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Abstract

Background: Musculoskeletal disorders are regarded as a major cause of worldwide morbidity and disability, and
they result in huge costs for national health care systems. Traditional therapies frequently turned out to be poorly
effective in treating bone, cartilage, and tendon disorders or joint degeneration. As a consequence, the
development of novel biological therapies that can treat more effectively these conditions should be the highest
priority in regenerative medicine.

Main body of the abstract: Mesenchymal stem cells (MSCs) represent one of the most promising tools in
musculoskeletal tissue regenerative medicine, thanks to their proliferation and differentiation potential and their
immunomodulatory and trophic ability. Indeed, MSC-based approaches have been proposed for the treatment of almost
all orthopedic conditions, starting from different cell sources, alone or in combination with scaffolds and growth factors,
and in one-step or two-step procedures. While all these approaches would require cell harvesting and transplantation, the
possibility to stimulate the endogenous MSCs to enhance their tissue homeostasis activity represents a less-invasive and
cost-effective therapeutic strategy. Nowadays, the role of tissue-specific resident stem cells as possible therapeutic target
in degenerative pathologies is underinvestigated. Biophysical stimulations, and in particular extracorporeal shock waves
treatment and pulsed electromagnetic fields, are able to induce proliferation and support differentiation of MSCs from
different origins and affect their paracrine production of growth factors and cytokines.

Short conclusions: The present review reports the attempts to exploit the resident stem cell potential in musculoskeletal
pathologies, highlighting the role of MSCs as therapeutic target of currently applied biophysical treatments.
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Background
The physiological role of mesenchymal stem/stromal
cells (MSCs) is the maintenance of tissue homeostasis,
mainly by proliferation and differentiation toward mature
tissue specific cell types, and also through the release of
growth factors and immunomodulatory agents [1].
Indeed, the pathological tissue degeneration, which

occurs in most of the orthopedic disorders, follows an
unbalance in tissue homeostasis, due to inflammation,
overuse, or trauma. Therefore, the MSCs failure in main-
taining this homeostasis may represent the first step in the

development of many orthopedic pathologies. On these
premises it is possible to hypothesize that a direct thera-
peutic action aimed to enhance MSCs activity could revert
the progression of degenerative disorders.
In the last decades, MSCs have emerged as a possible

powerful tool in the treatment of various diseases related
to tissue degeneration, inflammation, and trauma.
In 2006, when the exact location and function within

the native tissues was not fully understood yet, the
International Society for Cellular Therapy released a
definition of MSCs that included their propensity to
adhere to polystyrene (plastic) in in vitro culture; the
expression of CD105, CD73, and CD90 surface antigens;
and the ability to differentiate, under appropriate stimuli,

* Correspondence: laura.degirolamo@grupposandonato.it
1IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161 Milan, Italy
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Viganò et al. Journal of Orthopaedic Surgery and Research  (2016) 11:163 
DOI 10.1186/s13018-016-0496-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s13018-016-0496-5&domain=pdf
mailto:laura.degirolamo@grupposandonato.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


at least toward osteoblasts, adipocytes, and chondroblasts
cell lines [2]. In addition to bone marrow, which is the
most traditional source, MSCs have been isolated from al-
most all body compartments [3], including tendons [4],
periosteum [5], trabecular bone [6], adipose tissue [7], syn-
ovial membrane [8], and muscle [9]. This multilocalization
of MSCs relies on their origin; indeed, it is now well estab-
lished that MSCs, or their precursors, lie in perivascular
locations in all the vascularized tissues [10]. Accurate
studies have demonstrated that microvascular pericytes
[10] and adventitial cells [11], both freshly isolated or ex-
panded in culture, are indistinguishable from conventional
MSCs; hence, the terms perivascular stem cells or peri-
cytes (PSCs) have been applied to these cells as well.
In addition to their ability to differentiate and to par-

ticipate directly to the regeneration process, MSCs
present further therapeutic functions in response to in-
jury. Indeed, in response to particular conditions, MSCs
are able to release a plethora of cytokines and growth
factors with immunomodulatory and trophic effect on
the pathological tissues [1]. Immunomodulatory activity
is mediated by direct cell-cell contact and through se-
creted bioactive molecules involving dendritic cells, B and
T cells [12], whereas trophic effects of MSCs are based on
the secretion of molecules that inhibit apoptosis and fibro-
sis, and the stimulation of angiogenesis through the secre-
tion of vascular endothelial growth factor (VEGF) [13].
For all these reasons they have been recently called "drug-
stores" [1].
All these features support the application of MSCs to

a wide range of pathologies characterized by inflamma-
tion and degeneration, either alone [14] or in combin-
ation with scaffolds [15], the latter especially when used
in tissue engineering applications to obtain artificial bio-
logic substitutes.

Mesenchymal stem cells: a multimodal tool to
treat musculoskeletal diseases
The therapeutic potential of MSCs have been largely in-
vestigated in in vitro and preclinical settings, as well as
in many studies at clinical level, for their ability to im-
prove healing from orthopedic conditions such as chon-
dral lesion [16], osteoarthritis [17], tendinopathy [18],
intervertebral disk disease [19], and bone non-union/
delayed unions [20]. MSCs have been used either
expanded [21] or as concentrated progenitor pools [22],
both with satisfactory results.
Even if further studies are needed to confirm their util-

ity and to standardize applications, the results of the use
of MSCs in orthopedic conditions are very promising
and many studies are nowadays ongoing [17].
On the contrary, the possibility to stimulate resident

MSCs in order to improve physiological tissue healing is
relatively innovative, and very few studies are reported

in literature on this topic so far. This idea is supported
by different studies conducted in pathological conditions
demonstrating that MSCs, exposed to damage associated
molecular pattern (DAMP) or pathogen-associated mo-
lecular pattern (PAMP), could react by reverting the
production of pro-inflammatory to anti-inflammatory
molecules [23, 24] and by inducing the switch from pro-
inflammatory M1 macrophages maturation to the anti-
inflammatory M2 phenotype [25]. These observations
open the field to the hypothesis that an enhancement of
MSCs potential would benefit the progress of many
orthopedic conditions. Their plasticity and ability to
respond to external stimuli, both physical and chemical,
make MSCs a very good target for different treatments
intended to improve tissue regeneration.
The purpose of this work is to review the attempts to

exploit the resident stem cell potential in musculoskeletal-
related pathologies, in order to highlight their function as
therapeutic target. In particular, we will focus on biophys-
ical stimulation, such as shock waves and pulsed electro-
magnetic fields, since they are already applied in clinical
practice, and the recent advancement in the knowledge
about their mechanism of action supports the hypothesis
that they would be effective in the stimulation of endogen-
ous MSCs action (Table 1).

Pulsed electromagnetic field
Pulsed electromagnetic fields (PEMFs) are a class of
electromagnetic stimuli characterized by low frequency
(1 to 80 Hz) and intensity ranging between 50 μT to
50 mT [26]. They were first FDA approved for the treat-
ment of bone non-unions and delayed unions in the
1980s, and, since then, the growing interest in their
mechanisms and abilities lead to a great number of sci-
entific investigations. Indeed, the in vitro results con-
firmed their effectiveness in stimulating osteoblast and
inhibiting osteoclasts activity [27, 28]. The mechanism
underlying the effect of PEMFs on the biological tissue
is still under debate, but many hypothesis and evidences
were described. Patterson and colleagues reported the
activation of phosphatidylinositol-3-kinase (PI3K) and
mTOR (mammalian target of rapamycin) pathway, leading
to the transcription of growth factors of the TGFβ family
such as BMP-4 [29]. Intracellular calcium (Ca2+) concen-
tration was also addressed as effector of PEMFs biological
activity, in correlation with plasma membrane potential and
currents [30–37]. Moreover, PEMFs are able to induce in-
crease in the expression of adenosin A2A receptors and
integrinβ, influencing the related intracellular pathways
with roles in anti-inflammatory and differentiation pro-
cesses [38, 39] (Fig. 1).
The application of PEMFs to mesenchymal stem

cells of different origins demonstrated their ability in
the modulation of cell cycle and enhancement of

Viganò et al. Journal of Orthopaedic Surgery and Research  (2016) 11:163 Page 2 of 8



differentiation. MSCs isolated from human bone
marrow-derived (hBMSCs) were the most extensively
adopted cells for this kind of experiments, and most
of the studies reported an increased cell proliferation
after PEMFs stimulation [40–43], as well as an in-
crease of early stage markers of osteoblastic differenti-
ation. In particular, many studies used PEMFs as

adjuvant element, together with osteoinductive medium.
In this experimental settings, increase in alkaline phos-
phatase (ALP) production, collagen type I and Runt-
related transcription factor 2 (RUNX2) expression, and
release of growth factors of the TGFβ family, such as
BMP-2, were reported [41, 42, 44, 45]. On the other hand,
their influence on the mineralization phase of osteogenic

Table 1 In vitro effects of PEMF and SW on MSCs from different origins

MSCs origin PEMF ESWT

Bone marrow Increased proliferation [40–43] Increased proliferation [63]

Enhanced osteogenic [41, 42, 44, 45] and chondrogenic [51]
differentiation

Increased migration [63]

Reduced production of inflammatory mediators [27] Enhanced osteogenic differentiation [61–63]

Adipose tissue Increased proliferation [52] Enhanced osteogenic [71, 72] and adipogenic [72]
differentiation

Enhanced chondrogenic [53] differentiation Increased migratory ability [70]

Tendon tissue Increased expression of tissue specific markers [56] Increased expression of tissue specific markers [68, 69]

Increased production of trophic and anti-inflammatory
mediators [56, 57]

Increased production of trophic and anti-inflammatory
mediators [69]

Umbilical cord Enhanced chondrogenic [54] differentiation —

Endothelial tissue — Increased proliferation [64]

Enhanced migration and homing to lesion sites [64, 65]

Fig. 1 Possible molecular pathways involved in the biological response to PEMFs and ESWT stimulations. Biophysical stimulations could act
through ERK and mTOR pathways to enhance cell proliferation and differentiation and to modulate the inflammatory response. TRK tyrosine
kinase receptor, PI3K phosphatidylinositide 3-kinases, PKB protein kinase B (also known as AKT), mTOR mechanistic target of rapamycin, NF-KB
nuclear factor kappa-light-chain-enhancer of activated B cells, AC adenylyl cyclase, cAMP cyclic adenosine monophosphate, PKA protein kinase A,
CREB cAMP response element-binding protein, PKC protein kinase C, Rac/Ras small GTPase of the Ras superfamily, Raf serine/threonine-specific
protein kinases. MEK mitogen-activated protein kinase kinase, and ERK extracellular signal-regulated kinases
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differentiation was controversial. Some studies reported
an increased deposition of Ca2+ rich extracellular matrix
[42, 44, 45], while others indicated that this late phase of
osteogenic differentiation was not influenced by PEMFs
[46]. Differences in each experimental setting could ex-
plain the discordant reports. In fact, in these studies differ-
ent types of stimulation, in term of field intensity,
frequency, and time of exposure were used. Moreover,
other parameters such as the seeding density could pro-
duce different biological effects in the same cell type [47–
50]. Despite these differences, taken together the reported
data support the idea that PEMFs could enhance prolifera-
tion and osteodifferentiation of hBMSCs. Similarly, in
combination with chondrogenic inductive medium, PEMFs
stimulation was able to accelerate the hypertrophic cell
differentiation, increasing deposition of collagen type I and
X, and then osteochondral ossification in a 3D in vitro
culture of rat BMSCs [51].
Other human cell types such as adipose derived stem

cells (ASCs), tendon stem progenitor cells (TSPCs), am-
niotic epithelial cells (AECs), and umbilical cord MSCs
(WJ-MSCs) were treated with PEMFs with similar re-
sults. hASCs proliferation and survival were enhanced
by PEMFs treatment [52]. Moreover, in combination
with chondrogenic inductive medium, PEMFs were able
to increase ASCs chondrogenic differentiation, in terms
of expression of Sox9, collagen type I and II, aggrecan
and osteocalcin, as well as mineralized matrix, and gly-
cosaminoglycans deposition [53]. Chondrogenic differen-
tiation capacity and proliferation of WJ-MSCs were also
enhanced by PEMFs exposure [54], while PEMF-treated
AECs were more prone to differentiate toward osteo-
genic lineage with respect to unexposed cells [39].
TSPCs, a tendon cell subpopulation that possess all the

features of MSCs [55], exposed to different PEMFs treat-
ments, resulted in the increased expression of tenogenic
markers, such as collagen type I, scleraxis, VEGF, IL-10
and TGFβ. Moreover, a slight increase in cell prolifera-
tion was observed in the same experimental setting
[56, 57]. The anti-inflammatory effect of PEMFs was
reported also in other cell types, such as rat BMSCs,
where they were able to reduce the production of IL-1β
and TNFα in a pathological model [27].
The results described in this section support the hy-

pothesis that PEMFs could enhance the tissue homeo-
static activity of MSCs. Indeed, cell proliferation and
differentiation are the two main events occurring in the
physiological tissue homeostasis process, in order to re-
place cells lost in a typical degenerative pathology.
Moreover, the ability to enhance the release of growth
factors, such as TGFβ and BMP-2, and to reduce
anti-inflammatory agents, underlines the role of PEMFs
in the instauration of a regenerative microenvironment
within the tissues.

Extracorporeal shock wave therapy
Since its original applications as urological lithotripsy,
extracorporeal shock wave therapy (ESWT) has been
applied in the musculoskeletal field as orthotripsy
(mainly tendinopathies and bone regenerative disorders)
and regenerative medicine as well [58, 59].
The mechanisms of action of ESWT, when applied

in non-urological indications, are not related to the
direct mechanical effect but to the different pathways
of biological reactions that derive from those acoustic
stimulations, through the so-called “mechanotransduc-
tion” mechanism. Therefore, the “mechanical model”
of urological lithotripsy has been substituted by a
“biological” one, also supported by the current know-
ledge in mechanobiology, an emerging multidisciplin-
ary field of science that investigates how physical
forces and changes in cell/tissue mechanics can influ-
ence the tissue development, physiology and diseases.
Although some details are still under investigation, it
is known that ESWT are able to relieve pain, reduce
inflammation, and induce neoangiogenesis and stem
cell activities, thus improving tissue regeneration and
healing [58, 60].
Indeed, early researches on this topic showed that

ESWT affected, according to the amount of energy and
the number of pulses, the growth ratio of bone marrow
osteoprogenitor cells, forming colony-forming unit-
osteoprogenitors (CFU-O) and bone nodules related to
the induction of TGFβ1 molecule [61].
Subsequent experimental results revealed that these

effects included the regulation of submembrane redox
reactions elicited by early O2 production for tyrosine
kinase-mediated ERK activation, resulting in phos-
phorylation of CBFA1 (core-binding factor alpha1),
the transcription factor for osteoblastic differentiation,
and osteogenesis (Fig. 1). The evidence that shock
waves triggered the growth and maturation of osteo-
progenitor cells through the pathway of mechano-
transduction, prefigured following models for ex vivo
extension of the mesenchymal stem cells [62]. More-
over, in a more recent work, human BMSCs exposed
to shock waves showed increased proliferation and
migration capacity [63].
Nevertheless, the interest on the use of ESWT in

regenerative medicine arose from the studies of their
application in ischemic lesions, where, besides the
angiogenic and anti-inflammatory effect, emerged the
hypothesis of an action addressed to the proliferation,
recruitment, migration, and homing of progenitors cells
in the sites of lesion [64, 65]. In fact, reversible modifica-
tion of the cytoskeleton was observed in ESW-treated
cells, whose final effect, through nuclear transcription
activation, is a series of specific biochemical pathways,
related to local tissue turnover [66].
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Indeed, already in 2005, it was demonstrated that
pretreatment of hematopoietic stem cells with high
energy shock waves significantly improved early pro-
genitor cell expansion, after short-term suspension
culture, prefiguring a new way to manipulate these
cell populations [67].
In this perspective, MSCs, as a main target during re-

generative pathways, could play a key role in orchestrat-
ing all the processes activated by shock waves [58].
Recently, basic science about shock waves was

enriched of articles, describing their “regenerative effect”
in many different tissues, other than the bone.
In order to elucidate the ESW-mediated clinical

benefits, Leone et al., by studying TSPCs explanted
from five healthy semitendinosus and five ruptured
Achilles tendons found that the clonogenic potential
was maintained only in cells derived from healthy
donors. Moreover, ESW application significantly ac-
celerated hTSPCs differentiation, thus suggesting that
the clinical benefits of ESWT may be ascribed to in-
creased efficiency of tendon repair after injury [68].
Indeed, these observations were confirmed in a dif-
ferent in vitro setting, where, TSPCs treated with
ESW showed increased proliferation, expression of
tendon specific markers (scleraxis and collagen type
I) and production of growth factors (VEGF, TGFβ)
and cytokines (IL-10), consistently with the instaur-
ation of a regenerative and anti-inflammatory micro-
environment [69]. Very recently, Rinella and co-
authors were able to demonstrate how ESWT would
inhibit the development of a myofibroblast pheno-
type in human ASCs. Functionally, stem cells acquire
a more fibroblast-like profile characterized by a low
contractility and a high migratory ability, related to
a reduced expression of integrin alpha 11, a major
collagen receptor in fibroblastic cells, involved in
myofibroblast differentiation. In other words, this in
vitro study shows that ESW can control stem cell
differentiation toward myofibroblasts and, conse-
quently, sustain their use as a therapeutic approach
in reducing the risk of skin and tissue fibrosis [70].
Other authors showed that ESWT enhances ASCs
production of osteogenic markers, such as RUNX2,
ALP, and mineralized matrix, but, at the same time,
they could increase the production of reactive oxy-
gen species (ROS) [71].
Very interestingly, Schuh et al., showed that human

and rat ASCs respond strongly to repetitive shock wave
treatments in vitro, resulting in maintenance and signifi-
cant increase of mesenchymal markers (CD73, CD90,
CD105), differentiation capacity toward the osteogenic
and adipogenic lineage, as well as toward Schwann-cell
like cells even after extended time in vitro. In their
study, Schuh et al. concluded that ESWT might be a

promising tool to improve ASCs quality for cell therapy
in various tissue engineering and regenerative medicine
applications [72].
From a general point of view, the preconditioning of

MSCs by ESW appears to improve their therapeutic per-
formance without issues about the extensive manipula-
tion that characterizes others approaches, such as
genetic manipulations [63].

Conclusions
Recently, the development of stem cell-based therapies
has been quickly spreading in numerous disease areas,
including musculoskeletal disorders. Whether taken
from the bone marrow or adipose tissue or umbilical
cord, even though they can be isolated from almost all
body compartments, the mesenchymal stem cells seem
to show a remarkable potential for their direct use in
musculoskeletal tissues repair.
In vivo observations laid the ground for the hypothesis

that mechanical factors could play a major role in regu-
lating the development and repair of the musculoskeletal
tissues. Undoubtedly, these studies have greatly im-
proved our knowledge about MSCs response to specific
stimuli and the isolation of any single variables has facil-
itated the discovery of several mechanotransductive
mechanisms. However, the in vivo environment is defin-
itely much more complex. Cells are exposed to several
intrinsic and extrinsic mechanical cues simultaneously
and to the interaction between the biophysical and bio-
chemical environment. Beside their well-known effect-
iveness on the musculoskeletal tissues, the idea of a
direct stimulation of the resident MSCs by shock waves
and pulsed electromagnetic fields has been a recent and
intriguing hypothesis. Preliminary experimental data
seem to confirm that these stimuli are able to enhance
MSCs homeostatic activity and, thus, their role in pre-
venting and counteracting musculoskeletal degenerative
processes.
Tissue engineering could be another key application of

mechanically treated MSCs, even though there are still
many technical challenges associated with isolating,
expanding, differentiating, and preconditioning MSCs
for subsequent implantation into the degenerate joints
and tissues. Moreover, the MSCs could be exposed to
abnormal physical loads in anatomical structures that
have already been biomechanically compromised. Another
aspect that requires a deeper knowledge is ascertaining if
the in vitro cultivated cells need predifferentiation or a
sort of preconditioning prior to implantation into the
damaged tissues, with the aim to enhance cell survival and
matrix formation. Mechanical stimulation could be a low-
cost, useful tool in this respect. Nevertheless, adequate
requisite and design of MSCs cell-supporting biomaterials
that will resist the enzyme-rich, mechanically load
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microenvironments of the degenerated musculoskeletal
tissues also remain to be better clarified.
In summary, MSC-based therapies could offer a re-

markable potential to change dramatically the treatment
of cartilage defects, tendon degeneration, and several
other musculoskeletal disorders. The advances discussed
in this review highlight the progress being made toward
clinical translation of such therapeutic approaches and
which might be further enhanced by the aid of mechan-
otransduction. However, a number of technical problems
and conceptual challenges still need to be addressed as
research proceeds.
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