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Abstract

Background: A lateral approach with open reduction and internal fixation with a plate is a very effective technique
for the majority of distal fibular fractures. However, this open approach for ankle fixation may be complicated by
wound dehiscence and infection, especially in high-risk patients. An alternative to plating is an intramedullary
implant, which allows maintenance of length, alignment, and rotation and which allows for decreased soft tissue
dissection. While there has been clinical data suggesting favorable short-term outcomes with these implants, there
is no current biomechanical literature investigating this technology in this particular fracture pattern. This study
sought to biomechanically compare an emerging technology with an established method of fixation for distal
fibular fractures that traditionally require an extensive exposure.

Methods: Ten matched cadaveric pairs from the proximal tibia to the foot were prepared to simulate an
Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic Trauma Association (AO/OTA) 44C2 ankle fracture
and randomized to fixation with a distal fibular locking plate or intramedullary fibular rod. A constant 700-N
axial load was applied, and all specimens underwent testing for external rotation stiffness, external rotation cyclic loading,
and torque to failure. The syndesmotic diastasis, stiffness, torque to failure, angle at failure, and mode of failure were
obtained from each specimen.

Results: There was no significant difference in syndesmotic diastasis during cyclic loading or at maximal external rotation
between the rod and plate groups. Post-cycle external rotation stiffness across the syndesmosis was significantly higher
for the locking plate than the fibular rod. There was no significant difference between the rod and plate in torque at
failure or external rotation angle. The majority of specimens had failure at the syndesmotic screw.

Conclusions: In the present cadaveric study of an AO/OTA 44C2 ankle fracture, a modern fibular rod demonstrated less
external rotation stiffness while maintaining the syndesmotic diastasis to within acceptable tolerances and having similar
failure characteristics.
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Background
Ankle fractures comprise 9 % of all fractures [1, 2]. Sur-
gical treatment of ankle fractures has changed little
throughout the years and typically includes an extensile
incision over the fibula with open reduction and internal
fixation [3, 4]. However, wound infections affect up to
26 % of patients, and hardware complications affect up
to 50 % of patients [5–7]. These complications occur
more frequently in the elderly population, diabetics, and
smokers [8–11]. Additionally, patients with fibular frac-
tures associated with higher energy injuries, such as frac-
tures of the distal tibia plafond, have high occurrences of
wound complications [8, 9, 12].
An alternative to plating of fibular fractures is the use

of an intramedullary implant. This technique allows re-
establishment of length, alignment, and rotation of the
distal segment while allowing a smaller incision with
decreased soft tissue dissection. This is desirable in
high-energy injuries with possible soft tissue comprom-
ise and older, diabetic, nicotine-using patients at high
risk for wound complications. Additionally, patients with
Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic
Trauma Association (AO/OTA) 44C-type fractures [13]
(distal fibular fracture proximal to the distal tibiofibular
syndesmosis) necessitate increased exposure of the fibula
and may especially benefit from this minimally invasive
technique. While intramedullary fixation has been used in
the past, new technologies have expanded the potential ap-
plications of this technique and have shown favorable
short-term outcomes with low rates of complications in
traditional rotational ankle fractures [14–24]. This mode of
fixation has also been proposed as an effective treatment in
the setting of pilon fractures [25].
The majority of the limited clinical and biomechanical

literature regarding this implant has focused on AO/
OTA 44B-type fractures. An initial, unpublished bio-
mechanical study showed improved fixation load to
failure when comparing fibular rods to AO plating with
a lag screw in AO/OTA 44B-type fibular fractures [26].
There has been no previous literature using a fibular rod
in AO/OTA 44C-type fibular fractures (suprasyndesmo-
tic), which are 27–44 % of operative ankle fractures, with
AO/OTA 44C2 (multifragmentary) comprising 2.5–17 %
of these fractures [4, 27, 28]. In these comminuted frac-
tures, anatomic reduction and compression of fragments
is not feasible. The goal in these fractures is to restore
length and alignment of the fibula, the syndesmotic rela-
tionship, and the ankle mortise. Intramedullary fibular
rods, such as the Acumed fibular rod (Acumed Fibula
Rod System, Hillsboro, OR, USA), allow syndesmotic fix-
ation, which is crucial in these injury patterns. In cases
of proximal fractures and comminution where fixation
of the fracture may be difficult and require extensive dis-
section for a plating construct, a fibular rod may offer

superior outcomes by providing a stable construct with
minimal soft tissue dissection.
The specific aim of this project is to evaluate the bio-

mechanical properties of a fibular rod in comparison to
bridge plating with a distal fibular locking plate (Acumed
Low-profile Locking Lateral Fibula Plate, Hillsboro, OR,
USA) in comminuted AO/OTA 44C-type fibular frac-
tures. We hypothesize that a fibular rod will provide a
biomechanically equivalent construct when compared to
a lateral locking plate when evaluating external rotation
stiffness, syndesmotic diastasis, and external rotation
torque to failure. Evidence of biomechanical superiority
or non-inferiority of the fibular rod in AO/OTA 44C
fractures may lead to increased clinical investigation and
more widespread use for this particular fracture pattern.

Methods
Specimen preparation and surgical technique
Twenty-four fresh-frozen cadaveric ankle specimens (12
matched pairs; 4 male and 8 female pairs; average age
50.1 years, range: 28–59 years) were obtained from the
proximal tibia to the foot from the Biological Resource
Center of Illinois (Rosemont, Illinois). Ten matched
pairs were placed into two groups. One group received a
traditional 13-hole distal fibular locking plate while the
second group was instrumented with a locking fibular
rod (3.6 mm × 180 mm). Prior to dissection and experi-
mentation, the specimens were examined grossly and
radiographically to exclude any specimens with prior
ankle surgery or deformity. Given the variability in
mechanical properties between cadaveric specimens, this
study was designed to use matched pairs with statistical
comparisons made between the left and right limbs to
reduce the effect of specimen variation on statistical
inferences.
For the first five matched pairs, the left limb received a

fibular rod and the right limb received a 13-hole distal
fibular locking plate. The fibular rod and locking plate
were placed in the right and left limbs, respectively, of the
last five matched pairs. Prior to testing, we removed the
skin proximal to the ankle and exposed the fibula, inter-
osseous membrane (IO), interosseous ligament (IL),
anterior-inferior tibiofibular ligament (AITFL), posterior-
inferior tibiofibular ligament (PITFL), and transverse liga-
ment (TL).
Multiple biomechanical studies have been performed

on AO/OTA 44C-type fractures in regard to syndesmo-
tic stability with an intact fibula [29–34]. There is lim-
ited literature regarding the creation and biomechanical
testing of an AO/OTA 44C-type fracture with a commi-
nuted fibula [35]. Most biomechanical models of commi-
nuted fractures are in more distal, AO/OTA 44B-type
fractures [35–37]. Thus, in order to simulate the typical
AO/OTA 44C2 fibular fracture, we marked the location
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of a fibular osteotomy at 7 and 8 cm proximal to the dis-
tal fibula tip and made transverse osteotomies at marked
sites with an oscillating saw, removing an approximately
1-cm fibula cross section.
For the fibular rod group, we then placed the rod with

the targeting device externally rotated 30° [38]. We
drilled bi-cortically through two anterior-to-posterior
interlocking holes and one tri-cortical hole for syndes-
motic fixation parallel to the tibiotalar joint with the foot
in neutral dorsiflexion.
We inserted 3.5-mm non-locking cortical screws in

the anterior-to-posterior interlocking holes. Once these
screws were in place, we detached the interosseous
membrane and interosseous ligament from fibula inser-
tion using sharp dissection. We then inserted a 3.5-mm
diameter syndesmotic screw in the previously drilled
hole to gain tri-cortical purchase. After all the implants
had been placed, we then detached the AITFL, PITFL,
and TL from fibular insertion and lastly transected the
deltoid ligament (Fig. 1a). A repeat radiograph was per-
formed to demonstrate adequate fixation (Fig. 2a).
In the distal fibular locking plate group, we utilized a

13-hole low-profile lateral fibula locking plate. Prior to
making the fibular osteotomy, the plate was appropri-
ately positioned on the distal fibula. Using the locking
drill guide, four unicortical holes were drilled in the dis-
tal cluster and four bicortical holes proximally. We
drilled one tri-cortical hole for syndesmotic fixation paral-
lel to the tibiotalar joint and externally rotated 30°. We
then made our osteotomy as detailed above. The plate was
re-positioned on the fibula, making sure that the pre-
drilled holes were aligned such that the fibula was restored

to the appropriate physiologic length. We inserted 3.5-
mm locking screws into the predrilled holes both proxim-
ally and distally and a 3.5-mm diameter syndesmotic
screw. Lastly, we detached the syndesmotic and deltoid
ligaments and repeated the radiographs (Figs. 1b and 2b).
Lastly, two matched pairs (one male and one female)

were used to quantify the biomechanics of the syndes-
mosis and intact fibula. For these four specimens, the
deltoid ligament was transected but the syndesmotic
complex of ligaments and fibula remained intact in
order to determine the biomechanics in the native syn-
desmosis. This provided a standard for comparison for
the rod and the plate fixation models.

Biomechanical testing
The tibias of the specimens were fixed in custom cups
using polymethylmethacrylate (PMMA) bone cement. A
custom jig was used to ensure that the tibia was cen-
tered in the cup and that the mechanical loading axis of
the tibia and the base of the cup were perpendicular.
The cup was then attached to the actuator of a biaxial
servohydraulic material testing machine (858 Mini Bio-
nix, MTS Systems Corp., Eden Prairie, MN, USA). The
feet were placed onto a custom testing apparatus, and
an individual heel cup and midfoot support was
molded using PMMA for each specimen to stabilize
the foot on the plate (Fig. 3). Pins and screws were not
used for fixation to the testing apparatus in order to
eliminate the possibility of non-physiologic loading of
individual bones.
Infrared light-emitting targets were rigidly fixed to the

calcaneus, tibia, distal fibula, and proximal fibula. The

Fig. 1 Post-fixation images of the fibular nail group (a) and the locked plate group (b)
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three-dimensional position of these four targets was
tracked during testing by an optoelectronic motion
measurement system (Optotrak Certus, Northern Digital
Inc., Waterloo, ON, Canada). Prior to testing, an opto-
electronic three-dimensional digitizing probe was used
to trace a series of points on the perimeter of the tibia at
the level of the fibular osteotomy and on the distal fibula
at the level of the syndesmotic screw. These points were
digitized in relation to the optoelectronic target attached
to the individual bones.
All the specimens underwent testing for pre-cycle ex-

ternal rotation stiffness, external rotation cyclic loading,
post-cycle external rotation stiffness, and torque to

Fig. 2 Post-fixation anteroposterior and lateral radiographs of the
fibular nail group (a) and the locked plate group (b)

Fig. 3 Biomechanical setup of a cadaveric specimen from
posterior, demonstrating the custom plate and individual
polymethylmethacrylate mold
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failure. All testing was conducted with a 700-N constant
compressive axial load applied to the leg.
The specimen was first tested to determine pre-cycle

stiffness. After axial loading to 700 N, an external rota-
tion torque was applied at 1°/s to a torque limit of
5 Nm. The specimen was cyclically loaded in external
rotation while under the constant 700-N axial load 2000
times to a torque limit of 5 Nm under load control at a
rate of 5 Nm/s. The post-cycle external rotation stiffness
was then determined using the same protocol used for
pre-cycle stiffness. Lastly, a torque to failure test was
done for each specimen. An external rotation torque
was applied to achieve rotation at a rate of 5°/s up to an
actuator rotational displacement of 100° or an applied
external rotation torque of 38 Nm. Axial load, external
rotation torque, actuator rotation, actuator displace-
ment, and the positions of the four infrared-emitting tar-
gets were recorded during the tests.
The pre- and post-cycle external rotation stiffness of

the constructs was calculated from the applied external
rotation torque and target rotation data. The stiffness
was the slope of the line fit to the torque versus rotation
data for an applied torque between 25 and 90 % of max-
imum (between 1.25 and 4.5 Nm). Fibular stiffness was
calculated using the difference in rotation across the
fracture site (between the targets distal and proximal to
the fibular osteotomy). This stiffness (distal fibula to
proximal fibula) gives an indication of how well the dis-
tal and proximal fibula are kinematically tied together by
the construct and therefore, the amount of load trans-
mitted across the osteotomy site. Syndesmosis stiffness
was calculated using the difference in rotation across the
syndesmosis (between the targets on the tibia and the
distal fibula). This stiffness gives an indication of the
quality of reduction of the syndesmosis.
Lastly, the maximum lateral translation of the distal

fibula with respect to the tibia, termed the syndesmotic
diastasis, was calculated for all the tests [31, 39, 40]. The
positions of the probed points on the tibia and distal fib-
ula during the tests were calculated using transformation
matrices derived from the measured motion of the tar-
gets attached to the tibia and distal fibula [41]. At each
time point, the lateral diastasis was calculated from the
change in distance (relative to the beginning of the test)
between the centroids of the tibia and fibular points.
The maximum diastasis was determined from this data.
The maximum external rotation torque or maximum ex-
ternal actuator rotation was obtained by reading the data
at the point where the end of test was triggered.

Statistical analysis
Statistical analyses were performed in specialized software
(Systat, Cranes Software International Ltd, San Jose, CA).
A repeated measures ANOVA was used to analyze

differences between the two operative groups. On examin-
ation of the data, we found that three specimens had failed
before any of the cyclical testing (one plate, two rod speci-
mens). These were deemed to be outliers and were ex-
cluded from our final data evaluation. Thus, our total
number of specimens was 17.
A post hoc power analysis was performed using 2-mm

diastasis as a clinically relevant change. Utilizing eight
pairs, the power was 42.5 % to detect a 2-mm gap. In
order to achieve 80 % power to detect an effect size (dif-
ference in gap) of 2 mm, we would have needed to test
16 pairs of specimens.

Results
Syndesmotic diastasis and rotational stiffness without
fixation
The maximum pre-cycle and post-cycle syndesmotic di-
astases were 1.4 ± 0.3 and 1.7 ± 0.4 mm, respectively.
Thirty-eight Newton-meters of applied external rotation
torque was achieved in all four intact state specimens
during the external rotation torque to failure test.
Both measurements of external rotation stiffness in-

creased from pre- to post-cycle. The distal fibula to
proximal fibular stiffness increased from 1.2 ± 0.3 to 1.7
± 0.2 Nm/degree, while distal fibula to tibia stiffness in-
creased from 1.5 ± 0.5 to 2.0 ± 0.3 Nm/degree.

Rotational stiffness after fixation
There was a significant difference between the external
rotation stiffness pre-cycle for the locking plate versus
the fibular rod. This was the case for the external rota-
tion stiffness across the fracture site (5.8 versus
2.0 Nm/degree, p = 0.02) as well as external rotation
stiffness across the syndesmosis (2.8 versus 1.0 Nm/de-
gree, p = 0.048) (Table 1, Fig. 4).
The external rotation stiffness post-cycle was signifi-

cantly higher for the locking plate than the fibular rod in
regard to stiffness across the syndesmosis (2.7 versus
1.5 Nm/degree, p = 0.03), but not across the fracture site
(4.5 versus 3.1 Nm/degree, p = 0.23).

Syndesmotic diastasis after fixation
With 5 Nm of applied external rotation torque, there
was no significant difference in syndesmotic diastasis be-
tween the rod and plate groups both pre-cycle (1.4 ver-
sus 0.7 mm) and post-cycle (2.4 versus 1.4 mm) using
repeated measures ANOVA (p = 0.08). During external
rotation testing to failure, there was no significant differ-
ence in the diastasis (7.6 mm for the rod versus 5.6 mm
for the plate, p = 0.465) (Table 1, Fig. 5).

Failure properties after fixation
The primary trigger for the end of test in the external ro-
tation to failure tests was reaching an actuator external
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rotation of 100° (Table 1). This occurred in 10 of the 17
specimens (five fibular rods and five locking plates). Five
of the remaining tests (5 of 17) ended when the external
torque limit of 38 Nm was reached (two fibular rods and
three locking plates). The remaining tests (2 of 17) ended
below 38 Nm and below 100° (one fibular rod and one
locking plate). These two specimens were also found to
have a fibular fracture. All the intact specimens (4 of 4)
reached the external rotation torque limit of 38 Nm.

There was no significant difference between the rod
and plate in torque at failure (29.6 ± 4.8 versus 28.1 ±
6.2 Nm, p = 0.46) or external rotation angle (91.6° ± 15.8°
versus 93.5° ± 18.2°, p = 0.73).
An examination of the specimens in the operative

group after testing found that the syndesmotic screw
had loosened in 11 of the 17 specimens (seven locking
plates and four fibular rods). Fibular fracture occurred in
4 of the 17 specimens (one locking plate and three

Table 1 External rotation stiffness values, syndesmotic diastasis values, and failure properties for the fibular nail group and locked
plate group

External rotation stiffness (Nm/degree) Native Fibular nail Locked plate p value

Pre-cyclic loading

Across fracture 1.2 ± 0.3 2.0 ± 1.5 5.8 ± 2.0 0.02*

Across syndesmosis 1.5 ± 0.5 1.0 ± 0.4 2.8 ± 1.7 0.048*

Post-cyclic loading

Across fracture 1.7 ± 0.2 3.1 ± 2.0 4.5 ± 1.4 0.23

Across syndesmosis 2.0 ± 0.3 1.5 ± 0.6 2.7 ± 0.8 0.03*

Syndesmotic diastasis (mm)

Pre-cyclic loading 1.4 ± 0.3 1.4 ± 0.5 0.7 ± 0.2 0.08a

Post-cyclic loading 1.7 ± 0.4 2.4 ± 1.9 1.4 ± 0.5 0.08a

External rotation to failure 2.3 ± 0.8 7.6 ± 8.8 5.6 ± 3.0 0.465

Failure properties

Torque to failure (Nm) 29.6 ± 4.8 28.1 ± 6.2 0.46

Angle to failure (degree) 91.6 ± 15.8 93.5 ± 18.2 0.73

Mode to failure (# of specimens)

Screw loosening 4 7

Soft tissue damage 1 1

Fibular fracture 3 1

*Statistically significant
aThe effect of construct on gap considers the pre- and post-cycle data together using repeated ANOVA

Fig. 4 Bar graph depicting rotational stiffness data for both groups both pre-cycle and post-cycle
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fibular rods). There was soft tissue damage in 2 of the
17 specimens (one locking plate and one fibular rod).

Discussion
Ankle fractures are a common orthopedic injury that
occur at a rate of 187 per 100,000 person-years. They
are the fourth most common fracture to require opera-
tive repair, which is recommended for unstable ankle
fractures [42–46]. Wound complications can occur
more frequently in certain patient populations and
have a negative effect on long-term functional out-
comes [5–7, 10–12, 47].
The use of intramedullary implants, such as screws,

smooth rods, and the Kirschner wires, allows for de-
creased soft tissue dissection and has been a potential al-
ternative to plating of fibular fractures [15, 20–22, 25].
Recent advancements in these intramedullary devices
that allow for interlocking screw fixation have gar-
nered an increased interest in expanding their use. To
date, however, there is limited support in the literature
[14–18, 48]. In the largest series to date, Bugler et al.
reported on 105 patients treated for an unstable ankle
fracture with the same fibular rod utilized in this study
and showed good radiographic and functional outcomes
at 6-year follow-up [16]. Recently, a prospective trial com-
pared a fibular rod to plate fixation in non-comminuted
fractures without syndesmotic injury and found signifi-
cantly fewer complications and better functional scores at
1-year follow-up in the rod group [17].
Despite the increased interest in intramedullary fibu-

lar fixation, there have been no published biomechan-
ical studies investigating the biomechanical properties
of the modern fibular rod at present. While most of the
existing literature examines the use of the fibular rod in
Weber B fibular fractures, we feel that a potentially
beneficial fracture pattern to utilize this fixation would

be in AO/OTA 44C2 ankle fractures, which typically
requires a large dissection and syndesmotic fixation
[49, 50].
Several investigations suggest that increased syndes-

mosis width can lead to poor outcomes [51, 52]. Leeds
and Ehrlich reported a significant increase in arthrosis of
the ankle joint if the syndesmotic diastasis was greater
than 2 mm compared to the normal contralateral side
after undergoing open reduction and internal fixation
[53]. Additional studies have demonstrated that the in-
ability to obtain, and maintain, a proper syndesmotic re-
duction can lead to poor outcomes [54, 55].
It is important to define the normal functional anatomy

of the distal tibiofibular joint when examining biomechan-
ical literature. Beumer et al. showed that application of a
75-Nm external rotation moment on the foot of 11
healthy volunteers caused coronal plane translation be-
tween 0 and 2.5 mm and stated that these data can be
used as normal reference values for studies of patients
with suspected syndesmotic injuries [56]. Other studies
have demonstrated similar physiologic motion at the distal
tibiofibular joint [29]. Our study was consistent with this
data, with our native specimens showing an average of
1.7 mm of diastasis post-cyclic loading.
Unfortunately, since there is no published biomech-

anical data on the modern fibular rod, we are unable to
directly compare our results with those of other in-
vestigators. However, when inspecting the previous
biomechanical literature in fracture models, Nousiainen
et al. used a Weber C model and a similar biomechan-
ical setup as the current study and showed that the
change in syndesmosis width was between 0.5 and
1.25 mm in pre-cyclic loading when using rigid screw
fixation of either three or four cortices, but did not
utilize post-cyclic testing [32]. When examining dy-
namic fixation methods in a cadaveric model under

Fig. 5 Bar graph depicting syndesmotic diastasis data for both groups both pre-cycle and post-cycle
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cyclic loads, Ebramzadeh et al. showed that diastasis
remained less than 2 mm in all specimens [57]. Stein et al.
demonstrated that, under axial loads, syndesmotic diasta-
sis can increase to 2.42 mm, even with screw fixation [58].
In the present study, when excluding outliers, both the

fibular rod and locked plate demonstrated values in this
range under pre-cyclic loading (1.4 ± 0.5 and 0.7 ± 0.2,
respectively). The post-cyclic loading data shows that
the fibular rod had a mean of 2.4 ± 1.9 mm of diastasis,
which is only 0.7 mm greater than the native syndes-
mosis in the study and still within normal variation
shown by Beumer et al. [56]. The locked plate group
demonstrated less diastasis under cyclic loads than even
the native group, suggesting the construct limited the
normal physiologic diastasis to some degree. Thus, when
analyzing our data in the context of this historic cadav-
eric data, we suggest that both fixation constructs pro-
vide adequate stability to limit syndesmotic diastasis
during the immediate postoperative period. However,
the increased diastasis with the nail would suggest that
any change in this value would place it outside the nor-
mal variation. Thus, it is imperative that patients adhere
to a strict non-weight bearing protocol while the li-
gamentous healing occurs to prevent any significant
changes in the syndesmotic position.
In regard to external rotation stiffness, in our study,

the fibular rod was found to have less external rotation
stiffness than the locking plate. This was true when
measuring stiffness across the fracture site and across
the syndesmosis. It is not surprising that the plate group
demonstrated this increased external rotation stiffness,
since the distal locking plate has multiple points of fix-
ation both proximal and distal to the fracture site. The
fibular rod has no proximal interlocking fixation to pro-
vide enhanced rotational control at the fracture site, but
does provide stability to the distal segment through the
syndesmotic interlocking screw. In this fracture pattern
where the fracture occurs above the level of the syndes-
mosis, the main focus would be on the rotational control
of the distal segment which includes the tibiofibular ar-
ticulation. The clinical significance of this increased ex-
ternal rotation stiffness is unclear but again would
suggest the importance of proper postoperative weight-
bearing precautions in the nail group
In the present study, there was no significant differ-

ence in the failure properties between the two groups in
either torque to failure or angle at failure. The values ob-
tained for both groups were consistent with prior data
examining syndesmotic fixation with both dynamic fix-
ation and screw fixation by Ebramzadeh et al. and pro-
vided failure torques well above 20 Nm, exceeding likely
torques applied in casts during healing [57]. Loosening
of the syndesmotic screw was the primary observation in
both operative groups. Distal fibular fracture inferior to

the syndesmotic screw occurred more often in the fibu-
lar rod group. We hypothesize that this may be due to
the lack of rotational control in the proximal segment,
which could impart increased stress onto the distal
interlocking screws.
There are several important limitations to note in the

current study. Importantly, we excluded three specimens
from our data analysis because their values fell far out-
side the mean values of the remaining specimens and
demonstrated early catastrophic failure under pre-cyclic
loads. This could be indicative of the potential surgeon-
related difficulties with new technologies. However,
statistical analysis was performed both including and ex-
cluding the outliers, and the comparative results were
not changed substantially. Our post hoc power analysis
revealed that we would have needed 32 specimens in
order to achieve 80 % power to detect a 2-mm differ-
ence. Given financial constraints, this unfortunately was
not attainable. Additionally, we did not examine the bio-
mechanical properties of a non-locking plate and screw
construct in this study, which is an acceptable form of
fixation in this fracture pattern.

Conclusions
In the present cadaveric study of an AO/OTA 44C2
ankle fracture, a modern fibular rod demonstrated infer-
ior external rotation stiffness while maintaining the syn-
desmotic diastasis to within acceptable tolerances and
having similar failure characteristics. We believe that the
fibular rod can be utilized in select patient populations
given that proper postoperative restrictions are placed.
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