into the
medullary cavity for about 20 cm, and the distal femur osteotomy was performed according to the projection angle of the HKS on the coronal
plane. d-g The positioning of the proximal end of the tibial extramedullary rod. The red dot in d was the position where the tibial anatomical
axis penetrated the tibial plateau cortex, i.e, the fix point of the tibial plateau extramedullary guide pin; e the accurate positioning of the above
anchor point during surgery; f, g the tibial extramedullary guide pin was fixed to the anchor point to ensure the accurate positioning of the
extramedullary positioning rod at the proximal end of the tibia during the surgery and on the preoperative 3D models, respectively. h—-j The
coronal positioning of the distal end of the tibial extramedullary rod; h distance between the midpoint of the ankle mortise and the midpoint of
medial and lateral malleolus; i, j the accurate positioning of the distal end of the tibial extramedullary rod on the coronal plane with reference to
the above preoperative design during the surgery and on the preoperative 3D model, respectively. k-n The sagittal positioning of the distal end
of the tibial extramedullary rod. k the thickness of the anterior tibial soft tissue at 3 cm above the ankle mortise; | the distance between the
anterior tibial cortex and the distal tibial extramedullary positioning rod; m, n the accurate positioning of the distal end of the tibial
extramedullary rod on the sagittal plane was ensured with reference to the distance between the anterior tibial skin and the distal tibial
extramedullary positioning rod (the distance between the anterior tibial cortex and the distal tibial extramedullary positioning rod minus the
thickness of the anterior tibial soft tissue) during the surgery and on the preoperative 3D model, respectively
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Fig. 3 Measurement of HKA, FFC, FTC, LFC, and LTC. HKA hip-knee-ankle angle, FFC frontal femoral component angle, FTC frontal tibial
component angle, LFC lateral femoral component angle, LTC lateral tibial component angle. a Line a was the femoral mechanical axis, and line b
was the tibial mechanical axis; the acute angle formed between them was recorded as the preoperative HKA. b Line ¢ was the postoperative
femoral mechanical axis, line d was the line across the bottom of the femoral condyles, line e was the line across the bottom of the tibial plateau
on the anteroposterior radiograph, and line f was the postoperative tibial mechanical axis; the lateral angle between line ¢ and line d was
recorded as frontal femoral component angle (FFC), the medial angle between line e and line f was recorded as frontal tibial component angle
(FTC), and the acute angle between line ¢ and line f was recorded as the postoperative HKA. ¢ Line g was the line connecting the center points
of the femoral shaft at 0 cm and 5 cm above the implant, line h was the line across the bottom of the femoral implant, line i was the line across
the bottom of the tibial plateau on the lateral radiograph, and line j was the line connecting the center points of the tibial shaft at 5cm and 15
cm below the joint line; the posterolateral angle between line g and line h was recorded as lateral femoral component angle (LFC), and the
posterolateral angle between line i and line j was recorded as lateral tibial component angle (LTC)
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Table 1 Patient characteristics before and after propensity score matching (PSM)

Characteristics Before PSM (n = 398)

After PSM (n = 218)

Conventional group Novel technique group P Conventional group Novel technique group P

(n =202) (n = 196) (n =109) (n=109)
Gender (male to 311171 52:144 0.006° 20:89 25:84 0403°
female)
Side (left to right) 101:101 95:101 0.760°  53:56 52:57 0.892°
Ethnicity (Han to 198:4 1888 0351° 1063 105:4 1.000°
other)
Etiology (OAto RAto 165316 182:11:3 0.003° 104:4:1 97:10:2 0.180°
others)
Age (1:2:3:4:5) 16:68:101:14:3 5:11:78:86:16 < 1:14:77:14:3 5:11:75:15:3 0.573°

0.001°

BMI (kg/mz) 2543 + 331 2560 + 3.23 0604° 2556 +3.34 2560 + 342 0.937°
Hb preoperative (g/L) 12725 + 14.53 130.90 + 1446 0.013% 13068 + 1236 130.28 + 1461 0.830°
HKA preoperative —6.86 + 10.60 —939+879 0.010*° —9.17 + 1005 - 930+ 860 0916°

(degree)

Age is divided into 5 levels, level 1: < 50 years, level 2: 50-59 years, level 3: 60-69 years, level 4: 70-79 years, level 5: > 79 years

aStands for t test
bStands for chi-squared test

Data analysis

The intraclass correlation coefficient (ICC) was used to
evaluate the consistency of the inter-rater and the intra-
rater measurements; chi-squared test was used to test
the differences of the classification data and independent
t test was applied to check the measurement data be-
tween two groups. Repeated measures analysis of vari-
ance (ANOVA) was used, to determine any significant
differences between VAS and New-KSS scores obtained
at set time intervals before and after TKA. The statistical
significance of the differences was all set at 0.05, and the
statistical software was SPSS 25.0.

Results

Preoperative data

Before PSM, the differences of age, gender, etiology,
preoperative hemoglobin, and preoperative HKA
were statistically significant between the two groups
(P < 0.05). After PSM, all preoperative baseline data
were not significantly different between the two
groups (Table 1).

Table 2 Comparison of surgical data

Surgical data

No serious complications such as infection or loosening
of the components occurred during the follow-up
period. The operation time of the novel technique group
was significantly shorter than that of the conventional
group [(62.14 + 9.94) min vs (75.52 + 18.59) min, P <
0.001]. The tourniquet time of the novel technique
group was significantly shorter than that of the conven-
tional group [(36.29 + 7.29) min vs (49.29 + 13.46) min,
P < 0.001]. The hospital stay in the novel technique
group was shorter than that in the conventional group,
and the difference was statistically significant [(8.40 +
1.69) day vs (8.79 + 1.57) day, P = 0.017]. There was no
statistical difference in the intraoperative bleeding and
the degree of postoperative hemoglobin change between
the two groups (Table 2).

Postoperative component position and lower limb
alignment

For the measurement of HKA, FFC, LFC, FTC, and LTC
(Fig. 3), the inter-rater and intra-rater results showed ex-
cellent consistency (ICC > 0.9, P < 0.05).

Conventional group (n = 109) Novel technique group (n = 109) P
Operation time (min) 75.52 + 1859 62.14 + 994 < 0.001
Tourniquet time (min) 4929 + 1346 36.29 + 7.29 < 0.001
Length of hospital stay (day) 872+ 1.12 840 + 1.69 0.017
Mean intraoperative bleeding (mL) 201.10 + 4243 190.73 + 52.08 0.109
Mean Hb decrease day 1 (g/L) 1759 + 867 19.50 £ 9.72 0.126
Mean Hb decrease day 3 (g/L) 3361 £ 1141 3546 + 13.88 0.285

The t test was used for all



Lei et al. Journal of Orthopaedic Surgery and Research

(2020) 15:591

Page 8 of 12

Table 3 Comparison of postoperative component position and lower limb alignment

Conventional group (n = 109) Novel technique group (n = 109) P
LTC mean + SD 948° + 3.74° 4.23° £ 257° <0.001°
LTC percentage of outliers > 3° 95.05% 31.68% < 0.001?
FTC mean + SD 89.77° £ 2.11° 89.58° + 2.00° 0496°
FTC percentage of outliers > 3° 13.86% 14.85% 0.842°
LFC mean + SD 88.31° +3.01° 8851° +2.81° 0615°
LFC percentage of outliers > 3° 33.66% 3267% 0.883°
FFC mean £+ SD 90.01° + 2.46° 90.05° + 1.95° 0.903°
FFC percentage of outliers > 3° 18.81% 14.85% 0.455°
HKA mean + SD —-0.16° + 3.80° —046° + 263° 0557°
HKA percentage of outliers > 3° 40.37% 17.43% < 0.001?
HKA percentage of overcorrection 26.61% 11.01% 0.003%

The target value of LTC is 3°, the target values of FFC, FTC, and LFC are 90°, and the target value of HKA is 0°
LTC lateral tibial component angle, FTC frontal tibial component angle, LFC lateral femoral component angle, FFC frontal femoral component angle, HKA

hip-knee-ankle angle.
aStands for chi-squared test
PStands for t test

The difference in LTC and the percentage of outliers
between the two groups were statistically significant; the
LTC control of the novel technique group was better
than the conventional group [(4.23 + 2.57)° vs (9.48 *
3.74)°, P < 0.001), and the percentage of outliers in the
novel technique group was significantly smaller than the
conventional group (31.68% vs 95.05%, P < 0.001). The
FTC, FFC, LFC, and percentage of their outliers were
similar between the two groups.

The novel technique group had fewer HKA outliers
(17.43% vs 40.37%, P < 0.001) and overcorrected cases
(11.01% vs 26.61%, P = 0.003); there was no statistical

difference in postoperative HKA between the two groups
(Table 3).

Postoperative functional outcomes

Both the novel technique and the conventional groups
demonstrated significant improvements in the functional
outcome scores at 12 months (P < 0.001) (Table 4).

In 1 month after the operation, the novel technique
group achieved a significantly better VAS score (3.58 +
0.71 vs 4.32 + 0.65, P < 0.001), but a similar NEW-KSS
score (P > 0.05) when compared with the conventional
group. And in 6 and 12months after surgery, no

Table 4 Functional outcomes at 1, 6, and 12 months for the two groups

Functional outcomes Pre-op 1 month 6 months 12 months P

Conventional group (n = 109)
VAS score* 6.34 +1.90 432 £ 065 1.99 £ 0.32 103 £0.16 < 0001
KSS objective knee indicators 4252 + 1267 59.07 £ 7.11 6361 +3.25 68.56 + 1262 < 0.001
KSS symptom 9.35 + 347 1147 £ 241 19.55 + 331 2195+ 1.18 < 0.001
KSS patient satisfaction 1875 £ 645 2782 +7.07 3148 + 549 3745+ 517 < 0.001
KSS patient expectations 10.70 £ 1.08 931 £+ 1.84 1107 £ 242 1330+ 273 < 0.001
KSS functional activities 3492 +13.85 4513 +12.26 6296 + 11.05 79.94 £ 13.96 < 0.001

Novel technique group (n = 109)
VAS score* 6.64 £ 1.71 3.58 £0.71 198 £ 0.19 1.02 £ 013 < 0.001
KSS objective knee indicators 4228 + 1345 5939 + 7.37 6391 + 299 6838 + 1232 < 0.001
KSS symptom 9.05 + 3.69 1158 +£233 1964 + 2.74 2185+ 1.10 < 0.001
KSS patient satisfaction 1890 + 5,55 2839 £ 697 31.67 £ 543 37.85 £ 3.71 < 0.001
KSS patient expectations 10.65 + 1.50 949 £ 1.78 10.85 £ 253 13.67 + 1.86 < 0.001
KSS functional activities 3536+ 11.83 4551 £ 1265 63.52 £ 10.65 81.67 £ 558 < 0.001

*VAS Lower scores indicate better outcomes. Repeated measures analysis of variance (ANOVA) was used for all



Lei et al. Journal of Orthopaedic Surgery and Research (2020) 15:591 Page 9 of 12
Table 5 Comparison of functional outcomes
Conventional group (n = 109) Novel technique group (n = 109) P
VAS score*
Pre-op 6.34 =+ 1.90 6.64 + 1.71 0218
1 month 432 £ 065 358+ 071 < 0.001
6 months 1.99 £ 0.32 1.98 £ 0.19 0.797
12 months 103 £0.16 1.02£0.13 0.653
KSS objective knee indicators
Pre-op 4252 £ 1267 4228 £ 1345 0.889
1 month 59.07 £ 7.11 5939 + 737 0.751
6 months 6361 + 325 6391 + 2.99 0475
12 months 6856 + 12.62 6838 + 1232 0914
KSS symptom
Pre-op 935+ 347 9.05 + 3.69 0533
T month 1147 £ 241 11.58 + 233 0.732
6 months 19.55 + 3.31 19.64 + 2.74 0.824
12 months 2195+ 1.18 2185+ 1.10 0.515
KSS patient satisfaction
Pre-op 18.75 + 645 1890 + 5.55 0.857
1 month 2782 + 707 2839 + 697 0.550
6 months 3148 £ 549 31.67 =543 0.804
12 months 3745+ 517 37.85 + 371 0.508
KSS patient expectations
Pre-op 10.70 £ 1.08 10.65 + 1.50 0.795
T month 931+ 1.84 949 +1.78 0478
6 months 11.07 + 242 10.85 + 2.53 0512
12 months 1330+ 273 13.67 + 1.86 0.248
KSS functional activities
Pre-op 3492 +13.85 3536+ 11.83 0.801
T month 4513 £ 12.26 4551 £ 1265 0.820
6 months 62.96 + 11.05 63.52 + 10.65 0.704
12 months 79.94 £ 13.96 8167 + 558 0.230

*VAS Lower scores indicate better outcomes. t test was used for all

statistical differences were seen in the above two scores
(P > 0.05) (Table 5).

Discussion

The postoperative outcomes of total knee replacement
are related to many factors, and the surgical factors often
include the placement position of components, the
alignment and soft tissue balance of the lower limbs, and
the bone cement technique [36]. Among them, the neu-
tral alignment of the lower limbs and the component
position may be the key to avoiding the early failures of
TKA. In order to obtain the desired postoperative lower
limb alignment and components position, technologies
such as patient-specific instrumentation, computer navi-
gation, and robot-assisted TKA came into being, but

these high-tech technologies are also accompanied by
various disadvantages, such as longer operation time [8],
higher operation cost [8, 37], more potential complica-
tions [13, 38], and the possibility to switch to conven-
tional TKA for various reasons during the operation [11,
13]. In addition, TKA is no longer limited to large hospi-
tals, and many small hospitals have also carried out such
operations, but most of the smaller hospitals do not have
the equipment or technology related to the above high-
tech technologies. Is there a TKA surgical technique that
is simpler and more economical than the abovemen-
tioned high-tech techniques, but more precise than con-
ventional methods in controlling the alignment of the
lower limbs and the position of the components? The
novel technique of CT-based patient-specific 3D
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preoperative design combined with conventional osteot-
omy instruments provides one possibility.

The LTC of the novel technique group was better than
the conventional group [4.23° + 2.57° vs (9.48° + 3.74°, P
< 0.001), and the percentage of outliers was also signifi-
cantly smaller than the conventional group (31.68% vs
95.05%, P < 0.001). The results demonstrated that the
novel technology group is superior to the conventional
group in controlling the position of the tibial compo-
nents. The conventional method usually determines the
position of the positioning rod and the retroversion
angle of the osteotomy instrument by the surgeon’s vis-
ual assessment, whereas the novel technique uses the
positioning pin of the extramedullary positioning rod to
accurately restore the pre-designed fix point of the guide
pin and accurately control the position of the distal end
of the positioning rod based on the thickness of the soft
tissue of the anterior tibial of the patient to ensure the
accurate intraoperative implementation of the preopera-
tive design. The precise patient-specific preoperative de-
sign and its accurate implementation are the main
reasons why the novel technique group has significantly
better control of the LTC than the conventional group
(P < 0.001). The LTC angle after TKA would signifi-
cantly affect the knee joint movement, the fixation of
implants, and the wear of polyethylene pads, etc .[39-
41]. Therefore, this angle is one of the important evalu-
ation indexes of the radiographic evaluation of the
American Knee Society [31]. Yan et al. randomly divided
90 OA knee joints into three groups and performed a
randomized controlled trial on the lower extremity
alignment of PSI, computer navigation, and conventional
method. They found that the average LTC values and
outliers of the three methods had no statistical differ-
ences postoperatively [16]. Rhee et al. summarized and
evaluated 5 studies on the sagittal alignments of the tib-
ial component and found that the number of outliers in
LTC included 131 of 1020 cases in the computer-
navigated TKA and 154 of 1026 cases in the conven-
tional TKA group; the difference was not significant (P
= 0.17) [42]. More researches have indicated that PSI is
even worse than the conventional method in controlling
LTC [17-20]. In the control of FTC, both groups per-
formed well without statistical differences in this study.
Previous studies of computer navigation, PSI, and robot-
ics have shown that in the control of FTC, these more
expensive techniques might not have obvious advantages
compared with the conventional method [6, 7, 14, 16,
43-45]. This may be because the experienced surgeons
in those studies could control FTC well during the sur-
gery without deviation.

The conventional method usually chooses the apex of
the intercondylar notch as the medullary entry point and
uses the HKS angle measured on FLX for distal femoral
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osteotomy. Preoperative 3D design can more accurately
evaluate the medullary entry point and measure the valgus
osteotomy angle. In most patients, the femoral medullary
cavity is larger than the intramedullary positioning rod,
and the swing of the drill when drilling may cause the
intramedullary diameter larger than the diameter of the
intramedullary positioning rod, resulting in a 1° deviation
[46]; in addition, during distal femoral osteotomy, the
osteotomy instrument can only select an integer, which
may result in intraoperative selection bias. The above fac-
tors have reduced the accuracy of intraoperative imple-
mentation of HKS to a certain extent, which may be one
of the main reasons for the two groups to have no signifi-
cant difference in the femoral component position. How-
ever, from postoperative results, the control of the femoral
component position in the novel technique group and
conventional group are both acceptable. Computer-
navigated and robotics use technologies such as intraoper-
ative navigation and second calibration to achieve more
accurate intramedullary positioning and femoral osteot-
omy. However, many studies have proven that they are
not superior to the conventional method in the femoral
component position [16, 42—44, 47]; PSI also does not
provide better results in this field [14, 45].

Compared with the conventional group, the novel
technique group had a lower percentage of HKA outliers
(17.43% vs 40.37%, P < 0.001) and percentage of HKA
overcorrection (11.01% vs 26.61%, P = 0.003), although
the mean value of HKA between the two groups was not
statistically significant. This demonstrates that the novel
technology can reduce the occurrence of lower limb
alignment outliers than the conventional one.

The operation time and tourniquet time of the novel
technology group were significantly less than those of the
conventional group. After excluding the influence of re-
lated confounding factors, we believed that the longer
tourniquet time in the conventional group was mainly due
to repeated adjustment and confirmation of the femoral
medullary entry point and tibial positioning system during
the surgery, while the novel technology group mainly
needed to confirm the positioning system according to the
preoperative plan, reducing the incidence of repeated ad-
justments, thereby reducing both tourniquet time and op-
eration time by about 13 min on average.

There was no significant difference between the two
groups in the scores of VAS and NEW-KSS at 6 and
12 months after the operation. However, in the VAS
pain score at 1month after the operation, the novel
technology group was better than the conventional
group(3.58 + 0.71 vs 4.32 + 0.65), and the difference
was statistically significant (P < 0.05). In each item of
the NEW-KSS score 1 month after the operation, the
novel technology group had a tendency to be superior
to the conventional group, but the difference was not
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statistically significant (P > 0.05). In the case that the
two groups of early rehabilitation and pain manage-
ment were consistent, this indicated that the novel
technique group was superior to the conventional
group in early pain and recovery, which may be re-
lated to the shorter tourniquet time and operation
time in the novel technique group.

This study also has some deficiencies. First, it does not
include computer-navigated, robotics, or PSI technology
to compare with the novel technique. Second, it has not
conducted mid- or long-term follow-up and functional
scoring of the patients. Third, it is a single-center study
and the CT-based patient-specific three-dimensional
preoperative design all came from one manufacturer.
Multi-center studies and execution with other manufac-
turers are needed for further verification.

Conclusion

This novel technique that combines patient-specific 3D
preoperative design with conventional osteotomy instru-
ments can better control the position of tibial compo-
nents, reduce the occurrence of the lower limb
alignment outliers, and improve the accuracy of osteot-
omy in TKA to a certain extent. Meanwhile, the oper-
ation time is shorter, and the short-term functional
outcomes of patients are satisfactory. However, the func-
tional outcomes for 6 months and 1year were not sig-
nificantly different from that of the conventional group.
Further follow-up study is needed for the mid- and
long-term functional outcomes.
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