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Abstract

Background: Despite widespread use of femoral-sourced allografts in clinical spinal fusion procedures and the
increasing interest in using femoral reamer–irrigator–aspirator (RIA) autograft in clinical bone grafting, few studies
have examined the efficacy of femoral grafts compared to iliac crest grafts in spinal fusion. The objective of this
study was to directly compare the use of autologous iliac crest with syngeneic femoral and iliac allograft bone in
the rat model of lumbar spinal fusion.

Methods: Single-level bilateral posterolateral intertransverse process lumbar spinal fusion surgery was performed on
Lewis rats divided into three experimental groups: iliac crest autograft, syngeneic iliac crest allograft, and syngeneic
femoral allograft bone. Eight weeks postoperatively, fusion was evaluated via microCT analysis, manual palpation,
and histology. In vitro analysis of the colony-forming and osteogenic capacity of bone marrow cells derived from
rat femurs and hips was also performed to determine whether there was a correlation with the fusion efficacy of
these graft sources.

Results: Although no differences were observed between groups in CT fusion mass volumes, iliac allografts
displayed an increased number of radiographically fused fusion masses and a higher rate of bilateral fusion
via manual palpation. Histologically, hip-derived grafts showed better integration with host bone than femur
derived ones, likely associated with the higher concentration of osteogenic progenitor cells observed in hip-
derived bone marrow.

Conclusions: This study demonstrates the feasibility of using syngeneic allograft bone in place of
autograft bone within inbred rat fusion models and highlights the need for further study of femoral-
derived grafts in fusion.
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Background
Spinal fusion is an increasingly common procedure used
to treat diverse pathologies arising from spinal trauma,
degenerative diseases, deformity, infection, and tumors.
Although generally successful in most patients, fusion
fails in up to 35% of cases, resulting in significant patient
morbidity, the need for additional procedures, and in-
creased health care costs [1]. Over the past decade, a
wide range of treatment options have been explored to
prevent fusion failure, or pseudarthrosis, with much of
this research employing pre-clinical animal models.
The rat posterolateral spinal fusion model has become

an increasingly popular experimental model to assess the
efficacy of novel fusion treatments [2]. Compared to other
commonly used animal models in spinal fusion research,
such as rabbits, sheep, goats, pigs, dogs, and monkeys, the
rat model presents a number of key advantages [3]. Rats
are lower cost, facilitate shorter operation times and
higher-throughput studies, and most importantly, enable
more in-depth analyses of the biology underlying fusion
due to a wider availability of cellular and molecular tools.
Various fusion therapies have been studied in rat models,
including a range of bone graft substitute and extension
materials, systemic and localized delivery of osteogenic
growth factors and/or osteoporosis therapies, and stem
cell transplantation therapies [4–14].
As autograft iliac crest bone remains the clinical “gold

standard” in fusion procedures, many rat fusion studies
employ this graft source as a control group. However,
autograft iliac crest bone is limited in supply, can be dif-
ficult to harvest at a consistent volume, and its harvest
leads to both additional surgical time per animal and
donor site morbidity. These issues can be circumvented
by employing inbred rat strains, which allow for the use
of syngeneic allografts in place of autograft bone. The
ability to employ syngeneic allografts also enables evalu-
ation of the fusion efficacy of bone grafts derived from
different skeletal sites. Remarkably, despite the wide-
spread use of femoral-sourced allografts in clinical spinal
fusion procedures and the increasing interest in using
femoral reamer–irrigator–aspirator (RIA) autograft in
clinical bone grafting procedures, the fusion efficacy of
femoral- and iliac crest-derived grafts has yet to be com-
pared in the spine [15–18]. In this study, we thus dir-
ectly compared the use of autograft iliac crest bone to
syngeneic femoral and iliac crest allograft bone in the rat
model of posterolateral lumbar spinal fusion. Since a key
element to the clinical success of autograft bone is the
presence of osteogenic cells, we also performed in vitro
analysis of the colony-forming and osteogenic capacity
of bone marrow cells derived from rat femurs and hips
to determine whether this correlated with the fusion effi-
cacy of these graft sources.

Methods
Animals
The following study was approved by the Institutional
Animal Care and Use Committee at Johns Hopkins Uni-
versity School of Medicine (RA14M347). Experimental
animals were housed in a specific pathogen-free facility
and fed a standard diet. All animals used in this study
were 6–9-week old female Lewis rats (100–180 g).

Surgical procedures
Single-level bilateral posterolateral intertransverse
process lumbar spinal fusion surgery was performed, as
described previously [19, 20], on 53 host rats divided
into three experimental groups: [A] iliac crest autograft
(n = 16), [B] syngeneic iliac crest allograft (n = 19), and
[C] syngeneic femoral allograft bone (n = 18). Briefly,
host rats were anesthetized via intraperitoneal (IP) injec-
tion of ketamine (36 mg/kg) and xylazine (4 mg/kg). The
surgical site was shaved and prepped with 70% ethanol
and povidone-iodine, and sterile gloves and masks were
used by all surgical personnel. The surgical procedure
was performed using an operating microscope or surgi-
cal loupes at × 2.5 to × 10 magnification. The L4 to L5
vertebral levels were identified by palpation and anatom-
ical landmarks. A dorsal midline skin incision was made
centered over the L4-L5 spinous process, and a self-
retaining retractor was utilized to retract skin edges.
Two paramedian fascial incisions were then made
through the lumbar fascia. The intermuscular plane was
established between the multifidus and longissimus mus-
cles to expose the transverse processes of L4 to L5 as
well as the inter-transverse membrane. Decortication of
the transverse processes and lateral pars/facet joints was
performed with a motorized burr. The appropriate graft
was placed over the entire fusion bed space (L4 to L5)
on each side of the spine.
In the autograft group [A], the midline incision was

extended to the sacrum, and dissection was taken to the
iliac crest on each side, and following subperiosteal dis-
section over the posterior aspect of the iliac crest, a
small volume of corticocancellous autograft was har-
vested with a rongeur. In the syngeneic allograft groups,
hips (the ilium down to the acetabulum) [B] and femurs
[C] were sterilely isolated from freshly euthanized litter-
mate donors and placed on ice, immediately prior to fu-
sion surgery. In most cases, harvested bone grafts were
weighed on a sterile scale. In all cases, isolated bones
were morselized with a rongeur prior to implantation to
create a homogenous distribution of corticocancellous
graft material over the fusion bed.
Fascia and skin were closed in layers with 5-0 absorb-

able sutures (Polysorb, Medtronic, Minneapolis, MN,
USA). Normal saline was administered intraperitoneally
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after wound closure as needed. Rats were maintained on
a heating pad until spontaneous ambulation was ob-
served. Buprenorphine (0.01 mg/kg) was administered
subcutaneously every 24 h for 2 days. After surgery, rats
were closely monitored for any sign of nerve palsy,
hemiparesis, or infection as well as any changes in gen-
eral condition. All animals were euthanized 8 weeks
post-surgery and spines were harvested.

Radiographical analysis
Harvested lumbar spines were imaged using a nanoS-
PECT/CT Small Animal Imager (Mediso Medical Im-
aging Systems, Budapest, Hungary). The coronal CT
images were evaluated by two authors in a blinded fash-
ion. Each fusion mass (i.e., two per animal, one on each
side) was graded as either fused (i.e., robust fusion be-
tween L4-5 was observed), partially fused (i.e., some nar-
rowing of the fusion mass between L4-5 was present), or
non-fused (i.e., there was a discontinuity of fusion mass
between L4-5). Axial cross sections were also generated
to quantitatively calculate fusion mass volume via ImageJ
software (US National Institutes of Health, Bethesda,
MD) and the Volumest plugin as previously described
[20–22].

Manual palpation
Soft tissue surrounding the L3-L6 region of harvested
spines was gently removed. Two blinded independent
observers manually palpated the fusion site (L4–L5) to
evaluate biomechanical fusion. Palpation was scored as
either bilaterally fused (i.e., no segmental motion com-
pared to the adjacent levels) or non-fused (i.e., similar
segmental motion across the index level compared to
the adjacent levels).

Histology
Harvested spine samples were fixed in 4% paraformalde-
hyde overnight, decalcified in Rapid Bone Decalcifier
(American MasterTech Scientific, Lodi, California) for 8
h, dehydrated by ethanol series (70%, 95%, 100%), and
embedded in paraffin. Serial coronal sections (10-μm
thick) across the level of the fusion masses were cut,
deparaffinized in xylene, and subsequently rehydrated in
a descending ethanol series (100%, 95%, and 70%).
Hematoxylin and eosin (H&E) staining and Masson’s tri-
chrome staining were conducted to evaluate the forma-
tion of bone, cartilage, and osteoid.

Bone marrow cell isolation and culture
Nine donor rats were euthanized, and femurs and ilia
were isolated, dissected, and cleaned in a sterile bio-
logical safety cabinet. Bones were cut into smaller pieces,
crushed using a sterile mortar and pestle, and washed
several times in chilled culture medium (Dulbecco’s

Modified Eagle Medium (DMEM; high glucose; Gibco,
USA) supplemented with 10% fetal calf serum (FCS) and
1% (v:v) penicillin–streptomycin) to isolate bone marrow
cells. The resulting cell suspension was passed through a
100-μm nylon mesh filter and subsequently underwent
hemolysis and centrifugation. Recovered nucleated cells
were enumerated, re-suspended, and either used in lim-
iting dilution assays or cultured at 37 °C in humidified
air with 5% CO2. The first media exchange was per-
formed ∼ 72 h after plating, with subsequent media ex-
changes every 2–3 days.

Limiting dilution colony-forming unit fibroblast (CFU-F)
assay
The frequency of mesenchymal progenitor cells within
hip-derived and femur-derived bone marrow was deter-
mined via limiting dilution colony-forming unit fibro-
blast (CFU-F) assays. Briefly, cultures were initiated with
freshly isolated bone marrow cells at densities of 3 ×
105, 1 × 105, 3 × 104, 2.5 × 106, and 5 × 106 cells/well in
96/well plates in culture media, with 10 replicate wells
per density per rat (n = 7 for femur, n = 6 for hip). On
day 10 of culture, plates were fixed with methanol and
stained with Crystal Violet. The total number of wells
containing at least 1 fibroblastic CFU-F colony of 10 or
more cells (representing at least three population dou-
blings) at each density was enumerated using micro-
scopic observation. CFU-F frequencies were calculated
using the online ELDA tool available at http://bioinf.
wehi.edu.au/software/elda/ [23].

Osteogenic differentiation assay
To assess the osteogenic differentiation capacity of hip-
derived and femur-derived bone marrow, passage 1 (P1)
cells from 8 donor rats were seeded in triplicate at a
density of 50,000 cells/cm2 in either osteogenic media
(DMEM (low glucose; Gibco, USA) supplemented with
10% FCS, 1% penicillin–streptomycin, 10 mM β-
glycerophosphate (Sigma), and 50 μML-ascorbic acid-2-
phosphate) or in standard culture media (as a negative
control) and cultured for 21 days. Mineralization was
assessed via alizarin red S staining. Briefly, samples were
washed twice with PBS, fixed with 3.7% formaldehyde
for 20 min, washed again three times, subsequently incu-
bated for 10 min with 40 mM alizarin red S (Sigma), and
then washed extensively before imaging. Subsequently,
alizarin red S was eluted from stained cultures for quan-
tification via incubation with 10% acetic acid at room
temperature with shaking for 30 min, followed by cell
scraping and transfer to Eppendorf microcentrifuge
tubes. The resulting samples were vortexed for 30 s,
heated at 85 °C for 10 min, incubated on ice for 5 min,
and subsequently centrifuged at 20,000×g for 15 min.
Two hundred microliters of the resulting supernatant
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was transferred to a new microcentrifuge tube and neu-
tralized with 75 μl of 10% ammonium hydroxide. One
hundred fifty microliters was transferred to a 96-well
plate, and absorbance was measured at 405 nm using a
microplate reader (PerkinElmer VICTOR3).

Statistical analysis
In the case of three experimental groups (e.g., compari-
son of graft weights, CT volumes), intergroup compari-
sons of continuous variables were performed via one-
way ANOVA (parametric) or Kruskal-Wallis tests (non-
parametric), while categorical data sets were tested via
the χ2 test. In the case of two experimental groups (e.g.,
comparison of cell yield, alizarin red staining), inter-
group comparison was performed via paired Student’s t
test. All reported p values are 2-sided, and p values <
0.05 were considered to be statistically significant. All
statistical analyses were performed using GraphPad
Prism 6.0 (La Jolla, CA, USA) with the exception of

analysis of CFU-F frequency, which was performed using
the online ELDA tool available at http://bioinf.wehi.edu.
au/software/elda/ [23].

Results
Fusion assessment
Rats recovered well from surgery and did not exhibit any
significant complications. There was no significant dif-
ference among the mean pre-implantation graft weights
which were 0.151 ± 0.092 g, 0.175 ± 0.064 g, and 0.209 ±
0.048 g for grafts derived from autograft hip, allograft
hip, and allograft femur, respectively (p = 0.113, Fig. 1a).
Analysis of microCT images yielded average fusion

mass volumes of 13.3 ± 8.9 mm3 in the autograft group,
23.2 ± 21.6 mm3 in the iliac allograft group, and 18.0 ±
7.2 mm3 in the femoral allograft group (Figs. 1c, and 2).
There were no statistically significant differences among
these groups (p = 0.140). However, radiographic scoring
of fusion masses (Figs. 1b, and 2) revealed that, while

Fig. 1 Fusion assessment. Comparisons of a pre-implantation graft weight, b number of CT fusion scored masses, c CT volumes of fusion masses,
and d number of fused animals via manual palpation. CT fusion was scored as either fused if robust fusion between L4-5 was observed, partially
fused if some narrowing of fusion mass between L4-5 was present, and non-fused if there was a significant discontinuity of the fusion mass. CT
volumes of fusion masses were calculated using the Volumest plug-in for Image J. Animals were scored via manual palpation as bilaterally fused
(little to no motion across the operated joint) or non-fused (no reduced motion across the operated joint compared to the next upper level).
Data presented as mean ± SEM. For graft weight: iliac crest autograft (n = 12), syngeneic allograft hip (n = 14), and syngeneic allograft femur (n =
14). For all other assessments: iliac crest autograft (n = 16), syngeneic allograft hip (n = 19), and syngeneic allograft femur (n = 18)
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none of the fusion masses in the autograft group or allo-
graft femur group exhibited full radiographic fusion, 10.5%
of fusion masses in the iliac autograft group fully fused (p =
0.043). Partial radiographic fusion was observed in 25.0%,
26.3%, and 41.7% of fusion masses in the autograft, iliac allo-
graft, and femoral allograft groups, respectively (p = 0.043).
Similarly, manual palpation analysis of fusion masses indi-
cated that iliac allografts yielded the highest bilateral fusion
rates with 31.6% bilaterally fused, compared to 6.3% in the
autograft group, and 5.6% in the femoral allograft groups
(Fig. 1d) (p = 0.043).
Histology revealed that the iliac auto- and allograft

groups displayed zones of osteointegration between
grafts and both transverse processes more often than the
femoral allograft group (Fig. 3). Increased osteoid depos-
ition, number of osteoblasts, and osteocytes were ob-
served within the fusion masses of the hip-derived graft
groups, while the femur-derived graft group exhibited
significant osteoid deposition but lower cellularity. Fu-
sion masses from the hip-derived graft groups also
showed more extensive areas of bone marrow than those
from the femoral allograft group.

Cellular analysis
Whole femurs yielded more nucleated cells than ilia
(5.73 ± 1.86 × 107 vs. 4.64 ± 1.07 × 107 cells, p = 0.030;
Fig. 4a). However, limiting dilution CFU-F analysis dem-
onstrated a higher frequency of mesenchymal progeni-
tors in hip-derived than femur-derived bone marrow cell
populations (1/85,292 cells vs. 1/258,838 cells, p = 0.015;
Fig. 4b). Hip- and femur-derived bone marrow mesen-
chymal progenitors displayed similar osteogenic

differentiation capacity, as alizarin red S staining indi-
cated no significant differences (p = 0.469; Fig. 4c, d).

Discussion
This is one of the first studies to directly compare the ef-
ficacy of femoral vs. iliac allograft, as well as autograft
vs. allograft bone, in a rat spinal fusion model. Although
no statistically significant differences were observed be-
tween grafting groups in terms of initial graft weight or
fusion mass volume, iliac allografts were found to yield
both significantly more fully fused fusion masses via CT
scoring and a significantly higher rate of bilateral fusion
via manual palpation. The higher CT and palpation fu-
sion rates observed in the iliac allograft group compared
to the corresponding iliac autograft group were poten-
tially related to the higher fusion mass volume (23.2 ±
21.6 mm3 vs. 13.3 ± 8.9 mm3) shown in the allograft
group, even though this increase was not statistically sig-
nificant due to high variability. Another probable con-
tributing factor is the slight difference in overall graft
compositions, as the syngeneic hip allografts were de-
rived from the whole ilium (including elements of the
acetabulum), while the autografts consisted of the iliac
crest alone, thus leading to possible differences in
cortical-to-trabecular ratios as well as total cellular com-
position and concentration. Interestingly, the greater CT
and palpation scores seen in the allograft hip group
compared to the femoral group were reflected in the
histological observations of better integration with host
bone and increased osteoblasts and osteocytes in hip-
derived fusion masses in contrast to those derived from
femoral grafts.

Fig. 2 Representative renderings of μCT images. Autograft hip (a, left), allograft hip (b, center), and allograft femur (c, right) grafting groups. Bone
formation in the intertransverse space was seen in each experimental group (yellow dashes surrounding only the newly formed bone located in
the area between transverse processes). Although allograft hip (b) yielded higher fusion mass volumes, this difference was not statistically
significant. Hip-derived fusions tended to appear as single intertransverse masses, while femoral allografts exhibited bone formation with a
scattered pattern
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The histological differences in the study were echoed
in our in vitro analyses. Hip-derived bone marrow cells
exhibited a higher CFU-F frequency than femur-derived
populations, thus indicating a higher concentration of
the osteogenic progenitor cells than can differentiate

into osteoblasts and osteocytes. This increase in hip-
derived mesenchymal progenitor cell frequency also
likely contributed to the improved integration with host
bone observed in hip graft-derived fusion masses, as
mesenchymal progenitor cells are known to recruit host

Fig. 3 Representative histological images of fusion masses. Hematoxylin-eosin (a, c, e) and Masson’s trichrome (b, d, f) staining (× 2.5, × 10, and
× 20 magnification, respectively) of representative fusion areas (yellow dashed lines) from autograft hip (a, b), allograft hip (c, d), and allograft
femur (e, f) groups. Unlike the allograft femur group (e, f), fusion masses arising from hip-derived grafts (a, b, c, d) exhibited bone formation on
both adjacent transverse processes (stars). Within the intertransverse space in hip-derived graft groups (a, b, c, d), bridging osteoid (*) with a high
number of osteoblasts on the surface (black arrows) and abundant osteocytes within lacunae (black arrowheads), as well as incipient bone
marrow (+) in the center of the fusion masses were observed. Black bar in all images represents 1 mm
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cell migration via paracrine mechanisms and improve
bone repair [24]. The bone-forming capacity of the hip-
and femur-derived bone marrow progenitor cells, how-
ever, was found to be similar. There were no differences
in osteogenic differentiation in vitro between P1 bone
marrow cells derived from either bone marrow popula-
tion, and histology indicated that both hip- and femur-
derived graft groups yielded osteoid deposition within
fusion masses in vivo.
The increased CT fusion scores observed in this study

for syngeneic iliac allograft compared to autograft bone is
in contrast to several clinical fusion studies which also
used radiographic or CT measures of fusion to compare
autograft to frozen allograft [25, 26]. For example, recent
meta-analyses by several groups have found comparable
lumbar fusion rates between patients treated with allograft
and autograft iliac crest bone, with no significant differ-
ences in disability or pain scores [27, 28]. While this dis-
crepancy between our observations in a preclinical animal
model and clinical studies may be due to differences in
species, the fresh and syngeneic nature of the allografts
used in this study may also be contributing factors.
Although autologous iliac crest bone remains the “gold

standard,” femoral-sourced grafts have been commonly
used in spinal fusion and bone grafting procedures. In

clinical fusion procedures, femoral ring and femoral
dowel allografts have been widely employed as osteocon-
ductive structural grafts in interbody procedures [29–
33], while femoral head allograft has been successfully
used in interbody [16, 34–36], and posterolateral lumbar
procedures [15, 17]. With increasing interest in the use
of femoral reamer–irrigator–aspirator (RIA) bone auto-
graft, a number of clinical studies have recently com-
pared the efficacy of RIA and iliac crest autograft in
nonunion, posttraumatic segmental bone defect, or ankle
fusion patients and have observed comparable [37–40],
or increased union rates and times to union [41]. Fem-
oral RIA autograft has also been successfully used in
clinical interbody and posterolateral fusion procedures
[42, 43]. Our study, which is the first to directly compare
femur- and hip-derived bone grafts in spinal fusion, sug-
gests that femur-derived grafts at least perform compar-
ably to autograft hip-derived grafts in rats.
Since a key element to the clinical success of autograft

bone is the presence of osteogenic cells, we compared
the colony-forming and osteogenic capacity of bone
marrow cells derived from the femur and ilium. Similar
to our observations, previous animal studies in dogs and
pigs observed higher CFU-F frequency in the bone mar-
row derived from the iliac crest than from the femur

Fig. 4 Cellular analyses. a Total nucleated cell yield from hips (gray bar) and femurs (black bar) (n = 9). b Limiting dilution analysis of osteogenic
progenitor cells within bone marrow isolated from hips (squares) and femurs (circles). The fraction of wells without colony-forming unit fibroblast
(CFU-F) colonies was plotted against the number of cells inoculated. Colonies were evaluated on day 10 (n = 7 for femur, n = 6 for hip). c
Mineralization of hip-derived (left) and femur-derived (right) cells was qualitatively assessed via alizarin red (AR) staining, and representative
images are presented. Passage 1 cells were cultured in osteogenic media for 28 days. d Quantification of AR staining intensity (after solubilization)
from hip-derived (gray bar) and femur-derived (black bar) osteogenic cultures (n = 8). Data presented as mean ± SEM
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[44, 45]. Comparisons of marrow-derived mesenchymal
cells from human ilia and femurs, however, have re-
vealed conflicting results, with some yielding similar
properties [46–51], while others have observed higher
concentrations of osteogenic progenitors in marrow
from the iliac crest [52, 53] or from the femur [54, 55].
These seemingly contradictory results may largely be
due to differences in study design, particularly: the isola-
tion methods used; the specific regions of the femur and
hip from which cells are isolated, e.g., proximal vs. distal
femur, iliac crest vs. anterior superior iliac spine; and the
patient populations under investigation.
One of the key limitations of this study was the high

variability observed, particularly in the CT fusion vol-
umes. While it is possible that subtle differences in sur-
gical technique may have influenced this variation, the
range in age and weight of the animals used as donors
and hosts is a more likely contributing factor, as our pre-
vious meta-analysis of rat fusion models showed an asso-
ciation between animal age and/or weight and fusion
outcomes [2]. Another potential source of variability, es-
pecially in the allograft groups, is the possibility that
there were slight within group differences in implanted
graft composition; for example, one animal may have re-
ceived more of the epiphysis portion and another more
of the diaphysis portion of the femur. Studies in humans,
for example, have shown that the proximal femur con-
tains bone marrow with a higher concentration of osteo-
genic CFU-F than the distal femur [51]. Although the
observed rates of fusion in this study were low compared
to several previous rat studies, our allograft hip fusion
rate was comparable to the only other study to use
freshly isolated iliac allograft, which observed manual
palpation fusion rates of ~ 40% in Sprague-Dawley rats
[8]. Possible reasons for the lower fusion rates observed
in this study include the stringency of our fusion assess-
ment criteria (i.e., only counting solid bilateral fusion)
compared to previous studies; the amount of bone graft
that we implanted may not have been sufficient to yield
higher fusion rates; and rat strain differences in bone
healing. In order to optimize the syngeneic allograft rat
lumbar fusion model, future studies will control more
carefully for these factors, using a tighter age and weight
range in donor and host rats, and will examine increas-
ing volumes of bone graft, site-specific bone graft re-
gions (i.e., epiphysis vs. diaphysis), and a wider range of
donor bone types.

Conclusions
Despite limitations, this study demonstrates that
employing inbred rat strains enables syngeneic allograft
bone to be used successfully in place of autograft bone
in lumbar fusion studies, thus reducing donor site mor-
bidity and surgical time in host animals. Furthermore,

syngeneic allograft was shown to perform comparably or
superiorly to autograft bone in the rat fusion model.
More importantly, as the first study to compare freshly
isolated hip and femur-derived bone grafts in a spinal fu-
sion model, we demonstrated that while femoral grafts
exhibited similar CT fusion mass volumes, iliac grafts
displayed both a higher rate of solid radiographic fusion
as well as bilateral fusion via manual palpation. In our
rat model, this increase in mechanical fusion was associ-
ated with superior histological integration with host
bone, which was likely connected to the higher observed
concentration of osteogenic progenitor cells in hip-
derived bone marrow. These results suggest the need for
further comparison of femur-derived grafts, such as RIA
femoral autograft, and iliac crest grafts in the context of
spinal fusion.
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