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in two different locations, thus obtaining 10 measure-
ments (expressed in terms of modulus and phase). After
each measurement, the probe was washed with saline
solution (0.9% sodium chloride) and wiped with a piece of
gauze. During the measurements, the probe was kept in
contact with the tissue surface by a constant force and
removed after completing each measurement. The bio-
electrical impedance measurements were also repeated by
three experienced surgeons at a room temperature of
25 °C to minimize the measurement error.

Analysis
The bioelectrical impedance values were downloaded
into a Microsoft Excel spreadsheet and transferred to
IBM SPSS Statistics version 22 (SPSS, Inc., Chicago, IL,
USA) for statistical analyses. Data were shown as mean ±
standard deviation (SD). As impedance data were not
normally distributed, nonparametric statistical analyses
were performed on modulus and phase to investigate
the significance of the differences among the tissues.
The comparison was performed along the entire fre-
quency spectrum on the in vivo data by dividing it into
two groups: annulus fibrosus, endplate cartilage, sub-
endplate cortical bone, and PLL; PLL, dura mater, spinal
cord, and nerve root. Statistical Kruskal-Wallis one-way
analysis of variance was performed as post hoc tests.
The level of significance was set at p< 0.05 for all statis-
tical analyses.

Results
The global behavior of the measurements on the six
mini-pigs was managed and analyzed. The following
graphs (Figs. 3 and 4) show the mean value of each tissue
group, considering the 60 sets of measurement values,
with the respective SD of modulus and phase along the

whole frequency spectrum. Tables 2 and 3 show this in
more detail.
In general, a marked demarcation among the values of

the different tissues was found, although modulus and
phase did not present the same rate of variation with fre-
quency. The behavior of the tissues in modulus and
phase was different within the first group. For example,
for the former, the values varied between sub-endplate
cortical bone and annulus fibrosus, while, in the latter,
variations were seen between sub-endplate cortical bone
and PLL. Nevertheless, within the second group, for
both modulus and phase, the bioelectrical impedance
values varied between the spinal cord and nerve root.
Additionally, the same changing trend that the modulus
and phase values decreased with increasing frequency
was repeated in every tissue.
Differences in bioelectrical impedance were statistically

significant in 42 tissue pairs (p< 0.05 for either modulus
or phase or both) within the former group (Fig. 5) and
42 (p< 0.05 for either modulus or phase or both) within
the latter group (Fig. 6). For the first group, 42 compari-
sons were statistically significant in phase, 39 in modu-
lus, and 39 in both. There were no cases where a tissue
could not be discriminated either in modulus or in
phase. For the second group, 37 comparisons were sta-
tistically significant in modulus, 41 in phase, and 36 in
both. In general, within each group, over the frequency
range of 200–3000 kHz, the two tissues can be distin-
guished using either the modulus, phase, or both.

Discussion
To the best of our knowledge, this is the first study to
explore if bioelectrical impedance (modulus and phase)
would be helpful in discriminating PLL and dura tissues
in ACDF surgery. Our data suggest that, within each
group, it is always possible to discriminate one tissue
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Fig. 3 Bioelectrical impedance at different frequencies of modulus and phase: mean ± standard deviation data of annulus fibrosus, endplate
cartilage, sub-endplate cortical bone, and posterior longitudinal ligament
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knife-type structure make it suitable to be integrated with
the surgical robot or minimally invasive devices and work in
a limited surgical field during PLL resection. The bioelec-
trical impedance information acquired from the sensor can
be an auxiliary channel for the surgeons to discriminate tis-
sue types without any previous knowledge of the tissue
properties, which is valuable not only in traditional open
surgery but also in RMIS.
Several limitations of this study should be mentioned.

Although the contact force of electrodes had been kept
as constant and gentle as possible, an appropriate range
of force was needed to prevent the tissue from damage.
In the future, this problem can be solved by integrating
with the specially designed mechanism that can produce
a constant output force. Additionally, tissue discrimin-
ation based on bioelectrical impedance had been verified
within the frequency range of 200–3000 kHz; however,
whether it is feasible along other frequency range needs

further investigation. Finally, experiments on other
animal species, cadavers, or in a clinical scenario are
warranted.

Conclusions
At certain frequency points, the modulus and phase of tis-
sues relevant to disc removal and PLL resection in ACDF
surgery are significantly different. The system used in this
study has the potential to provide additional feedback via
biomedical impedance to facilitate safe decompression in
ACDF surgery, especially in RMIS.
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Fig. 6 Comparison within tissues (posterior longitudinal ligament, dura mater, spinal cord, and nerve root) over the whole frequency range. The
statistical significance is defined by critical values of the post hoc test
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