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Abstract

Objective: The aim of this study was to create a new injectable bone graft substitute by combining the features of
calcium phosphate and bisphosphonate as a composite bone graft to support bone healing and to evaluate the
effect of alendronate to the bone healing process in an animal model.

Material and method: In this study, 24 New Zealand white rabbits were randomly divided into two groups: a calcium
phosphate alendronate group and a calcium phosphate control group. A defect was created at the proximal medial
tibia and filled with the new created injectable bone graft substitute calcium phosphate alendronate or with calcium
phosphate. Healing process was documented by fluoroscopy. To evaluate the potential of the bone graft substitute,
the proximal tibia was harvested 2, 4, and 12 weeks after operation. Histomorphological analysis was focused on the
evaluation of the dynamic bone parameters using the Osteomeasure system.

Results: Radiologically, the bone graft materials were equally absorbed. No fracture was documented. The bones
healed normally. After 2 weeks, the histological analysis showed an increased new bone formation for both materials.
The osteoid volume per bone volume (OV/BV) was significantly higher for the calcium phosphate group. After 4 weeks,
the results were almost equal. The trabecular thickness (Tb.Th) increased in comparison to week 2 in both groups with
a slight advantage for the calcium phosphate group. The total mass of the bone graft (KEM.Ar) and the bone graft
substitute surface density (KEM.Pm) were consistently decreasing. After 12 weeks, the new bone volume per tissue
volume (BV/TV) was still constantly growing. Both bone grafts show a good integration. New bone was formed on the
surface of both bone grafts. The calcium phosphate as well as the calcium phosphate alendronate paste had been
enclosed by the bone. The trabecular thickness was higher in both groups compared to the first time point.

Conclusion: Calcium phosphate proved its good potential as a bone graft substitute. Initially, the diagrams seem to
show a tendency that alendronate improves the known properties of calcium phosphate as a bone graft substitute.
The composite graft induced a good and constant new bone formation. Not only the graft was incorporated into the
bone but also a new bone was formed on its surface. But we could not prove a significant difference between the
grafts. Both implants proved their function as a bone graft substitute, but the bisphosphonate alendronate does not
support the bone healing process sufficiently that the known properties of calcium phosphate as a bone graft
substitute were improved in the sense of a composite graft. In this study, alendronate used as a bone graft in a healthy
bony environment did not influence the bone healing process in a positive or negative way.
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Background

The treatment of critical size bone defects still represents
one of the most challenging problems for orthopedic and
trauma surgeons. Despite intense attempts to develop new
bone graft substitutes, the autologous bone graft still con-
stitutes the golden standard for the treatment of critical
size bone defects [1, 2]. Nevertheless, the application and
the harvesting of autologous bone are limited due to the
restricted availability and the possible donor site morbidity
like nerve lesions, chronic pain, disease transmission,
superficial infections, or hematoma [3-7]. These restric-
tions underscore the need to develop new effective bone
graft substitutes.

Calcium phosphates represent one of the best-known
and clinically established bone grafts [8—11]. Since more
than a century, different investigations have proven their
potential as a bone graft substitute [12]. Calcium phos-
phate stimulates bone healing by its osteoconductivity,
biocompatibility, and biodegradation [8, 9, 11].

Today, the structure of bone is regularly influenced by
medication [13]. The number of elderly patients, which use
bisphosphonates as protection against osteoporosis, is
steadily rising. Additionally, bisphosphonates are commonly
used as effective therapeutic drugs for other bone diseases
like the Paget disease or metastatic bone lesions. There,
bisphosphonates are used to inhibit the mineralization of
the bone substance as well as the bone resorption by sup-
pressing the osteoclast activity. Despite the increasing clin-
ical use of bisphosphonates, there are only limited data
available that analyze the impact of bisphosphonate on the
bone healing process during an acute fracture situation or
as a bone graft in a bony defect. While some studies pri-
marily reported a delayed callus remodeling, no adverse
effect on fracture healing was reported [14—17]. Some of
these studies even reported a secondary improvement of
the bone mineral content after delayed callus remodeling
over time [16, 18, 19]. Other studies described positive
effects of bisphosphonates on the bone healing process.
They reported an enhanced strength and an improved tis-
sue volume [17, 20-22]. Kakar even reported the successful
treatment of a delayed union (7 months) after open tibia
fracture with the application of two doses of bisphospho-
nate to a 9-year-old child [23]. However, osteonecrotic ac-
tions of bisphosphonates have also been reported [24].

These results indicate that bisphosphonates may be able
to enhance fracture healing and also to improve common
bone substitutes [25], in line with reports on calcium
phosphate/bisphosphonate composites for orthopedic
application [26-30].

While the most studies investigated the impact of
bisphosphonates in an osteoporosis model and focused
thereby on the effect on bone resorption, we wanted to
examine the use of calcium phosphate and bisphospho-
nate as a composite bone graft implanted into a large
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bony defect in a healthy bony environment. The aim was
to evaluate the drug effect of alendronate as a bone graft
substitute and not the already proven positive effect of
alendronate on bone resorption in an osteoporotic
model.

The idea of this study was to create a new injectable
bone graft substitute by combining the properties of cal-
cium phosphate and bisphosphonate as composite bone
graft implanted in a healthy bony environment. The use
of bisphosphonates as bone graft substitute and the dir-
ect impact of bisphosphonates on the bone healing
process in a large bone defect were investigated.

Materials and methods

Calcium phosphate

Calcium phosphates represent a well-known group of
bone graft substitutes [8—11]. One of the most charac-
teristic variables of calcium phosphate (Ca/P) is the
molar ratio of calcium to phosphate. This ratio reaches
from 0.5 in monocalcium phosphate (Ca(H,PO,),) to 2.0
in tetracalcium phosphate (Cay(PO4),0). Thereby, the
molar ratio of calcium to phosphate determines the
water solubility [31]. A lower ratio of calcium to phos-
phate usually means higher water solubility under
physiological pH conditions. Monocalcium phosphate
shows such good water solubility that it does not occur
in biological hard tissue like bone. Hydroxyapatite
(Ca5(PO4)3(OH)) has specific biological relevance with a
calcium to phosphate ratio of 1.67. The water solubility
amounts 3.10™* g L ™" at 25 °C [32]. Hydroxyapatite can
be produced in precipitation reactions of a calcium salt
solution and a phosphate solution in a neutral or alka-
line pH range. Hydroxyapatite represents the main inor-
ganic component of the bone with enclosed ions like
fluoride, magnesium, carbonate, or hydrogen phosphate
[33]. The bone itself represents a living tissue that is
continuously undergoing remodeling and repair due to
the activity of osteoclasts and osteoblasts [34].

For this study, nanoparticulate calcium phosphate as a
bone graft substitute was chosen. Nanoparticulate cal-
cium phosphate was prepared by a precipitation reaction
[35], and a secondary stabilization with carboxymethyl-
cellulose (CMC) was performed as described earlier.

Bisphosphonate

Bisphosphonates represent a chemically stable synthetic
analog to pyrophosphate. By the exchange of the oxygen in
the hydrolysable phosphorus-oxygen-phosphorus (P-O-P)
structure of pyrophosphate, bisphosphonates show resist-
ance to enzymatic and chemical hydrolysis as the
phosphorus-carbon bond is not subject to hydrolysis [36].
Concerning the chemical formula, the residues R1 and R2
allow to prepare different bisphosphonates (Fig. 1).
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Fig. 1 Structural formulae of a pyrophosphate P-O-P and b
bisphosphonate P-C-P

Despite diverse fields of usage, medicine constitutes the
most important application area for bisphosphonates.
They are used in the treatment of most diverse metabolic
bone or calcium diseases with a high bone resorption (e.g.,
osteoporosis) and in the treatment of osseous metastasis
or fibrous dysplasia. Bisphosphonates inhibit bone resorp-
tion after intake and deposition to the mineral bone sur-
face. They inhibit the mineralization of the bone substance
as well as bone resorption by suppression of osteoclast
activity.

In this study, the often applied bisphosphonate sodium
alendronate was chosen to augment the calcium phosphate.
The residues R1 and R2 consist of -OH and -(CH,)sNH,
(Fig. 2).

Due to the fact that the literature does not give a pre-
cise answer regarding the influence of bisphosphonates
as a bone graft substitute on the bone healing process in
a healthy bony environment, this study is of legitimate
interest.

Our objective was to create an injectable paste consist-
ing of nanoparticulate calcium phosphate and sodium
alendronate.

NH-

Fig. 2 Structural formula of bisphosphonate
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Bone graft substitute

CMC-stabilized nanoparticulate calcium phosphate was
prepared by continuously mixing aqueous solutions of
calcium-L-lactate pentahydrate solution (Merck, p.a.,
554 g L), di-ammonium hydrogen phosphate
(Fluka, >99 %; 1.426 g L") and CMC (Sigma-Aldrich,
90 kDa; 2 g LY (see ref. [37] for details) (Fig. 3).

After five times centrifugation with 5000 rpm (4700 g)
and redispersion in water to remove soluble by-products,
the dispersion was autoclaved for 20 min at 121 °C. The
dispersion was frozen in liquid nitrogen and lyophilized at
-7 °C and 0.31 mbar for 4 days. The lyophilized calcium
phosphate was stored at —20 °C (Fig. 4).

The CMC-stabilized calcium phosphate was character-
ized by dynamic light scattering (Fig. 5), {-potential
measurement (Fig. 6), X-ray powder diffraction (Fig. 7),
and infrared spectroscopy (Fig. 8). The average diameter
of the particles was 110 + 30 nm. Structurally, the parti-
cles consist of nanocrystalline hydroxyapatite.

For the operation and filling of the bone defect in the
tibia of New Zealand white rabbits, paste of the lyophilized
CMC-stabilized calcium phosphate mixed with either 55 %
sterile water (control group) or 55 % aqueous alendronate
sodium trihydrate solution (2 g L™"; alendronate group) was
prepared immediately before the injection into the defect.

Study design

Twenty-four New Zealand white rabbits were included
into this pre-clinical study. To ensure skeletal maturity,
only rabbits 6 month old or older were chosen. The study
design protocol was approved by the Ethics Committee of
the University of Hamburg and by the Department for
Health and Consumer Protection of the City of Hamburg
(reference number of ethical approval 113/11).

The rabbits were housed and supplied under standard-
ized conditions by the Animal Facility Care Unit of the
University Hospital Hamburg-Eppendorf. The animals
had unlimited access to water and soft chow. At all times,
the national guidelines for care and use of laboratory
animals in Germany were observed.

After delivery, the New Zealand white rabbits were
adapted to the new facility for at least 2 weeks. Preopera-
tively, the animals were randomly divided into two groups.
Twelve rabbits each were randomly chosen for the cal-
cium phosphate control group (no alendronate) and the
calcium phosphate alendronate group, respectively.

Before surgery, each animal was narcotized. Anesthesia
was performed using 0.1 mg/kg Atropin (Atropinum
Sulfuricum®, Eifelfango, Bad Neuenahr-Ahrweiler), 6 mg/kg
Xylazin (Rompun®, Bayer, Leverkusen), and 60 mg/kg
Ketamin (Ursotamin®, Serumwerk Bernburg).

Afterwards, the rabbits were transferred back into
their cage until the animals were certainly narcotized.
Additionally, an anesthetic mask was placed over the
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head of the rabbits and floated with narcotic gas to sup-
port the anesthesia.

The selected implantation area was the right proximal
medial rabbit tibia, approximately 5 mm below the joint
line (Fig. 9). Under anesthesia, the skin was shaved using a
hair trimmer. Disinfection was performed repetitively with

Fig. 4 Scanning electron micrograph of autoclaved and freeze-dried
nano-calcium phosphate

Cutasept” G (Bode, Hamburg, Germany). After local
anesthesia with Scandicain 2 % (AstraZeneca GmbH, We-
del, Germany), a 2-cm skin incision was performed over
the medial surface of the proximal right tibia. After split-
ting the periosteum, a Kirschner wire was placed (approxi-
mately 5 mm below the joint line) under fluoroscopy
control to determine the right entry point for the DBCS®
(Diamond Bone Cutting System, Biomet, Darmstadt,
Germany). Under constant rinsing with an aqueous NaCl
solution (0.9 %), a monocortical unilateral bony defect with
an 8.1-mm diameter and 6 mm length was placed at the
proximal medial tibia surface using the DBCS® system. The
defects were regularly flushed with the saline solution
(NaCl 0.9 %). Afterwards, the bone defects were filled with
the appropriate amount of the injectable bone graft
material.

The preparation of the bone graft paste was carried out
during surgery as described above. The bone graft material
with a consistency similar to toothpaste was injected into
the defect with a syringe. Afterwards, the wound was sealed
with a nonabsorbable monofilament Ethilon® 3/0 suture
(Ethicon INC,, Johnson & Johnson, NJ, USA) (Fig. 10).

To minimize the bleeding, a pressure bandage was placed
over the wound for 10 min. After surgery, the animals were
monitored until the end of anesthesia and then returned to
their original staples. All animals were immediately
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Fig. 8 Infrared spectra of carboxymethylcellulose (CMC), hydroxyapatite (HAP), and CMC-stabilized calcium phosphate nanoparticles (CaP/CMC)
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Fig. 9 Implantation area—the right proximal medial rabbit tibia—approximately 5 mm below the joint line

Fig. 10 a Disinfection of the rabbit tibia. b Dissection up to the bone. ¢ Insertion of the Kirschner wire. d Drilling of the bone defect using the
DBCS®. e Inspection of the medial proximal bone defect in the rabbit tibia. f Injection of the bone graft. g Bone defect filled with calcium
phosphate paste (control). h Bone defect filled with calcium phosphate/alendronate paste
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treated with analgesia. All rabbits were able to move
freely under full weight bearing as tolerated.

To evaluate the potential of the injectable nanoparticu-
late calcium phosphate paste with and without alendro-
nate for a new bone formation, the New Zealand white
rabbits were sacrificed and the proximal tibia was
harvested at 2, 4, and 12 weeks after operation (n =4 for
each group at each time point).

Radiographs

The bone healing process was documented by fluoros-
copy. X-ray images were taken in two planes after the op-
eration and at the different time points 2, 4, and 12 weeks.

Histological preparation

In order to prepare the rabbit tibiae for histological ana-
lysis, the remaining soft tissue was carefully removed from
the bone with a scalpel. The tibial plateau was then cut
approximately 2 cm proximal the defect, and the shaft
2 cm distal the defect in the transversal/axial plane using a
diamond-coated saw (EXAKT, Norderstedt, Germany).
Each tibial compound was subsequently cut in the sagittal
plane at the level of the anterior tibial crest. After dehy-
dration and infiltration, the preparation specimen were
embedded into methylacrylate resin, cut into 5-7-pum
sections, and stained with toluidine blue.

Histological analysis and histomorphometry

The histomorphological analysis was focused on the evalu-
ation of the dynamic bone parameters, ie., the interaction
between soft tissue and the bone graft substitute (KEM).
Using the semi-automatic image-analyzing Osteomeasure
system (Osteometrics, Atlanta, GA, USA), the following pa-
rameters were quantified separately for each specimen in
order to draw a comparison between the experimental
groups: the intramedullary bone volume per tissue volume
(BV/TV, %), the trabecular number (Tb.N, mm), the tra-
becular thickness (Tb.Th, pm), the trabecular separation
(Tb.Sp, pm), the number of osteoblasts per tissue area
(N.Ob/T.Ar, mm™?), the osteoid volume per bone vol-
ume (OV/BV, %), the osteoid surface per bone surface
(OS/BS, %), the bone graft substitute per area (KEM.Ar,
mm ?), and the bone graft substitute surface density
(KEM.Pm, mm?).

Statistical analysis

The statistical results are given as mean + standard devi-
ation. The variance between the calcium phosphate and the
calcium phosphate alendronate group was examined using
the unpaired, two-tailed Student’s ¢ test. ANOVA was used
for comparison of different regions of interest. The assump-
tion of a type I error was set at 5 %.
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Results

Radiograph evaluation

The postoperative X-ray images documented that the de-
fect areas were completely filled with the corresponding
bone graft in both groups. Almost no outflow was observed
at 2 and 4 weeks. At the last time point, (12 weeks) only
sparsely particles of the different bone grafts could be
detected by fluoroscopy. In both groups, the volume of
bone graft had decreased over the time points, indicating
an ongoing resorption.

The follow-up X-ray images at the different time points
documented no fracture. After surgery, the rabbits re-
sumed their normal activity, and no side effects could be
documented by fluoroscopy. The detailed analysis of the
radiographs showed an external callus formation in all tib-
iae. Postoperatively, no difference was found. After 2 and
4 weeks, the callus thickness in the lateral X-ray images
showed an equal distribution for the control and the alen-
dronate group.

At the final time point (12 weeks), callus thickness
showed no visual differences. The bone graft materials
were equally absorbed. The bony defects healed normal
in all rabbits. Neither any difference between the cal-
cium phosphate paste and the calcium phosphate alen-
dronate paste was demonstrated (Fig. 11, X-Ray 2, 4,
and 12 weeks CaP and CaP/alendronate).

Evaluation of the tissue reaction
Results after 2 weeks
Two weeks after surgery, the histological analysis showed
an increased new bone formation for both analyzed groups.
Osteoblasts had started to form a bone tissue by secreting
osteoid (Fig. 12). Graphically, the BV/TV slightly suggests a
higher value for the calcium phosphate alendronate group.
The result can be optically confirmed in the diagrams for
the Tb.N and the Tb.Sp (Fig. 13, diagrams). However, the
differences between the calcium phosphate and the calcium
phosphate alendronate group are not statistically signifi-
cant. At the first time point, the Tb.Th was equal in both
groups, and the N.Ob/T.Ar showed an even distribution.
The OV/BV was significantly higher for the calcium
phosphate group. This is also displayed by the OS/BS.
As anticipated, the KEM.Ar and the KEM.Pm showed
an equal volume in the area of interest (AOI). In the pasty
bone substitutes, mononuclear cells, phagocytes and
plasma cells were found. Soft tissue fibers grew in small
flaws and uneven areas at the exterior surface of the grafts.
The spotted cells were healthy, and no tissue necrosis
could be detected.

Results after 4 weeks

At the second time point, the results for the two different
groups were more and more adjusting. Osteoblasts started
to attach to the pasty bone graft. More osteoid was
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Fig. 11 X-rays of the rabbit tibia after the operation and after 2, 4, and 12 weeks. a-d Calcium phosphate and e-h Calcium

produced by the osteoblasts (Fig. 14). The data of the
BV/TV showed no difference for new bone formation
(Fig. 13, diagrams). The Tb.N and the Tb.Sp adjusted.
The Tb.Th increased in comparison to week 2 in both
groups with a slight advantage for the calcium phos-
phate group. The N.Ob/T.Ar in the AOI was slightly
declining in both groups but without statistical signifi-
cance. The increasing mineralization (OV/BV) combined
with the growing thickness of the trabeculae implies a
maturation of the primarily grown bone.

The KEM.Ar and the KEM.Pm was consistently decreas-
ing. This indicated a good resorption of both bone grafts.
No necrosis could be detected. In the AOI, no foreign body
reactions were found.

Compared with the first time point, the ingrowth of soft
tissue at the outer surface of the grafts had increased
equally for both investigated groups.

Results after 12 weeks

12 weeks after the surgery, the BV/TV was constantly
growing (Fig. 13 (diagrams)). Both bone grafts show a
good integration. New bone was formed on the surface of
both bone grafts. The calcium phosphate as well as the
calcium phosphate alendronate paste had been enclosed
by bone (Fig. 15). This indicates good osteoconductive
properties for the two bone grafts. Calcium phosphate
seemed to induce slightly better bone growth after
12 weeks. The tendency was confirmed by the Tbh.N and
the N.Ob/T.Ar. However, in all diagrams, no statistical
significance was found. The trabecular thickness was
higher in both groups compared to the first time point.
This indicated an ongoing bone maturation, but no sig-
nificant difference was found when comparing the cal-
cium phosphate group with the calcium phosphate
alendronate group. The Tb.Sp was equal. Compared to

Fig. 12 a Calcium phosphate 2 weeks: bone graft substitute (white star), bone (white arrow), osteoid (black triangle), and osteoblasts (black arrow).
%20 magnification. b Calcium phosphate alendronate 2 weeks: bone graft substitute (white star), bone (white arrow), osteoid (black triangle), and
osteoblasts (black arrow). x20 magnification
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the first time point, the total mass of the two different
KEM.Ar and the KEM.Pm were significantly reduced.
Nevertheless, the volume of reduction was equal for both
grafts. No signs for tissue necrosis were found. The surgi-
cally applied bone defect was not entirely closed in both
groups.

Discussion

Bisphosphonate therapy reduces the risk of secondary
fractures in osteoporotic patients [38, 39]. But the ideal
time point to introduce the therapy after a recent frac-
ture has not yet been discovered.

The aim of this study was to evaluate the potential of
bisphosphonate alendronate to support bone healing in
addition to calcium phosphate as a composite bone graft
and to evaluate the effect of alendronate to the bone
healing process in a healthy bony environment.

Both pasty bone grafts were easy to insert into the bony
defect. The injectable paste allowed a secure application
during the surgery. During the application, no thermal in-
jury due to missing heat generation occurred. The calcium
phosphate as well as the calcium phosphate alendronate
bone graft showed a stable texture. The pasty bone grafts
did not leak into the surrounding tissue and were

osteoblasts (black arrow). x20 magnification
.

Fig. 14 a Calcium phosphate 4 weeks: bone graft substitute (white star), bone (white arrow), osteoid (black triangle), and osteoblasts (black arrow).
%20 magnification. b Calcium phosphate alendronate 4 weeks: bone graft substitute (white star), bone (white arrow), osteoid (black triangle), and
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osteoid (black triangle), and osteoblasts (black arrow). x20 magnification

Fig. 15 a Calcium phosphate 12 weeks: bone graft substitute (white star), bone (white arrow), osteoid (black triangle), and osteoblasts
(black arrow). x20 magnification. b Calcium phosphate alendronate 12 weeks: bone graft substitute (white star), bone (white arrow),

LN

incorporated very well into the bone. Both bone grafts
proved their osteoconductive properties together with a
good biocompatibility. A non-irritated bone healing
process was documented for each animal at each time
point. The bone grafts were integrated well into the sur-
rounding bone. A new bone was formed on the surface of
the bone grafts, underscoring their osteoconductive prop-
erties. Over the time, both grafts degraded constantly as
assumed.

In accordance with other studies, calcium phosphate
proved its good potential as a bone graft substitute [8—11].
Soft tissue fibers attached at the outer surface of the bone
graft but did not enter or grow into the bone defect.

Initially, the diagrams seem to show a tendency that
alendronate improves the known properties of calcium
phosphate as a bone graft substitute. The composite
graft induced a good and constant new bone formation.
The graft was not only incorporated into the bone, but
also a new bone was formed on the surface of the graft.
But we could not prove a significant difference between
the calcium phosphate paste and the calcium phosphate
alendronate paste.

The direct implantation of alendronate as a composite
into the bony defect could influence the bioavailability,
delivery, and drug reaction as Peter et al. already as-
sumed [40].

While different studies investigated the impact of
bisphosphonates in an osteoporotic model and proved
positive results, we implanted the composite into a
healthy bony environment [40—42]. Some studies explain
the increase of bone mass after the application of
bisphosphonates due to the decrease of bone turnover
and not as a consequence of an enhanced bone healing
[43—45]. In addition to these results and to the assump-
tion of Peter et al. [40], Verron et al. described the devel-
opment of an injectable composite bone graft of calcium
phosphate and bisphosphonate in an osteoporotic sheep
model [46]. He demonstrated that bisphosphonate-loaded

cement positively influenced the microarchitecture of the
adjacent bone. The effect was relative to the distance from
the bone graft and indicated an in situ effect of the bisphos-
phonate [46]. This refuted the assumptions of Peter et al.
who indicated a negative influence on the bioavailability
and drug reaction of alendronate after direct implantation
into the bony defect. In this study, the missing influence of
alendronate to the microarchitecture of the adjacent bone
is probably a consequence of the healthy bony environment
surrounding the defect. We assume that the positive effect
of bisphosphonates in osteoporotic models is produced by
a decrease of bone turnover and not as a consequence of
enhanced bone healing [43-46]. To verify this, a study
should be designed that compares the implantation of a
calcium phosphate alendronate composite in an osteopor-
otic and a healthy bone model.

In our study, both implants proved their function as
bone graft substitute, but the presence of alendronate had
neither a positive nor a negative effect on the bone healing
process at the different time points. Due to the study
design, we were not able to assess the impact of a long-
term alendronate therapy to the bone healing process.

Bone healing and callus formation were assessed by
fluoroscopy. The X-ray images documented that all bone
defects in the tibia heads healed with an external osseous
callus formation. No fracture occurred during the obser-
vation time. Neither could we prove a delayed callus for-
mation [47] nor did we observe a much larger callus
formation as Li found for bisphosphonates in his long-
bone fracture model in rats [14]. In Li’s study, the callus
formation in the calcium phosphate alendronate group
was not inhibited. We cannot report any increase of com-
plications. In this study, callus thickness showed no visual
differences. When comparing the fluoroscopy pictures at
the different time points, alendronate did not influence
the bone healing process.

As a limitation for this study, we have to cite that we
only used one dose of alendronate for the preparation of
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the composite. Peter et al. already proved the dose effect
of bisphosphonates on the bone volume fraction in an
osteoporotic rat model [40]. We recommend additional
studies that compare different alendronate concentra-
tions to evaluate the dose effect.

Conclusions

In summary, alendronate had no positive or negative
benefit as a bone graft substitute regarding this study.
After injection together with calcium phosphate into the
bone defect in a healthy bony environment, it did not lead
to an increased callus formation. In this study, alendronate
did not influence the bone healing process at the different
time points.

Due to our outcomes, the bisphosphonate alendronate
composite does not support the bone healing process in a
healthy bony environment sufficiently that the known
properties of calcium phosphate as a bone graft substitute
were improved in the sense of a composite graft. We
assume that the missing influence of alendronate to the
microarchitecture of the adjacent bone is probably a con-
sequence of the healthy bony environment surrounding
the defect. To verify this, a study should be designed that
compares the implantation of a calcium phosphate alen-
dronate composite in an osteoporotic and a healthy bone
model.

Regarding our results and the collected data of different
studies [48-50], it appears to be safe to start with an initial
alendronate therapy directly after a recent bone fracture.
Due to the study design, we were not able to assess the
impact of a long-term alendronate therapy to the bone
healing process. We suggest additional studies to evaluate
the duration of action of a calcium phosphate alendronate
composite bone graft.
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