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Abstract

of osteoblasts in MC3T3-E1 cells.

497-5p mimic in osteogenesis.

Background: Osteoporosis (OP) has the characteristics of the decline in bone mineral density and worsening of
bone quality, contributing to a higher risk of fractures. Some microRNAs (miRNAs) have been validated as possible
mediators of osteoblast differentiation. We herein aimed to clarify whether miR-497-5p regulates the differentiation

Methods: The expression of miR-497-5p in OP patients and controls was measured by RT-gPCR, and its expression
changes during osteoblast differentiation were determined as well. The effects of miR-497-5p on the differentiation of
MC3T3-E1 cells were studied using MTT, ALR staining, and ARS staining. The target gene of miR-497-5p was predicted
by TargetScan, and the effects of its target gene on differentiation and the pathway involved were investigated.

Results: miR-497-5p expressed poorly in OP patients, and its expression was upregulated during MC3T3-E1 cell
differentiation. Overexpression of miR-497-5p promoted mineralized nodule formation and the expression of RUNX2
and OCN. miR-497-5p targeted high mobility group AT-Hook 2 (HMGA?2), while the upregulation of HMGA?2 inhibited
osteogenesis induced by miR-497-5p mimic. miR-497-5p significantly impaired the c-Jun NH2-terminal kinase (JNK)
pathway, whereas HMGA?2 activated this pathway. Activation of the JNK pathway inhibited the stimulative role of miR-

Conclusions: miR-497-5p inhibits the development of OP by promoting osteogenesis via targeting HMGA2.
Keywords: MicroRNA-497-5p, HMGA2, JNK pathway, Osteoporosis, Osteoblasts

Background

Bone protects other organs of the body, and fragility
fracture in older people causes substantial morbidity and
mortality, and measures to prevent such fractures in-
volve promoting skeletal strength and lowering fall risk
[1]. Moreover, vitamin D and calcium supplementation
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have been recommended as baseline treatment options
in every patient with osteoporosis (OP) [2]. In addition,
understanding the relationship among age-related co-
morbidities, fracture risk, and competing mortality risk
is of paramount importance for practitioners caring for
the OP patients at an older age [3]. OP is induced by the
loss of bone mass because of the imbalance between
bone formation modulated by osteoblasts and bone ab-
sorption modulated by osteoclasts, and the former one
exhibits various characteristics during differentiation, in-
cluding increased alkaline phosphate (ALP) activity,
followed by extracellular matrix synthesis contributing
to mineralization [4].
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MicroRNAs (miRNAs, non-protein-coding RNAs)
bind to target mRNAs which are complementary with
their sequences and post-transcriptionally regulate gene
expression through translational activation or repression
such as mRNA degradation. Using this pathway, miR-
NAs play important roles in homeostatic processes in-
cluding cell proliferation, differentiation, and cell death
[5]. miRNAs are vital post-transcriptional modulators of
gene expression that govern the osteoblast-mediated
bone formation, thus involving in OP, osteoarthritis, and
other bone-related disorders [6—8]. For instance, ad-
vanced PCR arrays adopted by a previous research team
found that circulating hsa-miR-122-5p and hsa-miR-
4516 exhibited potential diagnostic potentials for OP [9].
miR-497-5p was revealed to be significantly downregu-
lated after 24 h stimulation of human primary osteoarth-
ritis chondrocytes with IL-1p, indicating its relevance in
joint disease [10]. Also, miR-497~195 cluster drives
angiogenesis and osteogenesis, representing as an at-
tractive therapeutic target for age-related OP [11]. More
recently, miR-497-5p was found to be significantly re-
duced in bone tissues of aging and ovariectomized mice
and upregulated during osteogenic differentiation of
hFOB1.19 and MC3T3-E1 cells [12]. However, the
downstream biomolecules of miR-497-5p in OP remains
largely unknown. High mobility group AT-Hook 2
(HMGA?2) is a chromatin-binding protein, commonly
expressed during embryogenesis, and is undetectable in
the majority of adult tissues and linked to multiple types
of cancer [13]. HMGA2 specifically binds to AT-rich
DNA sequences with its AT-hook DNA-binding motifs
and triggers DNA bending. Although HMGA?2 has an
important role in adipogenesis and tumor formation, its
main function is to bind to chromosomes to ensure that
human embryonic stem cells retain stem cell strength,
thereby maintaining the durability and renewal capacity
of stem cells [14]. Interestingly, osteoblast differentiation
was found to be induced by miR-33-5p, partially de-
pending on HMGA2 [15]. Using TargetScan (http://
www.targetscan.org/), we obtained the binding sites be-
tween miR-497-5p and HMGA2. As a consequence, we
speculated that miR-497-5p participated in the path-
ology of OP by directly interacting with HMGAZ2 in os-
teoblasts. The significance of c-Jun N-terminal kinase
(JNK) has been validated in cell cycle regulation, apop-
tosis, and cellular stress, and it has been also highlighted
to participate in osteogenic differentiation of mesenchy-
mal stem cells [16]. More specifically, miR-122 elicited
inhibitory effects on osteoblast proliferation through the
JNK pathway [17]. The present study hypothesized that
miR-497-5p enhances the osteoblast differentiation by
regulating HMGA2 and the JNK signaling pathway. To
validate this hypothesis, the underlying mechanisms in
MC3T3-E1 cells were investigated.
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Materials and methods

Clinical samples

From January 2018 to March 2019, 15 patients who
underwent hip replacement in The Third Affiliated Hos-
pital of Sun Yat-Sen University for osteoporotic fractures
were enrolled. Fifteen patients without OP who under-
went traumatic arthroplasty were recruited as controls.
All participants had no other metabolic or endocrine
diseases. Tissues were immediately frozen at - 80 °C for
subsequent experiments. The use of human samples was
permitted by the Ethical Committee of The Third Affili-
ated Hospital of Sun Yat-Sen University, and informed
consent was obtained from each participant.

Cell culture, in vitro differentiation, and transfection
MC3T3-E1 cells (sub-clone 14, Cell Bank of Shanghai
Institute of Cells, Chinese Academy of Science, Shang-
hai, China) were grown in a-Minimal Essential Medium
(Gibco, Carlsbad, CA, USA) supplemented with 10%
fetal bovine serum (Hyclone, Marlborough, MA, USA)
and 1% penicillin and streptomycin (Thermo Fisher Sci-
entific Inc., Waltham, MA, USA). The cells were kept at
37°C under 5% CO,, and the culture medium was
renewed every 2 days.

MC3T3-E1 cells were grown in a culture medium sup-
plemented with 100nM dexamethasone, 10 mM f-
glycerol phosphate, and 50 pg/mL ascorbic acid for
osteoblast differentiation. miR-497-5p mimic (which was
synthesized chemically to enhance the function of en-
dogenous miRNAs) and overexpression (oe)-HMGA2 or
their respective controls (NC mimic or oe-NC) were
purchased from GenePharma Ltd. Company (Shanghai,
China). All transfection was performed using oligonucle-
otides and plasmids with Lipofectamine™ 2000 reagent
(Invitrogen) in accordance with the manufacturer’s
protocol. A JNK pathway-specific agonist azaspiracid-1
(AZA-1) was from Santa Cruz Biotechnology Inc. (10
nM, Santa Cruz, CA, USA, cargo number: sc-202482,
CAS: 214899-21-5). Dimethylsulfoxide (DMSO) serves
as a control (cargo number: sc-202581, CAS: 67-68-5,
Santa Cruz Biotechnology Inc).

Reverse transcription quantitative (RT-q) PCR

The extraction of total RNA was conducted using TRI-
zol reagents (Invitrogen). Complementary DNA (cDNA)
was synthesized for mRNA using the PrimeScript RT kit
(Takara Holdings Inc., Kyoto, Japan). Reverse transcrip-
tion was conducted for miRNA using the PrimeScript
miRNA cDNA Synthesis Kit (Takara). SYBR Premix Ex
Taq I was employed for RT-qPCR. Relative expression
of mRNA or miRNA was evaluated by the 2744
method and normalized to glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) or 5S, respectively. The
primers were as follows: miR-497-5p (human), forward
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5'-CTCCCCCACCCTCGCTCTAA-3" and reverse 5'-
ACACTGTGGTTTGTACGGCA-3’; miR-497-5p (mouse),
forward 5'-GCAGCACACTGTGGTTTG-3" and reverse
5-GAACATGTCTGCGTATCTC-3’; HMGA2 (human),
forward 5'-GAAGCCACTGGAGAAAAACGGC-3" and re-
verse 5 -GGCAGACTCTTGTGAGGATGTC-3'; HMGA2
(mouse), forward 5-AGAGGAAGACCCAAAGGCAGCA-
3" and reverse 5-GAGCAGGCTTCTTCTGAACGAC-3;
Bax (mouse), forward 5-AGGATGCGTCCACCAAGA
AGCT-3" and reverse 5-TCCGTGTCCACGTCAGCA
ATCA-3"; BCl-2 (mouse), forward 5'-CCTGTGGATGACT-
GAGTACCTG-3' and reverse 5'-AGCCAGGAGAAAT-
CAAACAGAGG-3’; OCN (Bglap, mouse), forward 5'-
GCAATAAGGTAGTGAACAGACTCC-3" and reverse 5'-
CCATAGATGCGTTTGTAGGCGG-3’; RUNX2 (mouse),
forward 5 -CCTGAACTCTGCACCAAGTCCT-3" and re-
verse 5'-TCATCTGGCTCAGATAGGAGGG-3'; GAPDH
(human), forward 5'-GTCTCCTCTGACTTCAACAGCG-
3" and reverse 5'-ACCACCCTGTTGCTGTAGCCAA-3;
GAPDH (mouse), forward 5-CATCACTGCCACCCAGAA
GACTG-3" and reverse 5 -ATGCCAGTGAGCTTCCCG
TTCAG-3’; and 5S (human or mouse), forward 5 -CTCG
CTTCGGCAGCACAT-3" and reverse 5-TTTGCGTGTC
ATCCTTGCG-3".

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay

An MTT cell proliferation and cytotoxicity assay kit was uti-
lized to detect cell viability. Cells were added to 96-well
plates at 2000 cells each well, and 10-pL. MTT (5 mg/mL) so-
lution was added to each well. After a 4-h incubation, 100 uL
formazan lysate was supplemented to each well and incu-
bated at 37°C for about 3-4h. The optical density (OD)
value at 570 nm was measured on a microplate reader.

Cell apoptosis by flow cytometry

An Annexin V-fluorescein isothiocyanate (FITC) apop-
tosis detection kit (Beyotime Biotechnology Co., Ltd.,
Shanghai, China) was applied to assess the apoptosis
rate. Cells were resuspended in 195 pL. Annexin V-FITC
binding solution. The cells were mixed with 5puL
Annexin V-FITC and then stained with a 10-pL propi-
dium iodide staining solution in the dark at 20-25 °C for
10-20 min. After an ice bath, the cells were loaded onto
a flow cytometer.

ALP staining

After a 7-day culture in osteogenic medium, ALP stain-
ing was carried out. Cells in six-well plates were fixed
with 4% paraformaldehyde for 15 min. A BCIP/NBT Alp
Color Development kit (Beyotime, Shanghai, China) was
used for a 30-min staining at room temperature in the
dark. Images were obtained by a digital camera.
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Alizarin red S (ARS) staining

MC3T3-E1 cells cultured in osteogenic medium for 21
days were fixed with ice-cold 70% ethanol for 40 min at
4°C and stained in 1% ARS (Sigma, St. Louis, MO, USA)
for 15 min at room temperature. The stained cells were
then imaged by a digital camera.

Dual-luciferase reporter genes constructs and assays

The binding sites between miR-497-5p and HMGA2
were predicted from TargetScan (http://www.targetscan.
org/). The HMGA2 3'-untranslated region (3'UTR) with
binding sites was amplified and cloned into pGL3 vec-
tors (Promega) to obtain wild-type (WT) constructs.
The binding sites were mutated to obtain HMGA2
mutant-type (MT) constructs. The above vectors were
co-transfected into 293T cells (ATCC, Manassas, VA,
USA) with the miR-497-5p mimic and its control, re-
spectively. At 48 h post-transfection, luciferase activity
was tested by the luciferase reporter assay system (Pro-
mega, Madison, W1, USA).

RNA immunoprecipitation (RIP)

A RIP lysis buffer kit (Millipore Corp, Billerica, MA,
USA) was utilized for RIP experiments. In brief,
MC3TS3-E1 cells were lysed in RIP lysis buffer and incu-
bated with anti-AGO2 (Millipore Corp) and anti-IgG
(Millipore Corp)-coupled A/G agarose particles. The
precipitated RNA was isolated using TRIzol reagents,
and gene expression was determined using RT-qPCR.

Western blot

Radio-immunoprecipitation assay lysis buffer (Solarbio
Science & Technology Co., Ltd., Beijing, China) with a
proteinase inhibitor was used to extract the total pro-
teins in cells. Next, a bicinchoninic acid assay protein
assay kit (Thermo Fisher Scientific) was adopted for pro-
tein quantification. Lysates were electrophoresed on 10%
sodium dodecyl sulfate-polyacrylamide gel electrophor-
esis and transferred to polyvinylidene difluoride mem-
branes (Millipore) with 5% skim milk. The blots were
probed with primary antibodies against HMGA2 (1:
1000, #8179, Cell Signaling Technologies (CST), Beverly,
MA, USA), INK (1:1000, ab179461, Abcam, Cambridge,
MA, USA), p-JNK (phospho T183 + T183 + T221, 1:
5000, ab124956, Abcam), or GAPDH (1:1000, #5174,
Cell Signaling Technologies) at 4 °C overnight and then
probed with horseradish peroxidase-conjugated second-
ary goat anti-rabbit antibody IgG (1:10,000, ab205718,
Abcam) at room temperature for a period of 2 h. Finally,
the immunoblots were subjected to enhanced chemilu-
minescence reagent (Millipore).
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Statistical analysis

Calculations were performed with the SPSS 22.0 software
(IBM Corp., Armonk, NY, USA). The data are expressed
as the mean + standard deviation (SD) of at least three in-
dependent experiments. Data between the two groups
were compared by the unpaired ¢ test and data among
more than two groups by the two-way analysis of variance
(ANOVA), followed by Tukey’s multiple comparison test.
p < 0.05 was considered to be reflective of a statistically
significant difference.

Results

miR-497-5p is increased during osteogenic differentiation
According to a previous report [11], miR-497-5p was be-
lieved to be a potential therapeutic target for OP, but
the mechanism involved has not been studied. miR-497-
5p expression was found to be significantly reduced in
bone tissues of OP relative to controls, as revealed by
RT-qPCR (Fig. 1a). MC3T3-E1 cells were cultured for
21 days; RT-qPCR was conducted to assess the expres-
sion of osteogenic markers and miR-497-5p. It was
noted that the expression of these markers was increased
gradually with the development of osteogenic culture
(Fig. 1b).

Overexpression of miR-497-5p promotes osteogenic
differentiation

miR-497-5p mimic and NC mimic were transfected into
MC3T3-E1 cells, and RT-qPCR was used for effective
transfection (Fig. 2a). The viability of cells was measured
by MTT, and it was observed that miR-497-5p mimic
significantly promoted the viability of cells (Fig. 2b),
while flow cytometry found that miR-497-5p mimic also
suppressed apoptosis (Fig. 2c). The expression of apop-
totic factors Bax and Bcl-2 and osteogenic differentiation
markers OCN and RUNX2 was measured by RT-qPCR
at day 7 of osteogenic culture. miR-497-5p mimic not-
ably enhanced the Bcl-2, OCN, and RUNX2 expression,
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while inhibited Bax expression (Fig. 2d). Meanwhile,
ALP staining indicated that miR-497-5p mimic remark-
ably increased the ALP activity (Fig. 2e). On the 21st day
of osteogenic culture, miR-497-5p was found to signifi-
cantly promote mineralized nodule formation (Fig. 2f)
by ARS staining.

miR-497-5p targets HMGA2

A bioinformatics website TargetScan predicted the tar-
geting relationship between miR-497-5p and HMGA2
(Fig. 3a). HMGA2 was previously thought to inhibit
osteogenic differentiation of stem cells [18, 19], so we
speculated that it was a target of miR-497-5p to play a
part in OP. HMGA?2 was observed to be overexpressed
(Fig. 3b) in bone tissues of OP patients relative to con-
trols. At the same time, HMGA2 was downregulated
(Fig. 3c) after osteogenic differentiation. miR-497-5p
mimic significantly inhibited HMGA2 mRNA and pro-
tein expression in MC3T3-E1 cells (Fig. 3d, e). Lucifer-
ase reporter experiments in 293T cells showed that miR-
497-5p mimic significantly decreased luciferase activity
in HMGA2-WT, but had no significant effect on
HMGA2-MT (Fig. 3f). Meanwhile, RIP experiments dis-
played that anti-Ago2 significantly enriched miR-497-5p
and HMGA?2 (Fig. 3 g) compared to anti-IgG. We thus
established the targeting relationship between miR-497-
5 and HMGA2.

Overexpression of HMGA?2 attenuates the effects of miR-
497-5p mimic and activates the JNK pathway

oe-HMGA?2 was introduced into cells transfected with
miR-497-5p mimic to generate cells overexpressing miR-
497-5p and HMGA?2 simultaneously, and RT-qPCR con-
firmed that the transfection was effective (Fig. 4a). MTT
revealed that oe-HMGA2 significantly inhibited cell via-
bility (Fig. 4b). Flow cytometry found that oe-HMGA2
attenuated the repressive role of miR-497-5p mimic on
apoptosis (Fig. 4c). The expression of pro-apoptotic
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factors Bax and Bcl-2 and osteogenic differentiation
markers OCN and RUNX2 in cells after co-transfection
was measured by RT-qPCR at day 7 of osteogenic cul-
ture. oe-HMGA2 was found to lead to increased Bax ex-
pression, while decreased expression of Bcl-2, OCN, and
RUNX2 (Fig. 4d). ALP staining found that oe-HMGA2
resulted in decreased activity ALP (Fig. 4e). By day 21,
ARS staining revealed that oe-HMGA?2 reduced mineral-
ized nodule formation (Fig. 4f). Western blot displayed
that miR-497-5p mimic significantly inhibited JNK phos-
phorylation, whereas this inhibition was significantly re-
versed by oe-HMGA2 (Fig. 4 g).

The activation of the JNK pathway abrogates miR-497-5p

mimic promotion on osteogenesis

A JNK pathway-specific agonist AZA-1 was delivered
into MC3T3-E1 overexpressing miR-497-5p with DMSO
as a control. The phosphorylation of the JNK pathway
was significantly promoted, as revealed by Western blot
(Fig. 5a). Meanwhile, AZA-1 was found to inhibit cell
proliferation and promote apoptosis by CCK-8 and flow
cytometry (Fig. 5b, c). The expression of apoptotic fac-
tors Bax and Bcl-2 and osteogenic differentiation
markers OCN and RUNX2 in cells after delivery of

AZA-1 and miR-497-5p mimic was measured by RT-
qPCR at day 7 of osteogenic culture. The expression of
Bax was significantly increased after the activation of the
JNK pathway, while the expression of Bcl-2, OCN, and
RUNX2 was significantly decreased (Fig. 5d). Meanwhile,
ALP staining exhibited a decrease in ALP activity follow-
ing miR-497-5p mimic + AZA-1 administration (Fig.
5e). On the 21st day of the culture, a decrease in depos-
ition of calcium (Fig. 5f) was found by ARS staining,
which illustrated that potentiation of the JNK pathway
significantly attenuated the osteogenesis induced by the
miR-497-5p mimic.

Discussion

Older people with hip fracture benefitted more from
comprehensive care involving interdisciplinary care, de-
pression management, and fall prevention [20]. MC3T3-
El is a popular osteoblast cell line with a pre-
osteoblastic phenotype, and its sub-clone 14 has been
shown to mineralize the collagenous extracellular matrix
[21], which makes it an ideal tool for in vitro investiga-
tions regarding bone remodeling and formation [22, 23].
The results of the current investigation displayed that
miR-497-5p was remarkably upregulated in the process
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of osteogenic differentiation in vitro and that HMGA2
might be a direct target of miR-497-5p. miR-497-5p up-
regulation enhanced ALP activity and the expression
patterns of osteoblast markers, including OCN and
RUNX2. In addition, our observations here demon-
strated that miR-497-5p upregulation inhibited MC3T3-
E1 cell apoptosis. miR-497-5p disrupted the JNK path-
way by binding to HMGA2.

The essential roles of numerous miRNAs played in bone
development and homeostasis have been underscored,
particularly in osteoblast differentiation [24]. miR-497-5p,
significantly decreased in OP patients, was found to be el-
evated during osteogenic differentiation in MC3T3-E1
cells. The miR-497~195 cluster, reported by Griinhagen
et al. to be related to osteoblast differentiation,

encompasses mmu-miR-497 coding for miR-497-5p,
which shares the highest similarity to miR-15a and 15b,
and mmu-miR-195a encoding miR-195-5p, which is iden-
tical to miR-16 [25]. In line with our study, miR-497-5p
was downregulated in osteoarthritis cartilage, while miR-
497-5p overexpression attenuated cartilage matrix degrad-
ation stimulated by IL-1f in chondrocytes [26]. ALP,
which is expressed by osteoblasts, is an important marker
of bone mineralization, and Alizarin red staining is fre-
quently applied to assess mineralization [27]. The results
of the present study illustrated that osteogenesis in
MC3T3-E1 cells treated with miR-497-5p mimic was
more robust relative to those treated with NC mimic, as
indicated by higher ALP activities and stronger formation
of mineralized nodules.
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MC3T3-E1 cells. a RT-gPCR measurement of HMGA?2 expression in MC3T3-E1 cells after co-transfection. b MTT assessment of MC3T3-E1 cell
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In addition, HMGA?2, overexpressed in OP patients Bcl-2, OCN, and RUNX2 expression along with curtailed
and downregulated following osteogenesis, was revealed ~ ALP activity; and mineralized nodules in the presence of
as a putative target of miR-497-5p. Consistently, Kalo- miR-497-5p mimic, indicating that HMGA?2 overexpres-
moiris et al. found that within 9 days of culturing, the sion reversed the promotive role of miR-497-5p in
expression of HMGA2 quickly decreases during the early  osteogenesis. In line with our findings, HMGA2 weak-
expansion of mesenchymal stem cells [13]. Moreover, ened the osteogenic differentiation of bone marrow-
let-7, another miRNA, positively modulates osteogenic  derived mesenchymal stem cells stimulated by miR-
differentiation by repressing HMGA2 [18]. Also, the im-  664a-5p [19]. More specifically, the reduction of
paired osteogenic differentiation of inflamed dental pulp HMGA2 expression alone promoted the osteogenic dif-
stem cells was linked to the promoted expression of ferentiation and calcium deposition in mesenchymal
HMGA?2 and the extent of PI3K and Akt phosphoryl- stem cells [29]. Consequently, we may draw a conclusion
ation [28]. In the current work, upregulation of HMGA2  that the stimulative role of miR-497-5p played in
contributed to the enhanced Bax expression; lowered =~ MC3T3-E1 cells was reached by the interaction with
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Fig. 5 The potentiation of the JNK pathway ameliorates the stimulative role of miR-497-5p mimic on differentiation. miR-497-5p mimic + AZA-1
or miR-497-5p mimic + DMSO was delivered into MC3T3-E1 cells. a JNK pathway activity in transfected MC3T3-E1 cells. b MTT assessment of
MC3T3-E1 cell viability. ¢ Flow cytometric analysis for cell apoptosis. d RT-gPCR measurement of Bax, Bcl-2, OCN, and RUNX2 expression. e ALP
staining for ALP activity. f ARS staining for mineralization. Data are presented as the mean + SD of three replicates each. The unpaired t test was
used for the comparison between the two groups (b, ¢, e, f); the two-way ANOVA was applied for the comparison among multiple groups (a, d).
*p < 0,05 vs. MC3T3-E1 cells administrated with miR-497-5p mimic + DMSO

HMGA2. Our observations proposed that the JNK sig-
naling potentiation using an agonist AZA-1 antagonized
the role of miR-497-5p mimic in MC3T3-E1 cells, fur-
ther supporting the involvement of the JNK signaling in
osteoblast differentiation.

Our study also showed that miR-497-5p impaired the
JNK signaling potentiation by lowering the extents of
JNK phosphorylation, which was also reversed by
HMGA?2 upregulation. Recently, the JNK signaling path-
way inhibitor was revealed to enhance osteoblast differ-
entiation [17]. Pre-treatment with MAPK inhibitors
reduced the protein expression of Bax promoted by IL-
la in the MC3T3-E1 cells, suggesting the significance of
JNK and the p38 MAPK signaling in modulating IL-1a-
induced apoptosis and osteoblast differentiation of
MC3T3-E1 cells [30]. In addition, phosphorylation of
JNK leads to an increase in apoptosis rate in cells under
different conditions, such as ischemia-reperfusion [31,
32], cancers [33, 34], and liver injury [35]. Moreover,
miR-214 inhibitor significantly decreased the expression
of ALP, OCN, and RUNX2, as well as ALP activity in
MC3T3-E1 cells, which was enhanced by additional
treatment with SP600125, a JNK inhibitor [36]. These
existing reports validated the inhibitory effects of the
JNK signaling in osteoblast differentiation. The negative
correlation between miR-497 and the JNK signaling has
also been highlighted in non-small cell lung cancer [37].

Conclusion

In summary, we showed that miR-497-5p enhanced
osteogenic differentiation by repressing HMGA2 and
impairing the JNK signaling. However, as this study is
based on the MC3T3-E1 cell line, we remain uncertain
about the effects of miR-497-5p in vivo, an issue that
must be addressed before ever proceeding to transla-
tional studies.
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