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Abstract

Background: Mesenchymal stem cells (MSCs) have great potential for the repair and regeneration of bone fracture,
but their optimal origins remain controversial.

Methods: Bone marrow-MSCs (BM-MSCs) and bone-bone marrow-MSCs (B-BM-MSCs) were isolated from 12 SD
rats, and the morphology, MSC-associated markers, and proliferative capacity of these cells were compared using an
inverted microscope, flow cytometry, and CCK-8 assays, respectively. After 14 days of osteoblastic induction,
osteoblast phenotypes were detected by ALP and calcium nodule staining, and the expression of BMP-2 and
TGF-31 was observed by western blotting. Then, the rat tibia fracture model was established with 3 groups (n = 6
per group), the control, BM-MSC, and B-BM-MSC groups. Computed tomography (CT) imaging was performed to
evaluate fracture healing at weeks 2, 4, and 6. Finally, the fractured bones were removed at weeks 4 and 6, and HE
staining was performed to evaluate fracture healing.

Results: Although the 2 types of MSCs shared the same cellular morphology and MSC-associated markers, B-BM-
MSCs had a higher proliferative rate than BM-MSCs from day 9 to day 12 (p < 0.05), and the expression levels of
ALP and calcium were obviously higher in B-BM-MSCs than in BM-MSCs after osteogenic induction (p < 0.01 and
p < 0.001, respectively). Western blot results showed that the expression levels of BMP-2 and TGF-31 in B-BM-MSCs
were higher than in BM-MSCs before and after osteogenic induction (p < 0.01). In the animal experiments, CT
imaging and gross observation showed that B-BM-MSCs had a greater capacity than BM-MSCs to promote fracture
healing, as the Lane-Sandhu scores of B-BM-MSCs at weeks 4 and 6 after operation (3.00 + 0.81 and 9.67 + 0.94,
respectively) were higher than those of BM-MSCs (1.33 + 047 and 6.67 + 1.25, respectively; both p < 0.05). The HE
staining results further supported this conclusion.

Conclusions: Taken together, our study results proved that MSCs obtained by co-culturing the bone and bone
marrow from SD rats had better proliferative, osteogenic differentiation, and fracture healing capacities than BM-
MSCs, perhaps suggesting a novel way to obtain MSCs for bone tissue repair.
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Introduction

Fracture is a common surgical complication that is ex-
pensive to treat and has negative effects on individuals
and society. In addition, approximately 10% of fractures
cannot be cured in a normal way [1, 2]. Orthopedists
have adopted many solutions to promote the regener-
ation of bone tissues, among which stem cell therapy
[3-6] plays an important role. Mesenchymal stem cells
(MSCs) are a type of adult stem cell that can develop
into cells of bone, adipose, cartilage, tendon, ligament, et
cetera [7, 8]. MSCs are used as seed cells in tissue engin-
eering transplantation because of their high proliferative
capacity, multidirectional differentiation potential, low
immunogenicity, and paracrine effects [9]. At present,
the available sources of MSCs are the umbilical cords,
bone marrow, dental pulp, bone, adipose, et cetera.
However, there are currently no excellent methods for
obtaining MSCs for fracture treatment have been found
yet. For example, it is difficult to apply umbilical cord
MSCs in clinical practice due to limited sources [10, 11].
For MSCs derived from the bone marrow (BM-MSCs),
the bone marrow has a small number of MSCs and their
osteogenic potential is weaker than that of bone MSCs
(B-MSCs) [11, 12]. Similarly, adipose-derived MSCs have
worse osteogenic potential than B-MSCs [13]. Although
B-MSCs can be used as important seed cells for promot-
ing bone regeneration, large amounts of the bone iso-
lated from the body would cause serious secondary
damage, severely limiting its clinical application [13, 14].
Other approaches to MSC acquisition also face chal-
lenges in sourcing, tumorigenicity control, osteogenic
potential, et cetera [15, 16]. Therefore, it is necessary to
develop a new approach to extract MSCs with great pro-
liferative capacity and osteogenic potential from various
sources while causing minimal damage to the body.

Studies have shown that co-culture of cartilage and
MSCs can improve the chondrogenic ability of MSCs
[17, 18], and the stimulation of MSCs with fibroblast
growth factor can enhance their ability to promote frac-
ture repair of MSCs [19]. These results suggest that
MSCs interact with the environment in ways that affect
their growth. Meanwhile, the bone and bone marrow co-
exist in biological organisms, and MSCs in co-cultures
of the bone and bone marrow are more similar to en-
dogenous cells. In this study, we developed a novel way
to obtain MSCs by co-culturing the bone and bone mar-
row (B-BM-MSCs) and explored whether the acquired
MSCs are more effective at healing bone tissues.

To address this problem, 2 types of MSCs were iso-
lated from the bone marrow and from co-cultures of the
bone and bone marrow, and the cellular characteristics
and capacity for fracture healing of the 2 types of cells
were compared. Since TGF-f1 and BMP-2 play import-
ant regulatory roles in the osteogenic differentiation of
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mesenchymal stem cells [20, 21], we examined the ex-
pression of TGF-f1 and BMP-2 before and after osteo-
genic induction in both groups and further explored the
relevant mechanisms.

Materials and methods

Isolation and culture of rat B-BM-MSCs and BM-MSCs

A 6-week-old male SD rat was sacrificed with an injec-
tion of 10% chloral hydrate, and the femur and tibia
were removed and placed into a sterile Petri dish.

® To obtain B-BM-MSCs, the medullary cavity was
washed with PBS mixed with heparin sodium (0.04 mg/
ml, H8270, Beijing Solarbio Science & Technology Co.,
Ltd.) until it appeared clean of all periostea, and the total
marrow isolate was collected by centrifugation. Then,
the clean femur and tibia were cut into 3 mm x 3 mm
bone pellets and placed in a Petri dish with collagenase I
(3 mg/mL, c8150, Beijing Solarbio Science & Technology
Co., Ltd.). The dish was incubated in a cell incubator (37
°C, 5% CQO,) for 45 min [19]. At the same time, the bone
marrow sample with a cell concentration of 2 x 10%/mL
to 1 x 10°/mL was resuspended in PBS, 5 mL rat mesen-
chymal cell separation fluid (LGS1072, Tianjin HaoYang
HuaKe Biological Technology Co., Ltd.) was added to a
15 mL centrifuge tube, the cell suspension was placed
onto the separation liquid surface, and the tube was cen-
trifuged at 450xg for 30 min at room temperature. The
second layer of the milky white cell layer was placed in
another 15 mL centrifuge tube and washed twice with
PBS. Then, the cells were filtered through a filter with a
pore size of 74 pm, and the filtered liquid was collected
into a 6-cm Petri dish containing 6 mL MSC complete
medium [DMEM/High Glucose (HyClone, USA) + 10%
FBS (No. 04-001-1A, Biological Industries, Israel) + 1%
streptomycin/penicillin (100x SV30010, HyClone, USA)
+ 50 pmol/L B-mercaptoethanol (M8210, Beijing Solar-
bio Science & Technology Co., Ltd.)]. After a 45-min in-
cubation, 3 pieces of the bone were moved to the same
Petri dish, and the dish was placed into a cell incubator.
The medium was changed every 48 h, and the cells were
maintained in the same medium until they reached ap-
proximately 80% confluence. These cells were consid-
ered passage 0. Cells were then trypsinized (0.5% trypsin,
T8150, Beijing Solarbio Science & Technology Co., Ltd.)
and re-cultured for the next passage.

® To obtain BM-MSCs, the cells in the bone marrow
were obtained as mentioned above and cultured using
the same approach as that for B-BM-MSCs. The isola-
tion and culture of BM-MSCs were guided by the
methods reported by Blashki [22].

Two types of P3 MSCs were transfected with lentivirus
carrying the green fluorescent protein (GFP) gene
(multiplicity of infection = 100). After 12 h, the medium
containing the virus solution was discarded, and MSC
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complete medium was added for 2 or 3 days. The cells
were then photographed with a microscope. The sample
size was 12.

Analysis of MSC-associated markers by flow cytometry
The P3 cells were harvested and adjusted to a concentra-
tion of 1 x 10°/mL prior to staining with antibodies
against CD90 (11-0900-81), CD44 (12-0444-80), CD29
(17-0291-80), CD45 (11-0461-80), CD31 (25-0310-80)
(Thermo Fisher Scientific, Ebioscience, USA), and
CD106 (lot 130-103-684, Miltenyi Biotec, Germany).
Fluorescence-activated cell identification was performed
with flow cytometry (Beckman USA), and the data were
analyzed with CytExpert (Tree Star, Ashland, OR, USA).
The sample size was 12.

Proliferation ability of MSCs from different sources

After a 9-day cultivation, the concentration of the 2 types
of MSCs was adjusted to 2 x 10* cells/mL, and these cell
solutions inoculated in a 96-well cell culture plate with
100 pL/well. After culture for 1, 2, 3, and 4 days, 10 puL
CCK-8 reagent (FC101-03, TransGen Biotech, Beijing,
China) was added to each well, and the plates were incu-
bated at 37 °C with 5% CO, for 2 h. The OD values were
determined at 450 nm with a microplate reader (Bio-Rad,
USA). The cell proliferation rate was calculated as follows:
rate (day X) = [OD450 (day X)-OD450 (day X-1)]/OD450
(day X-1). The sample size was 6.

Osteogenic differentiation ability of MSCs from different
sources

The P3 MSCs from the 2 different sources were seeded in
6-cm dishes with 2 x 10° cells per dish. The cells were cul-
tured at 37 °C with 5% CO, for 24 h. Then, the original
medium was replaced with osteogenic induction medium
containing 107> mol/L  sodium  glycerophosphate
(MB3195, Dalian Meilun Biotech Co., Ltd.), 10~ mol/L
dexamethasone (MB1434, Dalian Meilun Biotech Co.,
Ltd), and 3 x 10™* mol/L vitamin C (MB3195, Dalian
Meilun Biotech Co., Ltd.). The induction medium was
changed every 2 days, and the cells were induced for 14
days. Then, the cells were fixed, ALP and calcium nodules
were stained with the modified Gomori Calcium-Cobalt
method (DE0001, Beijing Leagene Biotech Co., Ltd.), and
alizarin red staining (DS0002, Beijing Leagene Biotech
Co., Ltd.) was performed according to the manufacturer’s
instructions. The ratio of the positive area under each
high-power field (RPA-HPT) was used to evaluate ALP
expression and calcium nodules. The sample size was 6.

The expression of TGF-B1 and BMP-2 in the 2 types of
MSCs before and after osteogenic induction

Cell samples were isolated with RIPA buffer (RIPA:PMSF
= 100:1, R0020 and P8340, Beijing Solarbio Science &
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Technology Co., Ltd), and the total protein content was
measured with the bicinchoninic acid protein assay kit
(Thermo Scientific, Waltham, MA, USA). After the
addition of loading buffer, the samples were boiled for 5
min for protein denaturation. Then, the samples were sep-
arated by sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) in a 12% gel under a constant
voltage of 80 V for 30 min followed by a constant voltage
of 110 V until the samples reached the bottom of the
separation gel. Proteins were resolved by denaturing SDS-
PAGE followed by transfer onto a nitrocellulose
membrane. GAPDH (AB0037, Shanghai Abways Biotech-
nology Co., Ltd.) was used as the loading control. The
membranes were incubated overnight at 4 °C with primary
antibodies against TGF-f1 (1:1000, argl0002, Arigo
Biolaboratories, Taiwan, China), BMP-2 (1:500, arg65980,
Arigo Biolaboratories, Taiwan, China), and GAPDH (1:
5000). The membranes were incubated with secondary
antibodies (HS101-01 and HS201-01, Beijing TransGen
Biotech Co., Ltd.) conjugated with horseradish peroxidase
for 1 h. Target proteins were detected by an enhanced
chemiluminescence system (4AWO12-050, Beijing 4A
Biotech, Co., Ltd.) prior to development on X-ray film and
photographic imaging to visualize the results. The sample
size was 4.

Rat fracture model

Male SD rats weighing approximately 180 g to 220 g
were anesthetized with 10% chloral hydrate. The right
lower limbs were depilated with hair removal cream and
disinfected with 2% iodophor and 75% alcohol. A longi-
tudinal incision was made from the medial part 3 mm
below the tibial platform to the medial malleolus at 10
mm, and the surface fascia at the incision site was cut.
The tibia was dissected (Fig. 1a) and then cut in the
middle with a wire clamp (Fig. 1b). The process required
care to avoid damaging the fibula. The fracture area was
washed with iodine and confirmed to be fully aligned
(Fig. 1c). Then, 10 uL PBS or 3 x 10° cells (dissolved in
10 pL PBS) were injected into the fracture sites of the
control, BM-MSC, and B-BM-MSC groups with a 1-mL
syringe. Then, the surface fascia and skin were sutured,
the incision was wrapped with sterile gauze and fixed
with plaster, and the treatment outcome was evaluated
at subsequent time points. The sample size was 6.

Observation of the fracture healing process

At 2, 4, and 6 weeks after the operation, the fracture heal-
ing process was observed by computed tomography (CT)
imaging, whereas visual inspection and hematoxylin and
eosin (H&E) staining were used to evaluate the fracture
healing process at weeks 4 and 6 after the operation. The
sample size was 6.
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well aligned

Fig. 1 Rat bone fracture model construction. a The tibia was dissected with blunt tweezers. b The tibia was cut in the middle. ¢ The fracture was

Statistical analysis

The results are expressed as the mean + standard devi-
ation. Prism 5.0 (GraphPad Software Inc., San Diego, CA,
USA) was used for statistical analysis. Statistical compari-
sons among different groups were performed with one-
way or two-way analysis of variance (ANOVA). p < 0.05
indicated a statistical significance.

Results

The morphological features of B-BM-MSCs and BM-MSCs
The early-stage BM-MSCs (Fig. 2a, b) were polygon-
shaped and round, while the early-stage B-BM-MSCs
(Fig. 2e, f) were spindle-shaped, triangle-shaped, and
polygon-shaped; some cells were clustered, and others
were round and scattered. Both BM-MSCs and B-BM-
MSC:s tended to become fusiform or streamlined (Fig. 2c,
g) over time. The primary BM-MSCs reached 80 to 90%
confluence at days 14 to 16, while the primary B-BM-
MSCs reached 80-90% confluence at days 9 to 11. How-
ever, mature BM-MSCs and B-BM-MSCs shared similar
morphology (Fig. 2d, h) after GFP lentiviral transfection,
and both adopted a fusiform or streamlined shape.

MSC-associated marker expression in B-BM-MSCs and
BM-MSCs

According to the flow cytometry results, CD90 (99.18% + 0.15%),
CD44 (98.47% + 0.89%), and CD29 (99.39% + 0.36%) were
prominently expressed (> 97%) in B-BM-MSCs, whereas
CD106 (0.11% + 0.03%), CD45 (1.58% + 0.31%), and
CD31 (0.23% + 0.02%) were barely expressed (< 2%) in
B-BM-MSCs. These results were consistent with the re-
sults of BM-MSCs. These results indicated that B-BM-
MSCs were successfully separated and cultured. It could
be concluded that all the obtained MSCs were of high
purity since MSC-associated markers were highly preva-
lent among these cells in every situation (Fig. 3).

Proliferation ability of B-BM-MSCs and BM-MSCs in vitro

From 24 to 96 h, the proliferative capacity of B-BM-
MSCs was higher than that of BM-MSCs (Fig. 4a); the
corresponding cell proliferation rates on day 4 were
110.94% + 17.02% and 79.95% + 11.21% (p < 0.05). In
addition, the proliferative capacity of B-BM-MSCs was
greater than that of BM-MSCs (Fig. 4b). These cells all
showed the greatest proliferation ability from 72 to 96 h.

6days

BM-MSC

B-BM-MSC

200pm

Fig. 2 The morphological features of MSCs from different sources were observed by an inverted microscope. The early-stage B-BM-MSCs (e, f)
were spindle-shaped, triangle-shaped, and polygon-shaped, while the early-stage BM-MSCs (a, b) were polygon-shaped and round. However, the
2 types of P3 MSCs expressing GFP shared the same morphology (d, h). n = 12. Yellow arrows indicate the bone. Scale bar: 200 um. P, passage
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Fig. 3 Immunophenotyping of MSCs from different sources by flow cytometry assays. Two types of P3 MSCs were chosen for immunophenotyping.
According to the flow cytometry results, CD90 (99.18% + 0.15%), CD44 (98:47% =+ 0.89%), and CD29 (99.39% + 0.36%) were prominently expressed
(> 97%), whereas CD106 (0.11% = 0.03%), CD45 (1.58% =+ 0.31%), and CD31 (0.23% + 0.02%) were barely expressed (< 2%) in B-BM-MSCs, which was
consistent with the results of BM-MSCs. Stained cells are represented in green, whereas unstained cells are in red. n = 12.
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Fig. 4 The proliferation of MSCs from different sources was detected by CCK-8 assays. The proliferative capacity of B-BM-MSCs was greater than that
of BM-MSCs, as the cell proliferation rates on day 4 were 110.94% + 17.02% and 79.95% + 11.21%, respectively, (p < 0.05). n = 6. *p < 0.05, **p < 0.01,
**p < 0.001
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Fig. 5 a (A-D): The expression levels of ALP and calcium in MSCs from different sources were detected by the modified Gomori Calcium-Cobalt
method and alizarin red staining. b: Statistical analysis results. The expression levels of ALP and calcium were obviously higher in B-BM-MSCs than
in BM-MSCs (ALP 26.27% + 1.11% vs 19.08% + 1.23%, p < 0.05; calcium 43.05% =+ 2.63% vs 6.81% + 0.72%, p < 0.001; ratio of positive area
under each high-power field). n = 6. Magnification: x 60. Scale bar: 200 um. **p < 0.01, ***p < 0.001

Osteogenic differentiation ability of B-BM-MSCs and
BM-MSCs in vitro

The results of alizarin red staining and the modified Gomori
Calcium-Cobalt method showed considerable ALP expres-
sion and numerous calcium nodules after osteogenic induc-
tion for 14 days (Fig. 5a). The results showed that B-BM-
MSCs (RPA-HPT, 26.28% + 1.11%) induced more ALP-
stained black plaques than BM-MSCs (RPA-HPT, 19.08% +
1.23%) (p < 0.05), and B-BM-MSCs generated more calcium

nodules (RPA-HPT, 43.05% + 2.62%) than BM-MSCs (RPA-
HPT, 681% + 0.72%) (p < 0.001) (Fig. 5b). These findings
showed that the osteogenic differentiation ability of B-
BM-MSCs was better than that of BM-MSCs in vitro.

Expression of BMP-2 and TGF-B1 in B-BM-MSCs and
BM-MSCs before and after osteogenic induction

Western blot results showed that the expression of both
TGEF-B1 and BMP-2 was higher in B-BM-MSCs than in

A B C D 5 e B ToR 1
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]
o 0.4
BMP2 — — — .E
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2
3
GAPDH e e  amme s @ .04
S
. S

Fig. 6 a, b BMP-2 and TGF-31 expression in MSCs from different sources before and after osteogenic induction was detected by western blot.
The expression of both BMP-2 and TGF-31 was higher in B-BM-MSCs than in BM-MSCs before and after 14 days of osteogenic induction (p < 0.05
and p < 0001, respectively). n = 4. *p < 0.05, **p < 001, ***p < 0001. A and B show the expression levels of BM-MSCs and B-BM-MSCs, respectively,
before osteogenic induction, and C and D show the expression of the indicated molecules in BM-MSCs and B-BM-MSCs, respectively, after osteogenic
induction. IBM-MSC, osteogenic-induced bone marrow mesenchymal stem cell; IB-BM-MSC, osteogenic induced-bone-bone marrow mesenchymal
stem cell
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Fig. 7 a, b Healing in the rat fracture model by MSCs from different sources was detected by CT imaging. CT imaging showed that B-BM-MSCs
had a stronger ability than BM-MSCs to promote fracture healing in vivo. Lane-Sandhu score analysis after the 4th and 6th weeks showed that
B-BM-MSCs scored higher than BM-MSCs (p < 0.05). n = 6. *p < 0.05, **p < 0.01, **p < 0.001

B-BM-MSC
\

BM-MSCs before osteogenic induction. After a 2-week
osteogenic induction, the expression of TGF-B1 and
BMP-2 remained higher in B-BM-MSCs compared to
BM-MSCs (Fig. 6). This finding further confirmed that
the osteogenic potential of B-BM-MSCs was greater
than that of BM-MSCs in vitro.

CT imaging observation of bone fracture healing

In the 2nd week after the operation, the control, BM-
MSC, and B-BM-MSC groups all showed little callus for-
mation at the bone fracture sites, while the number of cal-
luses increased in week 4 after the operation in all 3
groups. In the 6th week after the operation, there was

substantial new bone formation in the B-BM-MSC group,
and the medullary cavity was recanalized, indicating good
regeneration, while remodeling was not prominent in the
control group or the BM-MSC group (Fig. 7a). Lane-
Sandhu score analysis (Fig. 7b) after the 4th and 6th weeks
showed that B-BM-MSCs (3.00 + 0.81 and 9.67 + 0.94, re-
spectively) scored higher than BM-MSCs (1.33 + 0.47
and 6.67 + 1.25, respectively) (p < 0.05). This finding in-
dicated that B-BM-MSCs had a greater ability than BM-
MSCs to promote fracture healing in vivo.

Gross observation of bone fracture repair
To confirm our CT imaging findings, we collected bone
specimens 4 and 6 weeks after construction of the rat
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BM-MSC B-BM-MSC |

Control

4 weeks

6 weeks

Fig. 8 a—f: Healing in the rat fracture model by MSCs from different
2 sources was detected by gross observation. Bone specimens were
collected 4 and 6 weeks after construction of the rat fracture model.
n==6

fracture model. In the control group, some new calluses
formed around the fracture area 4 weeks after surgery
(Fig. 8a). The fracture site showed on a large number of
soft tissue connections, and the healing condition was
not good enough. At the 6th week, the peripheral osteo-
phytes had basically been absorbed, and the cortical
bones were connected (Fig. 8d). The situation in the
BM-MSC group (Fig. 8b, e) was slightly better than that
in the control group, while the fracture healing in the
B-BM-MSC group (Fig. 8c, f) at weeks 4 and 6 was
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significantly better than that in the control group. The
sample size of this experiment was 6. Representative
data from one animal per group are shown, and similar
results were obtained for the other animals in each
group. At the 4th and 6th weeks, fracture healing in the
B-BM-MSC group was better than that in the BM-MSC
group, while fracture healing in the BM-MSC group was
better than that in the control group. These data indi-
cated that both BM-MSCs and B-BM-MSCs can effect-
ively promote fracture healing, although B-BM-MSCs
produced superior results to BM-MSCs.

Histological assessment of bone regeneration

At the 4th week, large numbers of chondrocytes and
osteogenic cells were observed in trabeculae, large popula-
tions of osteoblasts were observed around trabeculae, and
hematopoietic cell proliferation in trabeculae was ex-
tremely active in the B-BM-MSC and BM-MSC groups
(Fig. 9b, ¢). In the control group (Fig. 9a), some osteoblasts
were also observed around trabeculae, whereas hyperplasia
of chondrocytes and osteogenic cells was not obvious. At
the 6th week, in the control (Fig. 9d) and BM-MSC groups
(Fig. 9e), large numbers of osteoblasts were visible, and
cells in trabeculae were tightly packed, whereas in the B-
BM-MSC group (Fig. 9f), trabeculae were mainly filled with
hematopoietic cells, cells in the medullary cavity were
loosely packed, and the trabeculae were more mature. The
sample size of this experiment was 6, and consistent results
were obtained in other groups. At the 4th and 6th weeks,
fracture healing and reconstruction were better in the B-
BM-MSC group than in the BM-MSC group, which
showed better results than the control group in these 2 as-
pects. This finding further proved that B-BM-MSCs had a
greater ability than BM-MSCs to promote fracture healing.

Contro

Fey gy
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BM-MSC

B-BM-MSC

ST

200pm

Fig. 9 a—f: Healing in the rat fracture model by MSCs from different sources was detected by H&E staining. H&E staining of bone specimens
collected 4 and 6 weeks after construction of the rat fracture model. B-BM-MSCs had a stronger ability than BM-MSCs to promote fracture
healing. n = 6. *chondrocytes, #osteogenic cells, **osteoblasts, ##hematopoietic cells
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Discussion

In this study, we obtained MSCs through the co-culture
of bone and bone marrow for the first time and found
that B-BM-MSCs have better proliferative, osteogenic
differentiation, and fracture healing capacities than BM-
MSCs. We suggest that co-culturing the bone and bone
marrow might be a useful method for obtaining seed
cells for bone tissue repair.

Fernandez-Moure compared MSCs from the human
bone and from the human bone marrow and concluded
that CBF-MSCs had a weaker proliferative ability than
BM-MSCs, but BM-MSCs had a significantly better osteo-
genic differentiation ability [13]. In terms of cell prolifera-
tion, we reached different conclusions than Fernandez-
Moure. The reasons might be that MSCs were tradition-
ally obtained through density gradient centrifugation, but
some cancellous bone or soft tissue may be retained in
this process [22]. For the isolation in this study, we used a
filter with a diameter of 74 um to exclude cancellous bone
and soft tissue. Alternatively, the discrepant results might
be caused by different species used in our experiments.
Daniel Blashki compared the proliferative ability of
B-MSCs and BM-MSCs from rats [22], and our results are
consistent with his conclusions. Concerning osteogenic
differentiation, our results are similar to those reported by
Fernandez-Moure in certain aspects.

Corradetti et al. demonstrated that the environment has
an important effect on the differentiation direction of B-
MSCs and BM-MSCs [14], and some research has shown
that the environment also somewhat determines the dif-
ferentiation trend of MSCs [14, 23-25]. We suggest that
the change in the environment of MSCs co-cultured with
the bone and bone marrow resulted in improved prolifera-
tive and osteogenic differentiation abilities. TGF-B1 pro-
motes the differentiation of precursor osteoblasts in the
early stage [20, 26], and BMP-2 is important in osteogenic
differentiation and indispensable for the osteogenic differ-
entiation of MSCs [21, 27]. The results of this study
showed that B-BM-MSCs had higher TGF-B1 and BMP-2
expression than BM-MSCs. We concluded that the co-
culture of the bone and bone marrow might enhance the
osteogenic potential by increasing the expression of TGF-
B1 and BMP-2 in MSCs. Wang et al. found that the upreg-
ulation of TGEF-p promoted tendon-to-bone healing after
anterior cruciate ligament reconstruction with BM-MSCs
(28], which further supports our conclusion.

The acquisition of B-MSCs can cause secondary damage
to patients in clinical applications [13], while BM-MSCs
can be easily obtained through bone marrow biopsy.
Therefore, obtaining B-BM-MSCs through co-culture of a
small amount of the bone with a relatively large amount
of the bone marrow may avoid serious secondary damage
to patients and ensure that the obtained MSCs have good
proliferative activity and osteogenic potential.
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Although the benefits of transplanting MSCs to pro-
mote fracture healing have been confirmed, there are
still some problems remaining to be solved in clinical
applications. Vadala et al. found that B-MSC injection in
degenerated intervertebral disks in rats might induce
osteophyte formation [29]. Thus, it is important to ex-
plore ways of inducing the localized differentiation of
transplanted cells. In this study, we found that co-
culture of tissues from different sources could induce
the directional differentiation of MSCs to some extent,
but this did not completely solve this problem. In
addition, we found that using 3 pieces of 3 mm x 3 mm
bone in 6-cm Petri dishes was helpful, but it is still un-
clear whether there is a better proportion of the bone in
the culture system. We found that TGF-1 and BMP-2 in
the co-culture of the bone and bone marrow played
regulatory roles in promoting the proliferation, osteo-
genic differentiation, and fracture healing of MSCs, but
the specific mechanism still needs further research.
Therefore, further investigations are required to develop
more satisfactory ways to use MSC transplantation to
promote fracture healing.

Conclusion

In this study, we propose a novel way to obtain MSCs by
co-culturing the bone and bone marrow from SD rats;
these MSCs shared the same morphologic features and
MSC-associated markers as traditional BM-MSCs, while
their proliferative capacity and osteogenic potential were
higher, and they successfully promoted fracture healing
after injection into the fracture site. Therefore, this
method may provide a promising source of MSCs for
bone tissue engineering and clinical fracture treatment.
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