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Abstract

Background: The mid-substance central defect injury has been used to investigate the primary healing capacity of
the anterior cruciate ligament (ACL) in a goat model. The sagittal plane stability on this model has not been
confirmed, and possible effects of fat pad excision on healing have not been evaluated. We hypothesize that
excising the fat pad tissue results in poorer ligament healing as assessed histologically and decreased tensile
strength of the healing ligament. We further hypothesize that the creation of a central defect does not affect
sagittal plane knee stability.

Methods: A mid-substance central defect was created with a 4-mm arthroscopic punch in the ACLs of right knees
of all the subjects through a medial mini-arthrotomy. Goats were assigned to groups based on whether the fat pad
was preserved (group 1, n=5) or excised completely (group 2, n=5). The left knees served as controls in each
goat. Histopathology of the defect area along with measurement of type | collagen in one goat from each group
were performed at 10th week postoperatively. The remaining knees were evaluated biomechanically at the 12th
week, by measuring anterior tibial translation (ATT) of the knee joints at 90° of flexion and testing tensile properties
(ultimate tensile load (UTL), ultimate elongation (UE), stiffness (S), failure mode (FM)) of the femur-ACL-tibia complex.

Results and discussion: Histopathology analysis revealed that the central defect area was fully filled
macroscopically and microscopically. However, myxoid degeneration and fibrosis were observed in group 2 and
increased collagen type | content was noted in group 2. There were no significant differences within and between
groups in terms of ATT values (p=0.715 and p = 0.149, respectively). There were no significance between or within
groups in terms of ultimate tensile load and ultimate elongation; however, group 2 demonstrated greater stiffness
than group 1 that was correlated with the fibrotic changes detected microscopically (p = 0.043).

Conclusions: The central defect type injury model was confirmed to be biomechanically stable in a goat model.
Resection of the fat pad was noted to negatively affect defect healing and increase ligament stiffness in the central
defect injury model.
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Introduction

The anterior cruciate ligament (ACL) has an important
role in knee joint stability. Injuries in active individuals
can jeopardize future athletic function and lead to de-
generative arthritis. These concerns have led to many
the studies on surgical reconstruction of the ACL in
recent years, but there is still no gold standard treatment
proven to reliably restore function and prevent arthritis.
The primary healing capacity of ACL tissue is limited
compared to other ligaments such as the medial collat-
eral ligament (MCL) due to differences in vascularity,
biological environment, and mechanical processes [1-5].
These influences on these factors and potential interven-
tions can be effectively studied with animal injury
models [6-16]. The central defect type partial ACL in-
jury model described by Murray et al is thought to be a
mechanically stable model, which enables concentration
on healing and repair processes [6, 10, 11]. The goat
knee was selected as suitable animal model due to its
anatomical and mechanical similarities to the human
knee joint [17-19] and that has been utilized in multiple
prior studies [20-33].

The infrapatellar fat pad has been shown to have an
important role in ACL circulation [34—36]. However, in
previous studies using the central defect model, the
injury was created without regard to protection of the
fat pad tissue. Further, although the model has been
assumed to be mechanically stably in the sagittal plane,
this stability has not been confirmed to mechanical
testing.

In this study we aimed to investigate the primary heal-
ing capacity of the ACL using central defect type partial
injury model and evaluate the effect of fat pad excision
on ligament histology and strength. We also aim to con-
firm the sagittal plan stability of the central defect
model. We hypothesize that excising fat pad tissue re-
sults in poorer ligament healing as assessed histologically
and decreased tensile strength of the healing ligament.
We further hypothesize that the creation of a central
defect does not affect sagittal plane knee stability.

Methods

Study groups

Ten adolescent female Anatolian Black Goats aged be-
tween 7 and 11 months were included in the study. Ap-
proval and permission from Ege University Animal Care
and Use Ethic Committee was obtained for the study.
All animals were anesthetized with a ketamine-xylazine
combination by a specialist veterinary physician. Five
animals were assigned to each of two groups. In group
1, a central defect was created in the ACL of the right
knee joints of the animal without any harm to the fat
pad tissue. In group 2, the same ACL injury model was
performed after complete excision of the infrapatellar fat
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Fig. 1 Creating central defect in ACL
.

pad tissue. Left knee joints were left as controls without
any intervention.

Surgical technique

All knee joints of the animals were prepared under ster-
ile conditions. To decrease intraoperative bleeding and
gain clear exposure, subcutaneous jetocaine was injected
before the skin incision. A medial parapatellar skin inci-
sion approximately 5 cm long was created, and a medial
mini-arthrotomy was performed to access the joint in
both groups. In group 1, the infrapatellar fat pad and
synovial folds were protected and gently retracted to
visualize the ACL. A central defect was then created by
excising full thickness ligament tissue with a 4-mm
arthroscopic punch (Figs. 1 and 2). In group 2, complete
excision of the infrapatellar fat pad tissue was performed
before creating the same central defect type injury in
ACL (Fig. 3). After irrigating the knee joint, the arthrot-
omy and skin incision were closed in the same manner
in both groups.

Postoperative care
All animals were restricted to cage activity for 6 weeks after
surgery. Analgesia (Metamizole, 20 mg/kg twice daily) and

Fig. 2 Excised full thicknees tissue from ACL for central defect
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Fig. 3 Fat pad excision

antibiotic prophylaxis (penicillin, 20.000 IU/Kg twice daily)
were given during the early postoperative period (48 h).
The surgical wounds were closed completely in 10 days.
After 6 weeks, the animals were allowed daily activities out
of the cages.

Two animals (one from each group) that were chosen
at random for histopathology were sacrificed with over-
dose of pentobarbital at week 10, and the remaining
animals were sacrificed at week 12 for mechanical test-
ing. The hind limbs were amputated through the mid-
shaft of the femur and tibia and kept at —20 °C until
mechanical testing.
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Histopathological and immunohistochemical evaluation
Histopathology was performed on the operated and con-
trol knees of one randomly selected animal from each
group sacrificed during week 10. Macroscopic evaluation
was performed to detect the fill of the defect as well as
to evaluate for any cartilage lesions. Histological analysis
was performed to compare the samples for cellular and
vascular responses. Immunohistochemistry was per-
formed to compare the amount of type I collagen at the
injury sites.

The samples from the sacrificed animals were stored
at 4 °C. The knee joints were carefully dissected. The
ACL injury area in the experimental knees and the cor-
responding area in the control knees were resected and
fixed in 10 % formaldehyde solutions for 24 h. Four to
five micrometric paraffin blocks were prepared and
stained with hematoxylin eosin. Immunohistochemistry
assessment for type I collagen was performed in frozen
sections taken by cryomicrotome. After an antigen-
producing stage with baking (EDTA pH, 8 5 min/850 W
microwave), the samples were stained with monoclonal
antibody for collagen-1 (collagen 1 antibody; 5D8-G9/
Coll-NOVUS) and kept at 4 °C for 24 h. Final labeling
was performed with the streptoavidin-biotin method
using dab chromogen. Kidney tissue was used for posi-
tive comparison.

Fig. 4 Anterior tibial translation test data of a sample
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Fig. 5 Tensile load to failure data of a sample
.

Mechanical testing

We measured the structural properties of the ligament as
well as sagittal joint laxity (anterior tibial translation) to
which the ACL is the primary contributor. A Shimadzu
AG 10 K mechanical testing machine was used. In order
to attach the joint samples to the machine, a custom
device was manufactured as in the previous biomechanical
studies [19, 37]. The knee joints of four animals in each
group were tested. The previously amputated and frozen
limb samples were allowed to thaw at room temperature

12 h before testing. After complete thawing, the soft
tissues 5 ¢cm proximal and distal to the joint line were
dissected carefully preserving surrounding the soft tissues
and joint capsule. The bones were embedded in cylindrical
molds with bone cement. To measure anterior tibial trans-
lation, the cylindrical molds holding the knee samples
were put into the cylindrical parts of the manufactured
device and the whole system was located and fixed to the
test machine orienting the tibia vertical and the knee
flexed to 90°. The joint was cyclically loaded up to 67

Fig. 6 Microscopic section showing the filled defect area surrounded
by vascular proliferation (arrows) and normal ligament tissue (stars)
.

Fig. 7 Microscopic section showing the defect area of fat-pad

excised sample: having edema and myxoid degeneration fields
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Table 1 Vascular structures per micro observation site
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Table 3 Group A mean ATT values (mm)

Sample Vascular count  Subject Experiment knee Control knee
A3—Experiment knee 25 A-1 64117 0.8788
A3—Control 1" A-2 41572 2.8145
B1—Experiment knee 46 A-4 3.1554 5.907
B1—Control 25 A-5 33138 44311

Newtons (N) anteriorly and posteriorly at a rate of
20 mm/min (min) in order to simulate the in situ load
born by the ACL in goats according to prior work [38].
The mean anterior displacement of 10 cycles of loading
was recorded as the mean anterior tibial translation value
of the specimens (Fig. 4). After finishing the anterior tibial
translation (ATT) test, the specimens were taken out of
the system. The remaining soft tissues including the
capsule, menisci, collateral ligaments, and posterior cruci-
ate ligament (PCL) were excised to obtain the femur-
ACL-tibia complex. The femur-ACL-tibia complex were
located and fixed to the test machine again for tensile
tests. After pre-tensioning (5 N for 10 min) and pre-
conditioning (10 cycles of load up to 20 N) stages, each
specimen was tested to failure at 20 mm/min. Ultimate
tensile load (Newton), ultimate elongation (mm), stiffuess
(N/meter), and failure locations were recorded (Fig. 5).

Statistical analysis

Statistical analysis was performed utilizing SPSSv18 pack-
age program. Mann—Whitney U and Wilcoxon’s signed
rank test were used for inter- and intragroup analysis,
respectively. The level of statistical significance was set at
p <0.05.

Results

Histopathology and immunohistochemistry findings
Macroscopic evaluations of all knees revealed full filling
of injury site (Fig. 6). No cartilage lesion was detected
among these samples. Microscopic evaluations showed
more fibroblastic cells in the injured ACLs compared to
their controls. No inflammatory cells were observed
(Table 1). More vascular structures were detected sur-
rounding the defect area in group 2 (fad pad excised).
Histological assessment of this group also showed edema-
tous changes and myxoid degeneration in the ligament

Table 2 Collagen type 1 stained fiber count

Sample Fiber count
A3—Experiment knee 69
A3—Control 68
B1—Experiment knee 88
B1—Control 42

A-3 undergone pathologic assessment

injury site (Fig. 7). In contrast, normal histological healing
of the ACL injury site was observed in group 1 (fat pad
protected). More type 1 collagen stained fibers were de-
tected in the injury site of the fat pad excised sample
(Table 2).

Biomechanical findings

ATT findings

No significant differences (group 1, p=0.715; group
2, p=0.715) (Tables 3 and 4) were found in sagittal
joint laxity between the injured and control knee in
either group. Fat pad excision had no effect on sagit-
tal joint laxity (p =0.149)

Tensile loading findings

Injured knee samples did not show any significant differ-
ence from their controls in tensile loadings in terms of
ultimate tensile load (Tables 5 and 6). Stiffness values of
the injured knees with fat pad excision were significantly
higher than the fat pad preserved samples (p = 0.043). Tib-
ial avulsion was the most common mode of failure among
the samples in the tensile load analyses (9 of 16 knees)

Discussion

In our study, we aimed to investigate the primary heal-
ing capacity of the ACL tissue using the central defect
type ACL injury model that was popularized by Murray
et al. They performed and standardized this model for
their studies for investigation of the primary healing and
repair capacity of the ACL as compared to other liga-
ments and evaluation of healing enhancement methods
with tissue engineering products [6, 10, 11]. They mainly
concentrated on the histological healing process and
emphasized that the model has healing capacity and that
can be improved with tissue engineering products. In
their studies, the biomechanical tests were only tensile

Table 4 Group B mean ATT values (mm)

Subject Experiment knee Control knee
B-2 2613 44991
B-3 34019 2.1616
B-4 3.1074 19328
B-5 3.2669 29025

B-1 undergone pathologic assessment
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Table 5 Group A tensile test values
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Subject Ultimate tensile load (N) Ultimate elongation (mm)

Stiffness (N/meter)

Failure mode

Experiment Control Experiment Control Experiment Control Experiment knee Control knee
knee knee knee knee knee knee
A-1 466.719 607.656 10.629 8258 43,909.963 73,583919  Distal ligament Distal ligament
attachment attachment
A-2 645.625 745.625 9.6295 7202 67,046.576 103,530.27  Tibial avulsion Distal ligament
attachment
A-4 649.688 627344 11.622 12.363 51,901.566 50,743.671 Femur metaphysis Femur metaphysis
A-5 312,031 273438 5521 5.841 56,517.116 46,813.559  Tibial avulsion Tibial avulsion

loadings as they presumed the central defect model to
be mechanically stabile, although they did not tested it.
In the current study, the sagittal stability of the central
defect model was confirmed by measuring ATT. Our
macroscopic assessments of the samples did not show
any cartilage injury that could have occurred in the
setting of instability, further supporting the stability of
the central defect model.

The previous studies using the central defect model
did not specifically discuss the treatment of the fat pad
tissue while creating the ligament defect. Such tissue
may be important, as demonstrated in some ACL circu-
lation studies [34—36]. In the perfusion study of Dunlap
et al., ACL perfusion clearly decreased with division of
the fat pad [35]. Our histological assessments on
selected knee samples showed that after 10 weeks, the
central defect was fully healed in fat pad protected
sample. In the fat pad excised sample, we observed
pathological findings such as myxoid degeneration,
edema, and fibrosis. Fat pad excision disturbed the heal-
ing. We believe the blood supply to the ACL was
decreased by excision of the fat pad, leading to a poorer
healing response. As expected, no differences in anterior
tibial translation were noted in this stable knee model,
but we did note significant higher stiffness in the fat pad
excision group in tensile loadings, which is thought to
be caused by the fibrotic changes in this group that were
observed during histological assessment.

The findings of this study have several potential applica-
tions. First, when utilizing this model in a research setting,
care should be taken not to harm the infrapatellar fat pad

Table 6 Group B tensile test values

as damage to this structure can alter the healing process
and affect structural properties of the ligament, potentially
confounding study results. Second, in a clinical setting,
one should consider the role of the fat pad in ACL healing
and consider preservation of as much tissue as possible
during ACL reconstruction. Some recently published
studies also emphasize the altered biologic responses in
the fat pad after ACL reconstruction that can also be asso-
ciated with poor outcome. In the study of Solbak et al.,
inflammational and fibrotic changes are found in the fat
pad after ACL reconstruction on a sheep model [39].
Wang et al. also found fibrotic changes which are corre-
lated with magnetic resonance imaging after ACL transac-
tion on a rat model [40]. These studies also give
information about the close biologic connection of the
ACL and fat pad like our study. Although beyond the
scope of our work, future studies could further explore
the role of the fat pad also in the ligamentization process.

A limitation of this study is that we evaluated histology
in only one sample from each group. The findings of this
study can be further evaluated with studies that include
more samples for histological analyses and with bio-
mechanical correlation.

Conclusion
The central defect type injury model was confirmed to
be biomechanically stable in a goat model. Resection of
the fat pad was noted to negatively affect defect healing
and increase ligament stiffness in the central defect
injury model.

Subject Ultimate tensile load (N) Ultimate elongation (mm)

Stiffness (N/meter)

Failure mode

Experiment Control Experiment Control Experiment Control Experiment knee Control knee
knee knee knee knee knee knee
B-2 465313 500.938 5379 7.535 86,505.484 66,481486  Tibial avulsion Tibial avulsion
B-3 790.625 717813 8.079 8.802 97,861.74 81,551.125  Tibial avulsion Tibial avulsion
B-4 525 580.469 8355 5.235 62,836,625 110,882.33  Distal ligament Distal ligament
attachment attachment
B-5 418438 527344 5.634 6.608 74,270.146 79,803.874  Tibial avulsion Tibial avulsion
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