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Abstract

Background: Unicompartmental knee arthroplasty is an established treatment option for anteromedial
osteoarthritis. However, large registry studies report higher rates of aseptic loosening compared to total knee
arthroplasty. The objective of this study was to assess the impact of bone density on morphological cement
penetration. Moreover, an alternative regional bone density measuring technique was validated against the
established bone mineral density assessment.

Methods: Components were implanted on the medial side of 18 fresh-frozen cadaver knees using a minimally
invasive approach. Bone density has been quantified prior to implantation using Hounsfield units and bone mineral
density. Morphological cement penetration has been assessed in different areas and was correlated with local bone
density.

Findings: A highly significant correlation between Hounsfield units and trabecular bone mineral density was
detected (r=0.93; P <0.0001), and local bone density was significantly increased in the anterior and posterior area
(P=0.0003). The mean cement penetration depth was 1.5 (SD 0.5 mm), and cement intrusion into trabecular bone
was interrupted in 31.8% (SD 23.7%) of the bone-cement interface. Bone density was correlated significantly
negative with penetration depth (r=—-0.31; P= 0.023) and positive with interruptions of horizontal interdigitating
(r=+033; P=0.014). Cement penetration around the anchoring peg was not significantly correlated with bone
density.

Interpretation: Areas with high bone density were characterized by significantly lower penetration depths and
significantly higher areas without cement penetration. Anchoring pegs facilitate cement intrusion mechanically.
Regional quantification of bone density using Hounsfield units is a simple but valuable extension to the established
determination of bone mineral density.
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Background

In view of excellent functional results, good long-term
survivorship, and advantages in terms of cost efficiency,
unicompartmental knee arthroplasty (UKA) can make a
significant contribution to meet the rapidly growing de-
mand for knee arthroplasty [1-5]. Since the aseptic loos-
ening of the tibial component, misinterpretation of
radiolucent lines and cementation errors remain major
reasons for revision in UKA [6-9]; improvements of the
interface between prosthesis, cement, and trabecular
bone, as well as the optimization of minimally invasive
surgical techniques, are of outstanding importance [10,
11].

While former studies focused on levers to improve
cemented fixation that can be controlled by the surgeon,
such as bone bed preparation, cementing technique, or
surgical access [11-17], little is known about the impact
of bone density, which can hardly be altered, on cemen-
ted tibial fixation in UKA.

The goal of this study was to quantify the impact of
regional bone density on different morphological aspects
of cement penetration in minimally invasive UKA. In
addition, the reliable applicability of Hounsfield unit
(HU) measurement, which is a simple but precise tool
for local quantification of bone density, has been vali-
dated against the established method of bone mineral
density (BMD).
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Methods
Eighteen fresh-frozen human cadaver knees (age 72.2,
SD 14.9years, 4 females, 14 males) were used for this
in vitro study. CT scans (Sensation 64 Somatom, Sie-
mens AG Munich, Germany) of all tibiae were acquired
prior to the implantation in order to exclude specimens
with osseous abnormalities and to quantify BMD. Cor-
tical and trabecular BMD [milligrams (Ca**HA)/milli-
liter] were determined using Syngo Osteo CT software
(Siemens AG Munich, Germany) on the proximal tibia
in seven layers each in 3 mm, using a relative calibration
to water (0 HU) and calcium (200 HU). Correspond-
ingly, local bone density was determined by measuring
the mean HU of six regions of interest (ROI) per slice,
1.6 cm? each, in the anterior, central, and posterior area
of the medial and lateral tibial plateau (Fig. 1). To cap-
ture the relevant area of implantation, both evaluations
started in the most cranial slice without visible cortical
bone or subchondral sclerosis and assessed 2 cm distally.
UKAs were implanted on the medial side of each knee
via a minimally invasive approach without eversion of
the patella. Tibial resection was performed with an ana-
tomical posterior slope and the removal of the cartilage
in all areas of the tibial plateau was ensured intraopera-
tively. Bone preparation was performed using pulsatile
jet lavage (Pulsavac Plus, Zimmer Biomet, USA) and a
high viscosity bone cement (Palacos® R 20 g powder/10
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Fig. 1 The mean Hounsefield units of six ROIs of 1.6 cm? each, which were strictly located within the trabecular bone, were measured on each
CT slice for correlation with mean BMD. The measurement of local bone density in the anterior (red), central (blue), and posterior (yellow) area of
the medial tibial plateau-based mean Hounsfield units was used for correlation analysis between bone density and cement penetration pattern
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ml monomer, Heraeus Medical Wehrheim, Germany)
was mixed manually for cemented fixation. The implant-
ation of the components was performed according to
the manufacturer’s instructions (Univation® X, Aesculap
Tuttlingen, Germany) and all operations were performed
by one experienced orthopedic surgeon. The knees were
then positioned in 45° flexion and a spacer was inserted
to ensure adequate pressurization during polymerization
of the cement.

Afterwards, the surrounding soft tissue was removed
and the medial tibial plateaus with the cemented tibial
trays were dissected (sagittal plane, at the eminentia
intercondylaris; transversal plane, 20 mm below the tibial
plateau). The 18 specimens were then imbedded in
Technovit 4004 (Technovit 4004, Kulzer GmbH, Hanau,
Germany) and cut into 10 frontal slices of identical
thickness. Scans with a resolution of 100 pixel/mm made
the implant—cement—bone interface accessible for mor-
phologic evaluation using Adobe (Photoshop CS6,
Adobe, San Jose, USA). Morphologic indicators of ce-
mentation were evaluated on both sides of nine cuts
through the specimen. The anterior three serial cuts
through the implant—cement—bone interface represented
the anterior area, the central three cuts represented the
central area and the posterior three cuts represented the
posterior area of the medial tibial plateau.

The average total cement thickness was calculated
by dividing the total area of bone cement by the
length of the prosthesis (white and purple area, black
arrow in Fig. 2). Cement mantle thickness was calcu-
lated by dividing the cement area above the
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resection line (white in Fig. 2) by the length of the
cement-prosthesis interface (defined as contact be-
tween the white area and tibial component). Cement
penetration depth was calculated by dividing the ce-
ment area below the resection line (purple in Fig. 2)
by the length of the prosthesis. Furthermore, the
length proportion of the horizontal underside of the
tibial component (zone 1) without visible cement in-
trusion into the trabecular bone was determined
(Fig. 3). Finally, the proportion of interfaces with vis-
ible cement interdigitation in the area adjacent to
the anchoring peg (zone 2) of the prosthesis was
documented.

For correlation with morphological cement penetra-
tion, bone density is quantified using HU, as this allows
selective density measurements in the individually inves-
tigated subareas of the tibial head.

Results in the text are presented as an arithmetic
mean, standard deviation, and minimum and maximum
of the evaluated values. To calculate Pearson’s correl-
ation coefficient between BMD and HU, all six ROIs per
CT slice were taken into account. Differences in bone
density in the different ROIs were analyzed using re-
peated measures ANOVA and Bonferroni’s multiple
comparison test. The effect of bone density on cement
penetration was examined by calculating regression lines
and Pearson’s correlation coefficients based on all 54
ROIs. All tests were two-sided and a P value of 0.05 was
considered significant. Statistical analysis was performed
with GraphPad Prism 5 (GraphPad Software, Inc., La
Jolla, USA).

Fig. 2 Image of the prosthesis-cement-bone interface: white, cement mantle (above resection line); purple, cement penetration (below resection
line). The area adjacent to the anchoring peg was defined additionally as “zone 2"
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Fig. 3 Area without visible cement penetration of bone cement into the trabecular bone in zone 1 (arrow)

Results

The mean cortical BMD was 327.7 (SD 99.4 mg/ml)
[185.8-535.6], mean trabecular BMD was 103.6 (SD
29.5 mg/ml) [67.4-183.0], and mean HU was 154.0 (SD
47.8) [92.0-252.8]. Between the trabecular BMD and
HU, a highly significant correlation was detected with a
correlation coefficient of r=0.93 (P < 0.0001; Fig. 4). The
correlation between the cortical BMD and HU was r =
0.65 (P = 0.0037). The correlation between age and HU
was not significant (r = - 0.36; P = 0.1414).

The mean HU was 168.0 (SD 65.6) [83.1-294.1] in the
anterior, 124.1 (SD 41.8) [55.2—215.7] in the central and
175.0 (SD 56.2) [94.3—295.5] in the posterior area of the
medial tibial plateau, demonstrating significant differ-
ences (P = 0.0003). Differences between the anterior and
central and between the central and posterior area were
significant (P < 0.05; Fig. 5).

Based on all 54 ROIs, the mean total cement thickness
was 2.1 (SD 0.6) [0.9-3.8], mean cement mantle thickness
was 0.8 (SD 0.6) [0.0-2.8], and mean cement penetration
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Bone density
in the tibial head

Fig. 5 Anterior-posterior development of HU. Whiskers, 10-90 percentile
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depth was 1.5 (SD 0.5) [0.6-2.7]. Only the penetration
depth was significantly negative correlated with HU (r = -
0.31; P = 0.023; Fig. 6). On the contrary, there was no sig-
nificant correlation between the total cement thickness
(r=-0.24; P= 0.081) or cement mantle thickness (r=
0.05; P = 0.70) and bone density (HU).

The average interface proportion without cement pene-
tration in zone 1 was 31.8% SD 23.7% [0.0-80.0%]. The
correlation between HU and the proportion without ce-
ment penetration in zone 1 was r=+0.33 (P= 0.014;
Fig. 7). Figure 8 shows an SEM image of an implant—ce-
ment-bone interface, that provides a morphological
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example of an extended area without cement intrusion in
zone 1 (specimen no. 9, third cut post; approx. 164 HE).

The manifestation of visible cement penetration in the
area directly adjacent to the anchoring pegs (zone 2)
does not significantly correlate with bone density (r=
0.24; P = 0.3288). The absence of penetration in zones 1
and 2 does also not correlate significantly with each
other (r=0.26; P = 0.3044).

Discussion

In knee arthroplasty, achieving primary stability is cru-
cial to prevent micromotions, which can lead to a vi-
cious circle of membrane formation, micro fractures,
radiolucent lines (RLL), and aseptic loosening [18-21].
Both RLLs and aseptic loosening occur earlier on the
tibial side than on the femoral side [22, 23], which em-
phasizes the importance of solid cementation in tibial
UKA.

Our results show relevant areas without cement pene-
tration at the bone-cement interface whose occurrence
is positively correlated with bone density. In addition,
the average cement penetration depth appeared reduced
by high bone density. Interestingly, this relationship be-
tween bone density and penetration was not found in
the surrounding area of the anchoring pegs.

As bone cement has no adhesive properties, fixation is
rather achieved by its intrusion into the microstructure
of the trabecular bone and its area-wide mechanical
interlocking than by a superficial conformity with irregu-
larities of the bone bed [19, 24—26]. In other words, the
primary stability of the cemented fixation, measured as
resistance to shear and tensile forces, depends on

cement penetration into the adjacent trabecular bone,
which is therefore is often used as an indicator of bio-
mechanical stability [13, 24, 26—30]. Nagel et al. demon-
strated that a mean tibial penetration depth of at least
1.1 mm is required to maximize the fixation strength
[31]. The mean cement penetration depth registered in
this study was 1.5 (SD 0.5) mm, which is well above this
lower limit of penetration depth and in line with former
studies [13, 32].

The extent of cement penetration depth results from
the interaction between the cementing technique, ce-
ment properties, and bone density. Concerning the
cementing technique, it is generally accepted that clean-
ing of the trabecular resection surfaces is a prerequisite
for adequate cement penetration [13, 15, 32-34]. The
application of cement to a dry trabecular surface that is
free of blood, fat, bone marrow, and debris improves the
interlocking of the cement and thus the fixing strength
[35-37]. With regard to bone cement, penetration tends
to increase with the viscosity of the cement [25, 38—40].

In contrast to the previously mentioned aspects, bone
density is a factor that cannot be easily controlled by the
surgeon. Penetration is expected to decrease with in-
creasing bone density or decreasing porosity of the bone
[26, 28, 41]. However, the specific effect of bone density
in minimally invasive implanted UKA with limited intra-
operative access, thus restricted the potential of bone
preparation and component impaction, remains unclear.

The presented assessment of cement penetration on serial
cuts and the quantification of bone density via BMD, which
has been adapted for extremities in other studies, can be
regarded as well-established methods [15, 19, 42—45]. In
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addition, bone quality was measured via HU in the anterior,
central, and posterior part of the tibial plateau.

The highly significant correlation between HU and tra-
becular BMD underlines the applicability of HU for
quantification of bone density (r=0.93; P < 0.0001). The
use of HU appears attractive as it enables a precise re-
gional quantification of trabecular bone density. In this
analysis, it was fundamental for the identification of the
significantly increased average bone density in the anter-
ior and posterior area. In combination with the poorer
accessibility for jet lavage and the more difficult pressure
application, it uncovers the posterior tibial area, analo-
gous to the posterior femoral condyle, as a potential
weak point of minimally invasive UKA implantation [11,
15]. As regional HU measurements focused on trabecu-
lar areas, the less positive correlation between HU and
cortical BMD seems plausible. The negative correlation
between age and bone density did not reach the level of
significant, which might be attributable to the rather low
case number.

Based on three ROIs per specimen and the analysis of
18 UKAs, the morphologic correlation analysis com-
prises 54 data points. Our results demonstrate a signifi-
cantly negative correlation between bone density and
penetration depth (r=-0.31). These values correspond
to the correlation coefficient reported by Askew et al.
(r=-0.24) [28]. To about the same extent, bone density
restricts area-wide cement intrusion into the trabecular
bone (r=+0.33). Figure 7 shows how the high bone
density prevents the cement from penetrating into the
interspaces of the bone trabecula and thus prevents a
planar interlocking.

The question to what extent the minimally invasive
surgical approach, despite the use of jet lavage, impedes
the opening of the bone substance, or if available instru-
ments do not allow optimal pressurization of the pros-
thesis against the bone surface, especially in the
posterior area, cannot be answered with the available
date. In any case, we recommend the use of drill holes
or special devices for microfracturing to prepare anchor
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wholes during the implantation of UKA in a minimally
invasive approach.

Anchoring pegs on the undersurface of the prostheses
improve cement penetration largely independent from
bone density. Our results demonstrate that in contrast
to zone 1 (Fig. 8), there is no significant correlation be-
tween bone density and cement penetration around the
anchoring peg in zone 2. Thus, a mechanically promoted
penetration in zone 2 may be assumed. This observation
and the low correlation between penetration around the
peg and underneath the horizontal part of the compo-
nent prove the sense of a differentiated assessment of
the two zones and might influence future prosthetic de-
sign, e.g., by adding further anchoring pegs.

Concerning cement application and pressurization,
Dorr et al. suggested manual cement application after
mixing cement for less than 3 min and preparing the
bone bed with jet lavage [46]. However, Lutz et al. stated
in an in vivo study on TKA that the widespread use of
manual cement application, despite jet lavage, is not a
reliable method to achieve sufficient cement penetration
[14]. Experimental in vitro studies also showed that
manual cement application leads to lower penetration
depths than the use of a cement gun [24]. Due to the
minimally invasive approach and the limited surgical
field, manual application of bone cement was used in
this study and might add to relevant areas without ce-
ment penetration in zone 1. In addition, the choice of a
highly viscous Palacos® R bone cement might also have
had a negative influence on penetration. Noble and
Swarts doubted that penetration depths of more than 3
mm are achievable using Palacos and a pressure of 35
kPa, even after excluding all bone specimen with closed
intertrabecular spaces [38]. These results are consistent
with the highest penetration of 2.7 mm observed in this
study.

Conclusions
Specimens with high bone density are characterized by a
significantly higher interface proportion without visible

Fig. 8 SEM image, an extended area without cement penetration in area 1. Arrows, examples of how high bone density prevents bone cement
from penetrating into the interspaces of the trabecular bone and thus prevents a mechanical interlocking
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penetration and by significantly lower penetration depths
in zone 1. In contrast, bone density does not reduce pene-
tration around the anchoring peg, probably due to mech-
anical forced pressurization. Going forward, the reported
results foster considerations of additional drill holes to
open sclerotic bone or the feasibility of pressurized ce-
ment application, additional anchoring pegs, or optimized
impaction instruments for minimally invasive procedures.
Further research is required to assess the balance of bone
density and cement penetration with regard to biomech-
anical stability.
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