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Morphological study of the posterior osseous
structures of subaxial cervical spine in a
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Abstract

Background: Laminar screws and lateral mass screws have been increasingly used in the treatment of cervical
diseases. The purpose of this study is to determine the morphological characteristics of the posterior anatomical
structures of the subaxial cervical vertebrae in a northeastern Chinese population.

Methods: Sixty-one consecutive patients underwent cervical spine computed tomography (CT). We analyzed a total
of 610 axial images and 61 sagittal images. The following parameters were measured: lamina outer width (LOW),
lamina inner width (LIW), lamina axis length (LAL), lamina transverse angle (LTA), lateral mass longitudinal diameter
(LMLD), lateral mass transverse diameter (LMTD), sagittal spinous process length (SSPL), axial spinous process length
(ASPL), spinal canal transverse diameter (SCTD), spinal canal longitudinal diameter (SCLD), osseous spinal canal area
(OSCA), and Pavlov ratio (PR). The participants were classified into male and female groups and developmental canal
stenosis (DCS; PR ≤0.75) and non-DCS (NDCS; PR >0.75) groups.

Results: Significant differences were observed among the different vertebral levels for almost all evaluated parameters,
except for LTA and OSCA. Statistical differences were found between the right and left sides in all parameters, except
for LIW and LOW. All linear parameters, except for SCLD and the angular parameter LTA, significantly differed between
the sexes. Significant differences were found between the DCS and NDCS groups in terms of all parameters, except for
SCTD.

Conclusions: Various measurements of the posterior structures of subaxial cervical vertebrae differed between the left
and right sides, females and males, and the DCS and NDCS groups. Different techniques for lateral mass screw insertion
should be used according to different vertebral level. Only C7 laminar may be able to safely accommodate a 2.5-mm
translaminar screw. The study data can help doctors to make better surgical decisions and develop more appropriate
implants for northeastern Chinese patients.
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Introduction
Various types of cervical spinal instrumentations such as
laminar screws and lateral mass screws have been devel-
oped and have enabled more rigid fixation of the cervical
spine and correction of malalignment via a posterior-
only approach, especially, in the case of the subaxial
cervical spine [1-6]. One of the most frequent and com-
plex procedures involving this part of the spine is the
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placement of transpedicular screws [7-10]. Laminar
screws and lateral mass screws have been increasingly
used in the treatment of cervical diseases [2-5,11,12].
However, these techniques are beset with the risk of sig-
nificant neurologic and vascular injury [13-16].
It is essential that the implants used for these opera-

tions are appropriately designed and positioned. All
these implants are closely related to the morphological
characteristics of posterior cervical osseous structures,
which include the pedicles, laminae, and spinous
processes. Knowing the dimensions of these structures
is a prerequisite for the development of appropriate
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Figure 1 Measurements of lateral mass and spinal canal parameters.Measurement of (a) lateral mass longitudinal diameter (LMTD); (b) lateral
mass longitudinal diameter (LMLD); (c) spinal canal transverse diameter (SCTD); (d) spinal canal longitudinal diameter (SCLD); and (e) osseous
spinal canal area (OSCA).
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implants. Furthermore, ethnic variations have been re-
ported in these dimensions [8,17-20], and to date,
there have been no morphometric studies of this area
in the northeastern Chinese population. Therefore, the
objective of this study is to determine the morphomet-
ric characteristics of the subaxial cervical vertebrae in
northeastern Chinese persons.
With rapid advances in imaging technology, thin-slice

computed tomography (CT) scans and three-dimensional
reconstruction techniques have enabled the detailed study
of the morphology of the subaxial cervical spine [21]. This
study aimed to analyze the features of the posterior
structures of the subaxial cervical spine in northeastern
Chinese persons by using high-resolution CT scans.

Materials and methods
From July 2011 to July 2014, 61 patients complaining neck
pain without neurological deficits, congenital deformities,
trauma of the spine, and history of spinal surgery were en-
rolled in this study. All these patients underwent high-
resolution CT scanning of the cervical spine. There were
24 women and 37 men. Their mean age was 53.2 ± 9.9 years
(range, 27–71 years). Patients with congenital deformities,
trauma, ossification of the posterior longitudinal liga-
ment, ossification of the ligamentum flavum, rheumatoid
arthritis, infectious spondylitis, spinal tumors, or prior
spine surgery were excluded. All the patients provided in-
formed consent. And the study was approved by the
Medical Ethics Committee of our hospital.
All CT scans were obtained using a high-resolution CT

device (Philips, 256-slice CT scanner, The Netherlands).
The imaging data were obtained in 0.5-mm slices from
the level of C1 to C7. All images were routinely reformat-
ted into axial planes parallel to the endplates of the verte-
bral body. Axial images containing the largest pedicle
diameter and lamina diameter were selected for the C3 to
C7 vertebrae. The largest middle sagittal plane (LMSP)
image of each patient was also selected. In total, we ana-
lyzed 610 axial images and 61 sagittal images. The follow-
ing parameters were measured:

1. Laminae, lateral mass, and spinous process
parameters: lamina outer width (LOW), which is the
perpendicular distance between the medial and



Figure 2 Measurements of lamina and axial spinous process parameters. Measurement of (f) lamina axis length (LAL); (g) lamina inner width (LIW); (h)
lamina outer width (LOW); (i) lamina transverse angle (LTA); and (j) axial spinous process length (ASPL).

Figure 3 Measurement of (k) sagittal spinous process length (SSPL).
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Table 1 Dimensions of lamina, lateral mass, and spinous process parameters at each level

Level LIW LOW LAL LTA LMTD LMLD SSPL ASPL

Left Right Left Right Left Right Left Right Left Right Left Right

C3 1.9 ± 0.9 1.8 ± 0.8 4.7 ± 1.1 4.6 ± 1.1 33.2 ± 2.9 32.8 ± 3.0 54.6 ± 2.6 54.8 ± 2.7 12.2 ± 1.4 12.6 ± 1.5 11.9 ± 1.3 12.1 ± 1.2 16.7 ± 3.3 7.5 ± 3.1

F 1.5 ± 0.9 1.3 ± 0.8 4.2 ± 1.1 4.1 ± 1.1 31.6 ± 2.7 31.0 ± 2.7 55.0 ± 2.5 55.2 ± 2.6 11.1 ± 1.3 11.6 ± 1.2 11.1 ± 1.1 11.4 ± 1.0 14.8 ± 2.9 7.1 ± 1.7

M 2.2 ± 0.8 2.2 ± 0.9 5.1 ± 1.0 4.9 ± 0.9 34.2 ± 2.6 34.0 ± 2.5 54.5 ± 2.7 54.5 ± 2.9 12.8 ± 1.1 13.3 ± 1.3 12.4 ± 1.2 12.5 ± 1.1 17.9 ± 3.0 8.8 ± 2.1

DCS 2.0 ± 0.3 1.9 ± 0.4 5.0 ± 0.7 4.7 ± 0.7 33.8 ± 2.4 33.4 ± 2.0 56.2 ± 2.6 56.0 ± 2.7 12.8 ± 0.8 12.9 ± 1.1 11.9 ± 1.0 11.9 ± 0.9 17.6 ± 3.0 8.6 ± 1.4

NDCS 1.9 ± 1.1 1.8 ± 1.1 4.6 ± 1.2 4.6 ± 1.2 33.0 ± 3.1 32.6 ± 3.2 54.3 ± 2.7 54.3 ± 2.3 12.0 ± 1.5 12.5 ± 1.6 11.8 ± 1.4 12.1 ± 1.3 16.4 ± 3.4 8.0 ± 1.9

C4 1.2 ± 0.8 1.1 ± 0.7 3.9 ± 0.9 3.8 ± 0.9 32.4 ± 2.4 32.6 ± 2.5 55.0 ± 2.3 55.1 ± 2.5 12.1 ± 1.4 12.5 ± 1.4 11.8 ± 1.2 11.8 ± 1.2 17.4 ± 3.1 7.7 ± 2.9

F 1.0 ± 0.8 0.9 ± 0.7 3.6 ± 1.0 3.6 ± 1.0 30.9 ± 2.1 31.3 ± 2.0 55.6 ± 2.6 55.4 ± 2.4 11.0 ± 1.2 11.6 ± 1.3 11.2 ± 1.0 11.2 ± 0.9 15.7 ± 2.9 7.7 ± 2.2

M 1.3 ± 0.7 1.2 ± 0.7 4.1 ± 0.8 3.9 ± 0.8 33.3 ± 2.2 33.5 ± 2.5 55.5 ± 2.5 55.6 ± 2.1 12.7 ± 1.1 13.2 ± 1.0 12.2 ± 1.1 12.3 ± 1.2 18.4 ± 2.8 9.4 ± 1.8

DCS 1.3 ± 0.5 1.2 ± 0.4 4.1 ± 0.7 3.9 ± 0.7 32.6 ± 2.4 33.0 ± 2.3 55.4 ± 2.3 55.6 ± 2.5 12.2 ± 1.1 12.9 ± 0.7 12.0 ± 1.1 11.9 ± 1.3 17.2 ± 2.9 8.8 ± 1.7

NDCS 1.2 ± 0.8 1.1 ± 0.8 3.8 ± 1.0 3.7 ± 0.9 32.3 ± 2.5 32.5 ± 2.6 55.5 ± 2.7 55.5 ± 2.6 12.0 ± 1.5 12.4 ± 1.5 11.7 ± 1.2 11.8 ± 1.2 17.4 ± 3.2 8.9 ± 1.9

C5 1.1 ± 0.7 1.0 ± 0.6 3.7 ± 0.9 3.5 ± 0.8 32.1 ± 2.5 32.1 ± 2.6 55.8 ± 3.0 55.6 ± 2.7 12.6 ± 1.5 13.2 ± 1.5 12.6 ± 1.3 12.8 ± 1.3 19.3 ± 3.3 10.1 ± 3.2

F 0.8 ± 0.8 0.8 ± 0.7 3.3 ± 1.1 3.3 ± 1.0 30.7 ± 1.8 30.4 ± 2.1 56.0 ± 2.9 56.3 ± 2.8 11.6 ± 0.9 12.0 ± 0.7 11.9 ± 1.4 12.1 ± 1.3 17.7 ± 3.0 9.2 ± 2.1

M 1.2 ± 0.6 1.1 ± 0.5 3.9 ± 0.8 3.7 ± 0.6 33.1 ± 2.4 33.2 ± 2.3 55.5 ± 2.6 55.6 ± 2.8 13.4 ± 1.4 14.0 ± 1.4 13.0 ± 1.0 13.3 ± 1.1 20.3 ± 3.0 10.4 ± 2.3

DCS 1.1 ± 0.6 0.9 ± 0.5 4.0 ± 0.8 3.7 ± 0.8 31.7 ± 2.4 31.8 ± 2.4 56.9 ± 3.2 56.8 ± 3.0 12.9 ± 1.6 13.2 ± 1.4 13.2 ± 1.0 13.6 ± 0.9 18.7 ± 3.3 9.7 ± 2.0

NDCS 1.0 ± 0.7 1.0 ± 0.7 3.6 ± 1.0 3.5 ± 0.8 32.3 ± 2.5 32.2 ± 2.7 55.6 ± 2.7 55.4 ± 2.6 12.6 ± 1.5 13.2 ± 1.6 12.4 ± 1.3 12.6 ± 1.3 19.5 ± 3.3 9.9 ± 1.9

C6 1.6 ± 0.8 1.4 ± 0.7 4.4 ± 1.0 4.2 ± 1.0 32.0 ± 2.8 31.9 ± 2.8 55.2 ± 3.3 55.3 ± 3.2 12.7 ± 1.6 13.0 ± 1.5 13.1 ± 1.4 13.7 ± 1.4 27.1 ± 4.9 14.3 ± 4.2

F 1.2 ± 0.8 1.2 ± 0.9 3.9 ± 1.0 3.9 ± 1.2 30.1 ± 1.9 30.3 ± 2.1 56.1 ± 2.1 55.9 ± 2.3 11.5 ± 0.8 12.0 ± 0.9 12.5 ± 1.7 12.7 ± 1.3 24.9 ± 4.4 13.5 ± 2.5

M 1.8 ± 0.7 1.6 ± 0.6 4.7 ± 0.7 4.4 ± 0.7 33.2 ± 2.7 33.0 ± 2.7 54.6 ± 3.4 54.6 ± 3.6 13.4 ± 1.5 13.7 ± 1.4 13.5 ± 0.9 14.3 ± 1.1 28.4 ± 4.9 14.1 ± 2.6

DCS 1.5 ± 0.6 1.4 ± 0.5 4.4 ± 0.8 4.2 ± 0.9 31.2 ± 2.6 30.5 ± 2.2 56.9 ± 3.6 57.1 ± 3.4 12.5 ± 1.6 12.7 ± 1.1 14.0 ± 1.1 14.1 ± 1.0 26.2 ± 4.0 13.6 ± 2.1

NDCS 1.6 ± 0.8 1.4 ± 0.8 4.4 ± 1.0 4.2 ± 1.0 32.2 ± 2.8 32.4 ± 2.8 54.5 ± 2.6 54.6 ± 2.7 12.7 ± 1.6 13.1 ± 1.6 12.8 ± 1.3 13.5 ± 1.5 27.3 ± 5.2 14.2 ± 2.4

C7 2.9 ± 1.1 2.7 ± 1.0 5.9 ± 1.3 5.6 ± 1.3 33.7 ± 2.4 33.8 ± 2.6 55.1 ± 2.7 54.9 ± 2.6 12.7 ± 1.3 12.8 ± 1.4 10.6 ± 1.5 10.9 ± 1.4 35.2 ± 3.4 18.3 ± 3.0

F 2.3 ± 1.0 2.3 ± 1.2 5.1 ± 1.3 5.0 ± 1.4 32.0 ± 1.7 32.0 ± 1.9 55.5 ± 2.6 56.1 ± 2.5 11.7 ± 0.8 11.9 ± 1.2 9.9 ± 1.4 10.4 ± 1.2 33.0 ± 3.5 16.8 ± 1.9

M 3.2 ± 0.9 3.0 ± 0.8 6.4 ± 1.1 6.0 ± 0.9 34.9 ± 2.1 34.9 ± 2.4 54.7 ± 3.0 55.2 ± 3.1 13.3 ± 1.1 13.4 ± 1.2 10.9 ± 1.4 11.3 ± 1.3 36.6 ± 2.5 19.0 ± 1.8

DCS 2.9 ± 1.0 2.6 ± 1.0 6.0 ± 1.3 5.6 ± 1.3 33.4 ± 2.4 33.0 ± 2.8 55.8 ± 2.2 56.0 ± 2.4 12.9 ± 1.1 13.2 ± 1.1 10.5 ± 1.4 11.0 ± 1.3 35.7 ± 2.6 17.5 ± 1.7

NDCS 2.9 ± 1.1 2.7 ± 1.0 5.9 ± 1.4 5.6 ± 1.3 33.9 ± 2.4 34.0 ± 2.5 54.7 ± 2.4 55.0 ± 2.5 12.6 ± 1.3 12.7 ± 1.5 10.6 ± 1.6 10.9 ± 1.4 35.0 ± 3.6 17.5 ± 1.9

LIW lamina inner width, LOW lamina outer width, LAL lamina axis length, LTA lamina transverse angle, LMTD lateral mass transverse diameter, LMLD lateral mass longitudinal diameter, SSPL sagittal spinous process
length, ASPL axial spinous process, L left side, R right side, F female, M male, DCS developmental cervical stenosis, NDCS nondevelopmental cervical stenosis.
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Table 2 Dimensions of spinal canal parameters at each
level

Level SCTD SCLD OSCA

C3 22.3 ± 1.3 13.9 ± 1.2 225.1 ± 28.4

F 21.7 ± 1.0 14.0 ± 1.4 221.0 ± 32.8

M 22.7 ± 1.2 13.9 ± 1.0 227.7 ± 25.2

DCS 22.1 ± 0.9 13.1 ± 1.0 214.8 ± 16.9

NDCS 22.4 ± 1.4 14.2 ± 1.1 228.4 ± 30.6

C4 23.7 ± 1.7 13.5 ± 1.3 221.8 ± 29.1

F 22.7 ± 1.5 13.6 ± 1.5 214.9 ± 34.2

M 24.3 ± 1.6 13.5 ± 1.2 226.2 ± 24.7

DCS 24.2 ± 1.5 12.6 ± 1.0 210.8 ± 20.3

NDCS 23.5 ± 1.8 13.8 ± 1.3 225.3 ± 30.7

C5 24.8 ± 1.8 13.6 ± 1.3 229.1 ± 30.9

F 23.9 ± 1.7 13.6 ± 1.4 219.8 ± 29.4

M 25.4 ± 1.6 13.6 ± 1.3 235.2 ± 30.7

DCS 25.0 ± 1.7 12.6 ± 1.3 211.9 ± 23.6

NDCS 24.7 ± 1.9 13.9 ± 1.2 234.8 ± 31.2

C6 25.0 ± 1.8 14.0 ± 1.2 237.0 ± 31.4

F 24.1 ± 1.5 13.7 ± 1.2 224.9 ± 30.1

M 25.6 ± 1.7 14.2 ± 1.1 244.9 ± 30.1

DCS 25.4 ± 1.7 13.1 ± 1.0 222.1 ± 25.1

NDCS 24.8 ± 1.9 14.3 ± 1.1 241.9 ± 32.0

C7 24.4 ± 1.8 14.3 ± 1.3 231.1 ± 28.7

F 23.7 ± 1.5 13.8 ± 1.0 218.2 ± 24.3

M 24.9 ± 1.9 14.6 ± 1.3 239.4 ± 28.5

DCS 24.8 ± 1.9 13.2 ± 1.2 219.5 ± 27.6

NDCS 24.3 ± 1.8 14.6 ± 1.1 234.9 ± 28.3

SCTD spinal canal transverse diameter, SCLD spinal canal longitudinal diameter,
OSCA osseous spinal canal area, L left side, R right side, F female, M male, DCS
developmental cervical stenosis, NDCS nondevelopmental cervical stenosis.
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lateral cortical bones of the lamina isthmus; lamina
inner width (LIW), which is the perpendicular
distance between the medial and lateral cancellous
bones of the lamina isthmus; lamina axis length
(LAL); lamina transverse angle (LTA), which is the
angle between the lamina axis and the midline of the
vertebral body; lateral mass longitudinal diameter
(LMLD), which is the distance from the posterior
cortex of the lateral mass to the posterior edge of
the transverse foramen; lateral mass transverse
diameter (LMTD), which is the distance from the
lateral cortex of the lateral mass to the medial edge
of the osseous spinal canal; sagittal spinous process
length (SSPL), which is the length of spinous
process on sagittal plane; and axial spinous process
length (ASPL), which is the length of spinous
process on axial plane.
2. Spinal canal parameters: spinal canal longitudinal
diameter (SCLD); spinal canal transverse diameter
(SCTD); and osseous spinal canal area (OSCA).

Among these parameters, LMTD, LMLD, ASPL, SCTD,
SCLD, and OSCA were measured on the largest pedicle
diameter plane (LPDP) parallel to the endplate of the in-
vestigated vertebra (Figure 1). LIW, LOW, LTA, and LAL
were measured on the largest laminar diameter plane
(LLDP) parallel to the endplate of the investigated ver-
tebra (Figure 2). SSPL was measured on the LMSP
(Figure 3). To determine whether developmental cer-
vical spinal canal stenosis was present, we also mea-
sured the mean Pavlov ratio (PR), which is the mean of
the PRs at each level from C3 to C7. Two independent ob-
servers measured each morphometric parameter in con-
sensus, by using a digital imaging and communications
in medicine (DICOM) viewer, electronic calipers, and a
DICOM workstation. In our study, we investigated the
reliability of the measurement techniques, and the intra-
and interobserver agreement was good to excellent for
each parameter (k >0.80).
The participants were classified into a female group

(24 subjects) and a male group (37 subjects). They were
also classified into a developmental canal stenosis (DCS)
group (15 subjects, PR ≤0.75) and a non-DCS (NDCS)
group (46 subjects, PR >0.75).
The Statistical Package for the Social Sciences (SPSS,

version 17.0) was used. Values are represented as mean ±
standard deviation. Single-factor analysis of variance was
used to determine differences among the different verte-
bral levels, and the student t test was used to determine
differences between different groups (female vs. male, and
DCS vs. NDCS) with regard to all morphometric parame-
ters. A significance level of 0.05 was adopted.

Results
We studied the CT data, including the 610 axial and 61
sagittal images, from the 61 patients. The lamina, lateral
mass, and spinous process parameters are presented in
Table 1. The spinal canal parameters are presented in
Table 2. General trends of the parameters are presented
in Figures 4, 5, and 6.
Significant differences were observed among the differ-

ent vertebral levels for almost all the evaluated parame-
ters (P <0.05), except for LTA and OSCA. Statistical
differences were found in all levels between the right
and left sides for most evaluated parameters (P <0.05),
except for LIW and LOW. All linear parameters (LOW,
LIW, LAL, SCTD, SCLD, SSPL, and ASPL), but not the
angular parameters (LTA) differed significantly between
the sexes (P <0.05). Almost all parameters showed sig-
nificant differences between the DCS group and the
NDCS group at different levels, except for SCTD. And



Figure 4 Dimensions of linear parameters, part 1. LIW: lamina inner width; LOW: lamina outer width; POW: pedicle outer width; L: left side; R: right side.
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SCLD showed significant differences, except at the C3 and
C4 levels. OSCA showed significant differences only at the
C5 and C6 levels. LMLD and LMTD showed significant
differences at the C5, C6 and C7 level, respectively.
Lamina, lateral mass, and spinous process parameters
Table 1 shows the results of LIW, LOW, LAL, LTA,
LMTD, LMLD, SSPL, and ASPL. The general trends of
these parameters are shown in Figures 4 and 5. Signifi-
cant differences were found between the two sides for
LMTD at all levels, except C7, and for LMLD at all
levels, except C4. C6 and C5 had the largest measure-
ments of LMLD (P <0.05), while the smallest measure-
ments were observed at C7 level (P <0.05). C5, C6, and
C7 had longer LMTD (P <0.05). Significant differences
between LMTD and LMLD were observed at the C4
level (only on left side) and C5 level (on both left and
right sides).
As a general trend, the mean LIW and LOW de-

creased from C3 to C5 and increased from C5 to C7 on
both sides. The smallest LIW and LOW were both ob-
served at the C5 level (P <0.05). The largest LIW and
LOW were measured at the C7 level (P <0.05). Both the
mean SSPL and ASPL increased steadily from C3 to C7.
Spinal canal parameters
Table 2 shows the results of SCTD, SCLD, and OSCA.
Figure 5 shows the general trends of SCTD and SCLD. As
a general trend, the mean SCTD increased from C3 to C6
and decreased from C6 to C7. The largest SCTD was
measured at the C6 level (P <0.05). The mean SCLD de-
creased from C3 to C4 and increased from C4 to C7. The
largest SCLD was measured at the C7 level (P <0.05). The
mean OSCA fluctuated from C3 to C7, and no significant
differences were found among the different vertebral levels
(P >0.05).

Discussion
Several methods of fixation have been used in the subax-
ial cervical spine, including pedicle screws, lateral mass
screws, and laminar screws. Therefore, detailed anatom-
ical data of the subaxial cervical spine for the accurate
implantation is urgently required. Anatomical measure-
ments of the critical morphometric characteristics of the
subaxial cervical spine related to a variety of fixation
techniques have been studied by analyzing data from dir-
ect measurement of cadavers, CT scans, and 3D recon-
structions [10]. Furthermore, differences in vertebral
dimensions have been shown to exist among different
races [10,22]. We therefore analyzed the anatomical



Figure 5 Dimensions of linear parameters, part 2. SCLD: spinal canal longitudinal diameter; SCTD: spinal canal transverse diameter; LAL: lamina
axis length; PAL: pedicle axis length; LMTD: lateral mass transverse diameter; LMLD: lateral mass longitudinal diameter. ASPL: axial spinous process
length; SSPL: sagittal spinous process length; L: Left side; R: right side.
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dimensions of the subaxial cervical spine in the north-
eastern Chinese population.
Most anatomical studies on the spinal column seem to

be based on the unverified assumption that there are no
significant differences in anatomical parameters between
the right and left sides. Therefore, the results of most
anatomical studies of the spinal column incorrectly re-
port only a single measurement rather than two different
data points for both sides. In our study, only two ana-
tomical parameters, i.e., LIW and LOW, showed no sig-
nificant differences between the two sides. This result
may indicate that spinal surgeons should consider the
difference between the left and right sides to facilitate
the safe placement of various types of spinal implants ra-
ther than always pursuing symmetrical manipulation.
Gender differences between linear cervical laminar pa-

rameters have been reported [12]. However, detailed
gender-based differences in the cervical pedicle, spinal
canal, and angular cervical laminar parameters are rarely
reported. We found that male subjects had significantly
larger diameters than female subjects for all linear pa-
rameters, except for SCLD, and the angular parameter.
This suggests that different size implants should be se-
lected, but a similar insertion angle should be applied
during cervical fixation surgery in patients of different
sexes.
In this study, we determined the specific anatomical

dimensions of the adult subaxial cervical laminae, lateral
masses, spinous process, and spinal canal parameters
using CT radiographic analysis.
Lateral mass screws are increasingly commonly used

for posterior fixation of the cervical spine to treat trau-
matic and degenerative conditions [23]. The numerous
surgical techniques can be divided into where the trajec-
tories are perpendicular to the posterior lateral mass sur-
face (i.e., the Roy-Camille technique [24,25]) and those
where the screw trajectory is rather parallel to the facet
joint and more lateral on the axial plane (e.g., Magerl
[26], Anderson [27], An [28], and Cheng [29]) [30]. It is
widely accepted that the bio-mechanical properties differ
between the Roy-Camille and Magerl techniques. Screw
pullout strength and sagittal stiffness are significantly
greater with the Magerl techniques [31,32]. An observa-
tion was attributed to a superior bony anchorage due to



Figure 6 Dimensions of angular parameters. LTA: Lamina transverse angle, which is the angle between the lamina axis and the midline of the
vertebral body; L: Left side; R: right side.
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longer lateral mass screw trajectories [30]. According to
our study, C6 and C5 had the largest measurements of
LMLD (P <0.05), while the smallest measurements were
observed at C7 level. Therefore, both the Roy-Camille
and Magerl techniques might be able to be used at C6
and C5 level. However, the Magerl technique was rec-
ommended at C7 level due to the possible shortest lat-
eral mass screw trajectories. Moreover, C5, C6, and C7
had longer LMTD (P <0.05) which meant more oblique
lateral mass trajectory applied in the Magerl and Cheng
techniques might be accommodated.
Most current studies on laminar anatomy in the adult

population have focused on the LOW [12,21] rather
than the LIW. Limited investigation has been performed
within the adult population to understand the core data
of laminar anatomy: clinical surgeons consider that the
LIW is more important for safe laminar screw place-
ment. This is the main concern of our study. We found
that only the C7 lamina, but not the C3–C6 laminae,
may be able to safely accommodate a 2.5-mm translami-
nar screw. Our suggestion is different to that of Alvin
et al. [12] and of Ji et al. [33]. In our opinion this differ-
ence is due to different focus of study. Our focus was
the LIW rather than the LOW or the thickness of lam-
ina. Furthermore, according to our study, the smallest
LIW and LOW were both observed at the C5 level.
Therefore, translaminar implants should be more care-
fully inserted at the C5 level. In other words, preopera-
tive CT scans of all cervical vertebral levels are
indispensable for translaminar screw insertion.
Differences between the dimensions of the DCS and

NDCS groups show evident variation among different cer-
vical vertebral levels. No significant regularity was found.
Our results differ from those of Miyazaki et al. [21].
We found that usually, the axial plane of the largest

pedicle diameter did not present the largest laminar
diameter and vice versa. Therefore, we did not apply the
method, which has been used in many studies, in which
measurements are obtained from only one axial plane
[12,21,34]. Instead, we measured dimensions from two
axial planes.
Some of the results of our study were compared with

those of the earlier studies of Panjabi MM et al. [35],
Tan SH et al. [17], Stemper BD et al. [36], Abdullah KG
et al. [34], Alvin MD et al. [12], and Yusof MI et al. [37]
(Table 3 and Table 4). In general, the results presented



Table 3 Comparison of lamina and lateral mass parameters

Parameter Level Gender Our study Alvin (2012) [12] Stemper (2008) [36] Abdullah (2009) [34] Yusof (2012) [37]

LIW C3 1.9 — — — 2.0

C4 1.1 — — — 1.7

C5 1.0 — — — 1.9

C6 1.0 — — — 2.3

C7 2.8 — — — 3.4

LOW C3 F 4.2 4.1 — — 3.5

M 5.0 4.2 — —

C4 F 3.6 3.6 — — 3.1

M 4.0 3.8 — —

C5 F 3.3 3.3 — — 3.1

M 3.8 3.6 — —

C6 F 3.9 3.9 — — 3.9

M 4.6 4.3 — —

C7 F 5.1 5.9 — — 5.8

M 6.2 6.3 — —

LAL C3 33.0 — — — 31.2

C4 32.5 — — — 31.5

C5 32.1 — — — 32.1

C6 31.9 — — — 30.6

C7 33.8 — — — 32.2

LTA C3 54.7 — — — 50.8

C4 55.5 — — — 51.4

C5 55.8 — — — 50.9

C6 55.2 — — — 51.1

C7 55.0 — — — 50.5

LMTD C3 F 11.4 — 10.0 — —

M 13.1 — 11.1 — —

C4 F 11.3 — 10.3 — —

M 13.0 — 11.4 — —

C5 F 11.8 — 11.0 11.0 —

M 13.7 — 12.4 12.9 —

C6 F 11.8 — 11.1 11.4 —

M 13.6 — 12.8 12.8 —

C7 F 11.8 — 10.3 10.5 —

M 13.4 — 11.8 11.5 —

LMLD C3 F 11.3 — — — —

M 12.5 — — — —

C4 F 11.2 — — — —

M 12.3 — — — —

C5 F 12.0 — — 8.8 —

M 13.2 — — 9.2 —
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Table 3 Comparison of lamina and lateral mass parameters (Continued)

C6 F 12.6 — — 8.6 —

M 13.9 — — 10.5 —

C7 F 10.2 — — 9.6 —

M 11.1 — — 10.8 —

LIW indicates lamina inner width; LOW, lamina outer width; LAL, lamina axis length; LTA, lamina transverse angle; LMTD, lateral mass transverse diameter; LMLD,
lateral mass longitudinal diameter; F, female; M, male.
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in our study agree well with those of the earlier studies,
but there were some marked differences. The LMLD di-
mensions from our study were significantly larger than
those of Abdullah KG et al. because our data were mea-
sured from the posterior cortex of the lateral mass to
the posterior edge of the transverse foramen instead of
the distance from the dorsal to ventral cortices through
the center of the lateral mass.
The spinal canal areas of our study differed signifi-

cantly from those of Tan et al. [17] but similar to those
of Panjabi et al. [35].
The SSPL presented herein were significantly less than

those observed by Panjabi [35] et al. and Tan et al. [17] by
about 10 mm. In our opinion, this apparent discrepancy is
due to the difference in where the length was measured.
Table 4 Comparison of spinal process and spinal canal
parameters

Parameter Level Our study Panjabi (1991) [35] Tan (2004) [17]

SSPL C3 16.7 29.6 25.6

C4 17.4 30.3 30.3

C5 19.3 28.5 33.6

C6 27.1 34.2 40.5

C7 35.2 45.7 46.9

SCTD C3 22.3 22.9 19.2

C4 23.7 24.7 19.3

C5 24.8 24.9 20.3

C6 25.0 25.8 20.6

C7 24.4 24.5 19.7

SCLD C3 13.9 16.2 10.3

C4 13.5 17.7 10.3

C5 13.6 17.4 10.3

C6 14.0 18.1 10.3

C7 14.3 15.2 11.0

OSCA C3 225.1 248.7 149.7

C4 221.8 272.0 159.9

C5 229.1 249.5 166.8

C6 237.0 266.5 163.7

C7 231.1 223.8 167.5

SSPL sagittal spinous process length, SCTD spinal canal transverse diameter,
SCLD spinal canal longitudinal diameter, OSCA osseous spinal canal area.
In our study, the SSPL was measured on the largest middle
sagittal plane which meant the tips of spinous process
could not be measured due to its special bifid or slightly
bent shapes.
Our study population was comprised of 61 patients all

come from northeastern China and may not have been
sufficiently large to be generalized to the greater popula-
tion. Therefore, our study results may be applicable only
to those northeastern Chinese population. Larger popu-
lation coming from all parts of China even Asia enrolled
in this kind of study may provide more persuasive and
typical morphological results. And our center is cur-
rently preparing for launching a plan of multicenter
morphological study on subaxial cervical spine of the
Asian population.
We hope our results will help to improve the quality

of mathematical models of the subaxial cervical spine. In
addition, these data may also be used clinically, for ex-
ample, in the design of surgical implants for this region
of the cervical spine.

Conclusion
The measurements of most symmetrical and bilateral ana-
tomical structures of the subaxial cervical vertebrae differ
between the left and right sides. Specific consideration
should be given to these differences prior to surgical ma-
nipulation and spinal implant insertion. Different tech-
niques for lateral mass screw insertion should be used
according to different vertebral level. Only C7 laminar may
be able to safely accommodate a 2.5-mm translaminar
screw. The data of this study can be used to help make
better surgical decisions and develop more appropriate
cervical devices for the northeastern Chinese population.

Keypoints

1. Most of the morphometric data of the subaxial
cervical spine differ between the left and right sides,
a finding that has not been previously reported.

2. Different implant sizes should be selected, but a
similar insertion angle should be applied during
cervical fixation surgery in patients of different sexes.

3. Different techniques of lateral mass screw insertion
may be used in different cervical level.
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4. The C7 lamina may be the only segment that can
safely accommodate a translaminar screw.

5. Evident variation among different cervical vertebral
levels was found between patients with and without
developmental cervical stenosis. However, no
significant regularity was found.

6. We recommend that spine surgeons should measure
those anatomic parameter of subaxial cervical spine
on 3D-CT scans for determination of safe screw size
at each level before surgery.
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