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Abstract

Background: The regeneration of muscle cells from stem cells is an intricate process, and various genes are
included in the process such as myoD, mf5, mf6, etc. The key genes and pathways in the differentiating stages are
various. Therefore, the differential expression of key genes after 4 weeks of differentiation were investigated in our
study.

Method: Three published gene expression profiles, GSE131125, GSE148994, and GSE149055, about the comparisons
of pluripotent stem cells to differentiated cells after 4 weeks were obtained from the Gene Expression Omnibus
(GEO) database. Common differentially expressed genes (DEGs) were obtained for further analysis such as protein-
protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
GSEA analysis. After hub genes and key pathways were obtained, we manipulated in vitro cell research for
substantiation such as immunohistochemical staining and semi-quantitative analysis and quantitative real-time PCR.

Results: A total of 824 DEGs including 350 upregulated genes and 474 downregulated genes were identified in the
three GSEs. Nineteen hub genes were identified from the PPI network. The GO and KEGG pathway analyses
confirmed that myogenic differentiation at 4 weeks was strongly associated with pathway in cancer, PI3K pathway,
actin cytoskeleton regulation and metabolic pathway, biosynthesis of antibodies, and cell cycle. GSEA analysis
indicated the differentiated cells were enriched in muscle cell development and myogenesis. Meanwhile, the core
genes in each pathway were identified from the GSEA analysis. The in vitro cell research revealed that actin
cytoskeleton and myoD were upregulated after 4-week differentiation.

Conclusions: The research revealed the potential hub genes and key pathways after 4-week differentiation of stem
cells which contribute to further study about the molecular mechanism of myogenesis regeneration, paving a way
for more accurate treatment for muscle dysfunction.
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Introduction
As the human population is aging, muscle dysfunction
has been an interrupting issue in clinical research [1–4].
A series of diseases were correlated to the atrophy of
skeletal muscles and leading to dysfunction of muscular
organs such as Duchenne muscular dystrophy (DMD),
degenerative rotator cuff tear, etc. [5–7]. Stem cells are
promising cells that have the potency of multi-
directional differentiation and proliferation and are
widely expected to be used in the field of tissue repair
and regeneration [8, 9]. In the muscle regeneration field,
stem cells also showed vigorous potency [10].
Various researches have devoted to verifying the

mechanism of myoblast differentiation. In myogenic
differentiation, as a multistage process, there stay several
regulating factors such as Myf5, Myf6, myoD, and myog
[11–13]. Meanwhile, researches have shown that differ-
ent factors were correlated with different stages at the
myogenic process such as myoD at the late stage and
myf5 at the early stage [14–16]. What is more, couples
of pathways were verified to be correlated to myogenic
differentiation such as PI3K-MAPK, p38, p53, and actin
pathway [14–17], but few researches have shown the
pathway variation at differentiation stages. To upregulate
the differentiation efficacy and contribute to the repair
of degenerated muscular tissues, it is especially import-
ant to clarify the differentiation mechanism at the
genetic level.
With the widespread use and development of high-

throughput sequencing, bioinformatics analysis showed
a great advantage for determining the myogenic differen-
tiation mechanism of stem cells at the genetic level.
However, no study was designed to integrate the myo-
genic differentiation datasets in GEO. In the present
study, we integrated 3 datasets in GEO comparing hu-
man pluri-potential stem cells and myogenic stem cells.
Bioinformatics analysis was used to explore the molecu-
lar mechanism of the pathogenesis in myogenic differen-
tiation of stem cells.

Materials and methods
Microarray data obtained
Three gene expression profiles, GSE131125 (GPL 20844,
SurePrint G3 Human GE v3 8x60K Microarray 039494),
GSE148994, and GSE149055 (GPL16686, Affymetrix
Human Gene 2.0 ST Array), were obtained from the
GEO database. Both the GSE149055 and GSE148994
contained 6 samples, of which 3 were undifferentiated
stem cells and 3 were differentiated cells after 30-day
differentiation. GSE133125 contained 24 samples which
include different time points of the differentiation. We
choose the 3 undifferentiated stem cells and 3 differenti-
ated for 25 days into our analysis.

Identification of differently expressed genes (DEGs)
The downloaded platform files were matched to the
gene expression profiles by the “VLOOKUP” function of
Excel 2010. Gene differential analysis was determined to
summarize the differentially expressed genes (DEGs).
The DEG threshold of our study was |logFC| > 1 and
adj.P value < 0.01. Heatmaps of DEGs from 3 groups
were generated by GraphPad 8.0.2. Online tool Venn,
version 2.1(bioinformatics.psb.ugent.be/webtools/Venn;
version 2.1), was used to determine the common DEGs
among the three profiles.

Protein–protein interaction (PPI) network construction
and module selection
Search Tool for the Retrieval Interacting Genes (STRI
NG) database was used to construct the network of
differentially expressed genes and proteins, and Molecu-
lar Complex Detection (MCODE; version 1.31) in the
Cytoscape (version 3.8.0) was used to analyze modules
in the network.

GO and pathway enrichment analysis construction
Both the GO and KEGG analyses were applied under
the online program Database for Annotation,
Visualization and Integrated Discovery (DAVID, version
6.8) whose subgroup of functional annotation tools can
help the researchers to understand the biological mean-
ings about the selected genes. Gene Set Enrichment
Analysis (version 4.0.3) was used to verify whether DEGs
showed statistical significance in one phenotype or
pathway based on the expression profiles.

Isolation and cultivation of ADSCs
An 8-week-old New Zealand white rabbit (Animal Ex-
periment Center of Jiangsu University) weighing 2.0 kg
was sacrificed under the guidelines of the Institutional
Animal Care and Use Committee of Jiangsu University,
China. The rabbit was kept and fed in a single cage in
housing conditions. Housing was controlled in
temperature (25 °C), humidity (40–60%), and light (12 h,
light–dark cycle). Animals were observed for 1 week be-
fore surgery to confirm that they were healthy and
disease-free.
0.6% sodium pentobarbital (4 mg/kg) was injected into

the rabbits’ ear veins for general anesthesia. Then, 2%
lidocaine hydrochloride was injected into the planned
skin incision to enhance the effect of anesthesia. Prior to
placing the animals in a laminar flow chamber, the hair
was clipped at the abdominal area. An incision was
made along with the linea alba to expose the periton-
eum, and the inguinal fat was removed.
The adipose tissue was washed three times with

phosphate-buffered saline (PBS) to remove red blood
cells. The collected adipose tissue was cut into small
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pieces and transferred into one a 20-mL centrifuge tube,
and an equal volume of a 0.25% trypsin (Gibco, USA)
and 0.1% type I collagenase (Sigma, USA) mixture was
added. The tissue was incubated on shaking tables at
37 °C with constant agitation for approximately 15 min.
Afterwards, the liquid was separated into three layers:
the upper layer contained yellow oily lipocytes, the inter-
mediate layer contained adipose tissue, and the bottom
layer contained mononuclear cells. The bottom layer
was extracted and transferred into a centrifuge tube con-
taining 15% fetal bovine serum (FBS, Gibco, USA) and
high-glucose DMEM (Sigma, USA). The remaining stro-
mal fractions were treated with 3 mL red blood cell lysis
buffer (Sigma, USA) for 10 min at room temperature, fil-
tered through a 100-mm nylon mesh, and centrifuged at
1200×g for 10 min; then, the supernatant was removed.
The cell pellets were then suspended in high-glucose
DMEM containing 15% FBS (Gibco Company, St. Louis,
MO, USA), 100 U/mL penicillin, and 100 mg/mL
streptomycin (Gibco Company, St. Louis, MO, USA).
The cells were cultured at 37 °C and 5.0% CO2 in a hu-
midified incubator, with full media replacement every 3
days. When the cells reached 80% confluence, they were
digested with a mixture of 0.25% trypsin and 0.04%
EDTA (Shanghai Reagent, China) and passaged for later
use.

Flow cytometry (FCM) analysis of ADSCs
Passage-3 adherent cells were treated with 0.25% trypsin
(Gibco, USA) and washed twice with PBS. The cells were
incubated with rabbit anti-CD45 and anti-CD90 anti-
bodies (Invitrogen, USA, and Gibco, USA) overnight at
4 °C. Unbound antibodies were removed by washing
three times with PBS. After washing, the cells were incu-
bated for 45 min at room temperature in the dark with
Cy3-labeled secondary anti-goat/anti-rabbit antibody
and resuspended in PBS for FACS analysis. At least 1 ×
106 cells per sample were analyzed with a flow cytometer
(BD FACSVerse, USA). CELLQuest software was used
for the analysis.

Assessment of cell viability by tetrazolium (MTT) method
The cell viability was quantitatively determined by the
tetrazolium (MTT) method. MTT is a yellow tetrazo-
lium dye which responds to metabolic activity. The re-
ductases in living cells reduce MTT from a pale-yellow
compound to dark-blue formazan crystals. The passage-
3 ADSCs were digested and diluted, and the mixture
was transferred to a 96-well culture plate (Thermo Sci-
entific, USA) at 1 × 105 cells per well. 5-Aza was then
added to each well at concentrations of 0, 10, 20, 30,
and 40 μmol/L. Then, at 24 h, 48 h, and 72 h after induc-
tion, the absorbance which represents cell viability was
tested in each group. Firstly, the supernatant was

removed. Then, 200 μL of dimethyl sulfoxide (DMSO;
Merck, Germany) was added to each well to dissolve the
blue substance. Finally, the absorbance (OD) at 570 nm
was read using a microplate reader (Biotek, USA).

Induction of differentiation of ADSCs by 5-azacytidine (5-
Aza)
The passage-3 ADSCs were digested by a mixture of
trypsin and EDTA and diluted to single-cell suspension
of 104 cells/mL and then seeded into cell culture flasks.
Groups A, B, and C were induced by 0, 10, and 20 μmol/
L 5-Aza (Sigma, USA), respectively, for 24 h and washed
with D-Hank’s balanced salt solution (HBSS, Gibco
Company, St. Louis, MO, USA). Then, the medium was
replaced with low-glucose DMEM containing 10% FBS.
The cells in each group were incubated at 37 °C with 5%
CO2 in a conventional incubator. The medium was re-
placed with fresh DMEM and FBS every 3 days until the
test begins after 25-day cultivation.

Immunohistochemical staining and semi-quantitative
analysis
We determined the KEGG pathway of actin cytoskeleton
about the expression of actin by immunohistochemical
staining. The cells were digested and diluted 25 days
after induction and added 150 μL 4% paraformaldehyde
fixative to every slide and left them undisturbed for 30
min before adding 150 μL 0.1% Triton X-100 microplate
reader (Biotek, USA). Primary antibody α-SMA (1:200)
(Proteintech, USA), secondary antibody (1:200) (Protein-
tech, USA), and Hoechst33258 stain (C1011 Beyotine,
China) were added to each slide in a dark environment
at room temperature. Finally, we observed the cells
under a fluorescence microscope (Leica, Germany),
photographed, and stored them. ImageJ (Rawak Soft-
ware, Germany) software was used for photography and
Prism Demo software for data statistics (GraphPad Soft-
ware, USA).

Quantitative real-time PCR
Total RNA was extracted from the ADSCs after induc-
tion of 25 days using Trizol lysate (Invitrogen). The schi-
zolytic cells were then transferred into another tube
without RNA enzymes, and 200 μL pre-cooling chloro-
form (Sigma Centrifuge, Germany) was added per milli-
liter of Trizol. The centrifugation yielded RNA
sediments that were preserved in a − 20 °C surrounding
for 30 min. The sediments were washed with 75% ethyl
alcohol and centrifuged for 5 min, and the supernatant
was discarded after washing and centrifuging the sedi-
ments twice. The reverse transcription system was pre-
pared using a reverse transcription kit (Thermo
Scientific, USA) according to instructions provided in
the protocol of the kit.
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Statistical analysis
Statistical analysis was performed on Graphpad 8.0.2
and R 4.0.0. Expressed data were shown as mean ± SD.
Student’s t test was used to evaluate the statistical sig-
nificance of the different 3 groups. P value less than 0.05
was considered significant.

Results
Identification of DEGs
The three datasets were standardized, and the results are
shown in Fig. 1. The threshold of DEG determination
was that |LOG(FC)| lower than 1 and adj.P value lower
than 0.01. From the GSE131125 database, there were
5051 upregulated and 5199 downregulated DEGs. Mean-
while, 864 upregulated and 1038 downregulated DEGs
were calculated from GSE148994. As for GSE149055,
there were 1068 upregulated and 3913 downregulated
DEGs. The heat map of DEGs in each dataset is shown
in Fig. 1c–e. The DEGs in each group were mixed by
the Venn plot. From the Venn plot shown in Fig. 1a and
b, there are 824 common DEGs among the three

subgroups, of which 350 were upregulated DEGs and
474 were downregulated.

Protein–protein interaction (PPI) network construction
and sub-modules
Eight hundred twenty-four notes and 3200 edges consist
the full network shown in Fig. 2a. Meanwhile, with the
aid of the MCOD app, the top 3 modules are selected
and shown in Fig. 2b–d with 28 notes and 349 edges in
module 1, 36 notes and 237 edges in module 2, and 47
notes and 176 edges in modules 3. From the MCOD
function, 19 hub genes were selected: ASXL1, BOC,
CENPH, DIMT1, ESRP1, GLDC, HOXD3, IGFBP5, JUN,
MGST1, MRPS34, MSTN, MYOD1, MYOG, NBAS,
PLS1, POLR3G, RNF144B, and UST.

GO and pathway enrichment analysis from the DEGs
The GO analysis was processed to determine the func-
tion distributions of common DEGs from three aspects.
Figure 3a and Additional file 1: Figure 3b and 3c show
upregulated DEG enrichment including KEGG path-
ways, molecular function (MF), biological processes

Fig.1 a Venn diagram of upregulated DEGs across different profiles. b Venn diagram of upregulated DEGs across different profiles. c Heat map of
DEGs in GSE131125. d Heat map of DEGs in GSE148994. e Heat map of DEGs in GSE140955
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(BP), and cell composition (CC). In KEGG analysis, the
top 3 enriched pathways were pathway in cancer, PI3K
pathway, and actin cytoskeleton regulation. DEGs were
enriched in transcription functions in BP, extra-celluar
communications in CC, and DNA binding in MF. Mean-
while, the downregulated DEGs shown in Fig. 4a and
Additional file 1: Figure 4b and 4c are mainly distributed
in the metabolic pathway, biosynthesis of antibodies, and
cell cycle. In the upregulated function analysis, from BP
to CC and MF, MYOD1 showed significantly differen-
tially expressed. According to the KEGG analysis, the
enriched pathway “actin cytoskeleton regulation” was on
the way of myogenic differentiation. The GSEA analysis
of DEGs was processed, and the results are shown in
Fig. 5a (B, C). The DEGs were enriched in “myogenesis”
and “muscle cell development.” MyoD1 was the “core
enrichment” gene in both enriched pathways. Therefore,
we set the MyoD1 as the hub gene and “actin cytoskel-
eton regulation” pathway as the mainly enriched func-
tional pathway.

The expression of ADSC and BMSC surface markers
Specific membrane markers confirmed the identity of
ADSCs via flow cytometry. According to the results, the

ADSC results are presented in Fig. 6c, with a strong ex-
pression of CD90 at 82.8% positive and weak expression
of CD45 at 4.58% positive and the results are shown in
Fig. 6c wherein the x-axis is the fluorescence intensity
and the y-axis is the cell number.

Cell viability authenticated by MTT
The MTT results are converted into Fig. 6b to show cell
viabilities when different concentrations of 5-Aza in-
duced the cells. As is shown in Fig. 6b, 5-Aza does have
dependent and time-dependent toxic effects on ADSCs.
As the concentration of 5-Aza increased, the absorbance
was significantly decreased. The results revealed that an
increased concentration of 5-Aza showed increased toxic
effects on ADSCs. Meanwhile, when compared with dif-
ferent time points after induction, the absorbance at 48
h and 72 h were significantly decreased when compared
to 24 h after induction. The results revealed that an in-
creased induction duration of 5-Aza showed increased
toxic effects on ADSCs. It can be calculated that the
IC50 in ADSC groups were 9.178 μmol/L at 24 h after
induction. The further induce concentration of 5-Aza
was set as 0, 10, and 20 μmol/L and named as groups A,
B, and C, respectively.

Fig. 2 a Potein–protein interaction (PPI) network construction. A total of 824 DEGs were identified. b–d The significant top 3 modules in the PPI
network. Genes with blue represent downregulated genes. The size of each gene was based on the interaction analysis that bigger size indicates
more interactions
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Fig. 3 a Bubble diagram of KEGG pathway analysis and GO analysis of upregulated genes. (A) KEGG analysis of upregulated genes. (B) CC
functional classification terms of upregulated genes. (C) BP functional classification terms of upregulated genes. (D) MF functional classification
terms of upregulated genes
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Actin expression determined by immunohistochemistry
The results of the expression of actin are shown in Fig. 6d.
Actin was labeled and stained red by α-SAM, and the nu-
cleus was stained blue by Hochest, with the composed pic-
tures showing that there were just parts of the cells
expressing actin. The differentiated rate was calculated by
GraphPad 8.0.2. And the rate of each group was 0.019,
0.074, and 0.116 for groups A, B, and C, respectively. The
differentiation rate in groups B and C was significantly
upregulated when compared to group A (P < 0.05).

The content of myoD mRNA measured by RT-PCR
We further used the RT-PCR technology to detect the
content of the mRNA of myoD in each group under the
induction of 5-Aza. The results were recorded at 1.009,
2.391, and 4.876, respectively, in each group, of which
the content in group C was significantly upregulated
than that in group B (P < 0.05) whose content was also
upregulated compare to group A with significance
(P < 0.05).

Discussion
Mountainous efforts have been devoted to the research
of pluripotent stem cells in our nowadays research for
their regenerating and repairing damaged tissue effects

[18–20]. In the musculoskeletal field, the degenerated
and decreased muscle tissue has confused the clinical ef-
fects of various diseases [21, 22]. The regeneration and
remobilization of degenerated and damaged muscle tis-
sues have been a hot issue in the research [23]. Stem
cells, owning to the myogenic differentiation, provide a
possibility for the current issue. However, the specific
key pathways and genes in the myogenesis of stem cells
are still under mystic.
There stand various signaling pathways which were

counted in the myogenic differentiate process of stem
cells. Fu reported that PI3K pathway-related genes and
proteins were upregulatedly expressed in the myogenic
differentiation courses of mouse stem cells [10]. Mean-
while, upregulated p53 and actin signaling pathways were
also proved to be responsible for the myogenesis of stem
cells which were certified by Liu et al. [24] and Petschnik
[24]. Except that, p38 signaling pathway and wnt pathway
were both proved to be responsible for the process
[25, 26]. As for the myogenic genes, MRFs, myoD, myoG,
etc. [27, 28] were all reported as myogenic-related genes.
In the present study, a bioinformatics analysis was

used to analyze the key pathways and hub genes in the
myogenesis of stem cells based on 3 GEO databases.
According to the analysis, a total of 824 DEGs were

Fig. 5 a KEGG analysis and GSEA analysis based on DEGs. (A) Histogram of KEGG pathway analysis of DEGs. (B) GSEA analysis of myogenesis
pathway and their core genes. (C) GSEA analysis of muscle cell development and their core genes
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Fig. 6 Experimental certification of the hub genes and key pathways. a Cellular morphology of passage-3 ADSCs. b MTT assessment showing the
effect of different concentrations of 5-Aza on the viability of ADSCs at passage 3 after 1, 3, 5, 7, and 9 days of exposure. The x-axis is the time
(days), and the y-axis is the cell viability value. c Flow cytometry analysis results and expression of cell surface CD markers of ADSCs at passage 3.
The x-axis is the fluorescence intensity, and the y-axis is the cell number. e Immunofluorescence analysis of ADSCs. The results represent
sarcomeric-α-actinin expression in ADSCs exposed to three myogenic concentration protocols. e Myogenic differentiation rates are represented
by the percent expression of actin as measured by immunohistochemistry. f MyoD (RT-PCR) mRNA expression levels
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hunted out and applied for further GO and KEGG
analyses to certify potential biological functions and
pathways in myogenic differentiation. Except that, 111
genes from the top 3 clusters and 19 hub genes
analyzed from the MCODE method were identified
from the PPI network.
MyoD has been described as the decisive gene and

component of diverting undifferentiated cells into myo-
blasts [29, 30]. Yamamoto [31] reported that the muscle
satellite cells lacking myoD increased propensity for
non-myogenic differentiation and concluded that myoD
is a determinate factor that induced the stem cells to
muscles. Meanwhile, several researches have shown that
myoD play an important role in the myogenic process
[32–34]. In Rudnicki [35] research, knock out of myoD
and myf5 results in the prevention of formation of the
skeletal muscle in the embryo period. The study results
revealed that myoD and myof5 were determined genes
in the origination of muscle cells. In the present bio-
informatic analysis, myoD showed key effects in the
myogenesis. In GO analysis of upregulated genes, myoD
showed significance in positive regulation of myoblast
differentiation in BP, transcription factor complex in CC
and chromatin binding, transcription factor binding, and
transcription factor activity in MF. Meanwhile, the
GSEA analysis revealed that moyD were both core
enriched elements in myogenesis and muscle cell devel-
opment in the three GEO databases. The unit results
from our analysis revealed that myoD can be one of the
hub genes in the myogenic differentiating process. From
the laboratory experiments, RT-PCR results revealed
that myoD were exactly significantly upregulated in
myogenic induced stem cells.
Also, we performed the KEGG analysis to trace out

the exact relevant pathways in the myogenic differen-
tiation not only in the DEGs, but also based on the
intensive module analysis from the PPI network. From
the DEGs, the activation of PI3K, actin cytoskeleton
regulation, and p53 signaling pathway were proved to be
tightly associated with the myogenesis process. Mean-
while, the intensive analysis showed that actin cytoskel-
eton regulation pathway was also enriched. Mistriotis
[36] recovered the myogenic differentiation potential by
restoring the actin organization which revealed that
actin is necessary in the myogenic differentiation. Anna
[27] found myogenic differentiating abilities in glandular
stem cells which own the actin expression. Actin have
been a widely spread method to determine the myogen-
esis in various researches [37–39]. But few researches
have devoted to determine the specific time point for
the expression of actin during the myogenic differenti-
ation process. Based on our laboratory experiments, the
expression of actin was exactly significantly upregulated
in myogenic induced stem cells.

The study still has several limitations. Firstly, the
included GEO profiles were still not rich enough.
Secondly, the specific gene regulations in different time
points of differentiation were omitted in our study. We
still need to conduct further validated experiments to
prove our speculation in the future.

Conclusion
Our study identified a series of DEGs in the myogenic dif-
ferentiation process compared to undifferentiated stem
cells. The 19 hub genes ASXL1, BOC, CENPH, DIMT1,
ESRP1, GLDC, HOXD3, IGFBP5, JUN, MGST1, MRPS34,
MSTN, MYOD1, MYOG, NBAS, PLS1, POLR3G,
RNF144B, and UST were selected from the series
bioinformatics analysis. From the further GO and KEGG
analyses, the pathways’ own enriched genes were selected.
Our analysis revealed the hub genes and key pathways in
the myogenic differentiation process of stem cells.
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