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Effect of tibial tray design on cement morphology
in total knee arthroplasty
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Abstract

Background: Improvements to enforce primary fixation in cemented total knee arthroplasty have been suggested
to be a key issue for long-term survival. In this context, it has been questioned whether specific implant design
features influence bone cement morphology and hence primary interface strength. The purpose of this study was
to investigate in vitro the influence of cement pockets on the tibial tray on cement penetration in the tibia.

Methods: Eight paired cadaveric, human tibiae were available for investigation. One side of a pair was implanted
with a fixed bearing tibial tray (FB) featuring cement pockets on the undersurface, while in the other side, a mobile
bearing platform (MB) without cement pockets was used. Specimens underwent computed tomography analysis of
the cement morphology as well as BMD assessment.

Results: While bone cement layer between implant and bone surface was thicker in the FB group (p = 0.032), bone
cement penetration was not influenced by implant design (p = 0.529).

Conclusions: The present study suggests that cement pockets do not alter or enforce bone cement penetration
under the tibial tray in an in vitro scenario.

Keywords: Total knee arthroplasty, Cementing technique, Mobile bearing, Cement pockets, Bone cement
penetration
Background
Cemented total knee arthroplasty (TKA) is widely ac-
cepted as the most effective treatment for end-stage
osteoarthritis of the knee. Although favorable clinical re-
sults have been reported, aseptic loosening of the tibial
component remains troublesome [1-3]. As the need for
revision surgery in total knee arthroplasty increases
steadily, there is growing interest to improve initial fix-
ation [4]. Aseptic loosening can be attributed to continu-
ous micromotion at the implant-cement or bone-cement
interface [5]. There is increasing evidence that the
interface strength of the cemented fixation at the time
of surgery is a major factor determining the long-term
performance of the implant [6,7]. However, there is
little information regarding bone cement penetration
characteristics with newer tray designs for alternative
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bearing philosophies such as mobile bearing platforms.
There has been a higher prevalence of tibial failure
with early component designs, which highlights the
role of the implant itself in the loosening process [8].
Implants featuring a peripheral lip on the undersurface
have been suggested to enforce cement penetration,
but the presence is depending on the manufacturer
and the design [9]. Another biomechanical study sug-
gested likewise that surface preparation and type of
metal substrate may influence the bonding of the tibial
component to the cement [10]. Thus, it can be ques-
tioned if cement mantle morphology differs among tib-
ial trays of different designs. Design features on the
undersurface of the component could influence bone
cement penetration and likewise morphology in the tra-
becular bone, which could alter initial fixation strength.
Hence, the aim of this study was to evaluate and compare
bone cement penetration patterns in the tibial cancellous
bone between different tibial tray designs by computed
tomography (CT) scans and 3D imaging.
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Methods
The study was conducted using eight paired proximal,
cadaveric tibiae. The specimens were conserved in a
freezer at −30°C and thawed overnight before experi-
ments were carried out at room temperature (22°C).
The age of the donors was 82 years at median ran-
ging from 71 to 87. All tibiae underwent CT analysis
for determination of BMD and to exclude specimens
with osseous aberrations (Brilliance 40-channel,
Philips Medical Systems, Haifa, Israel). BMD was
assessed relating Hounsfield units in a rectangular
volume of 4,000 cm3 in the tibial head to a calibra-
tion normal (Avizo 5.0, VSG, Burlington, MA, USA).
Two different tibial components were investigated in
the study: P.F.C. Sigma Ti Fixed Bearing (FB) and P.F.
C. Sigma MBT Keeled (mobile bearing =MB). The FB
trays are made of titanium, while the latter consists
of a cobalt chromium alloy (DePuy Orthopaedics,
Warsaw, IN, USA). Both trays are designed for
cemented fixation. While the P.F.C. FB provides a
peripheral lip with posterior cement pockets with un-
dercuts on the undersurface, the P.F.C. MB provides
a smaller peripheral and central lip without specific
pockets and undercuts (Figure 1). To facilitate im-
plantation and handling, a screw thread was cut into
the FB trays. This was not possible in the MB trays
due to the cone-shaped opening for the inlay. There-
fore, the tip of the stem was cut off and replaced by
a tip featuring an inside screw (Figure 2). The speci-
mens were then prepared for implantation of the tib-
ial trays (size 3) following the manufacturer’s
guidelines using a 0° slope cutting block and corre-
sponding punches (DePuy Orthopaedics, Warsaw, IN,
USA). All surgeries were carried out by the first au-
thor. In the final preparation step, all bones were
cleaned using a syringe lavage and 1,800 ml saline so-
lution. Pulsed lavage was not used as pilot
Figure 1 Undersurface of FB with posterior cement pockets (left) and
measurements showed that the effect of pulsed lavage
could overlay any other cementing effect. After care-
ful drying, bone cement was vacuum mixed (60 s)
and hand pressurized on the tibial surfaces after a
waiting period of 120 s (Smartset HV 40 g, DePuy
Orthopaedics, Warsaw, IN, USA). The stem of the
implant was left cementless (surface cementing tech-
nique). The components were impacted by ten mallet
blows; a steel lid was applied after impaction to apply
constant axial loading of 50 N until the cement was
cured. The specimens were then again evaluated by
CT scans for analysis of the cement morphology in
detail. The median cement layer thickness extending
from the undersurface of the implant to the bony sur-
face was determined. Accordingly, the median bone
cement penetration reaching from the osseous surface
into the cancellous bone was analyzed. This was done
using a previously established method with a 3D im-
aging software and a numerical computing package
(Avizo 5.0, VSG, Burlington, MA, USA and MATLAB,
The MathWorks Inc., Natick, MA, USA), as outlined
in detail elsewhere [11]. Statistical analysis comparing
cement layer thickness and penetration depth was
performed by a paired t-test provided that the distri-
bution of the data is parametric (GraphPad Software,
Inc., La Jolla, CA, USA). BMD as a structural param-
eter was controlled for by the paired design and also
compared between designs using one-way ANOVA.
A type I error probability of 5% was used for all
tests. Continuous data were described by mean and
standard deviation or—where applicable—by median and
range.

Results
BMD was similar for the two tray design groups (FB:
64 mg/cm3, SD = 45 mg/cm3; MB: 63 mg/cm3, SD =
37 mg/cm2; p = 0.967; Table 1). The mean bone cement
MB (right).



Figure 2 Modification for testing of MB trays: disassembled (left) and assembled (right).
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penetration was also similar: 1.07 mm (SD = 0.23 mm)
for the FB and 1.16 mm (SD = 0.19 mm) for the MB
group (p = 0.529; Figure 3). Cement layer thickness
between the undersurface of the implant and the osse-
ous surface was higher for the FB (2.32 mm, SD =
0.22 mm) than for the MB (1.47 mm, SD = 0.27 mm,
p = 0.032). Examples for the cement mantle recon-
structions generated from the CT data are shown in
Figures 4 and 5.
Discussion
Differences in tibial component design and surgical
technique influence the long-term performance of the
implant regarding early aseptic loosening in TKA [12];
cementing techniques and choice of implant design still
Table 1 Specimen characteristics and results (F = female,
M =male)

Specimen Sex Age Tray
type

BMD
(mg/cm3)

Cement
layer (mm)

Penetration
(mm)

1R M 71 MB 16 1.14 1.40

1 L FB 13 2.64 0.96

2R F 81 FB 55 2.25 1.42

2 L MB 62 1.65 1.23

3R F 87 MB 65 1.37 1.05

3 L FB 66 2.12 0.97

4R M 83 FB 122 2.26 0.93

4 L MB 106 1.73 0.97
are controversial [13,14]. It has been shown that a per-
ipheral lip improves bone cement penetration into the
osseous surface [9]. The present study investigated
in vitro whether cement pockets on the undersurface
could likewise influence bone cement penetration char-
acteristics. A cement pocket could possibly increase
penetration by entrapment of bone cement in the under-
cutting area and directing it into the cancellous bone
surface. However, the effect could not be observed in
this in vitro scenario. Overall cement penetration was
similar in the FB and MB group. The results from
Vertullo and Davey on 177 consecutive TKA showed
Figure 3 Bone cement penetration depths for the four tibial
pairs (mean and standard deviation).



Figure 4 Examples of 3D reconstructions of P.F.C. Sigma® Ti Fixed Bearing bone cement mantles. Left: top view, right: undersurface.
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twice as deep cement penetration in lipped baseplates
compared to unlipped ones [9]. However, the data was
derived from radiographs, which is questionable as the
implants and the keels obscure some of the cemented
area. In our experience, accuracy of discrimination
between cement under the baseplate and real penetra-
tion is difficult and error-prone under those circum-
stances. Furthermore, the actual cement penetration
depth into the bone could not be visualized by the
cited study setup due to the interference of cement
with flanges and stem and only the lateral part of the
tray was studied. In our observation, the overall pene-
tration depths were similar in both groups, as we
could not observe a significant increase in cement
penetration in the FB group. On the other hand, a ce-
ment pocket may enforce rotational stability. However,
this issue was not investigated in the present study.
Penetration depths in our setting ranged from 0.93 to
1.42 mm and match perfectly with the data retrieved
in a preceding investigation [11]. A mean cement
penetration of 3 to 4 mm has been suggested to be
the optimum for implant fixation [15-17]. Comparing
the values to our data indicates that former studies
could not differentiate between cement layer under
the tray and actual penetration. Hence, cement pene-
tration has probably been reported as a combination
Figure 5 Examples of 3D reconstructions of P.F.C. Sigma® MBT Keeled
of both components, which might explain the ob-
served differences. Further studies on bone cement
penetration should focus on the “real” penetration into
cancellous bone, as presented here. The thickness of
the cement layer extending from the undersurface of
the implant to the osseous surface was higher in the
FB group (mean 2.32 mm) compared to the MB group
(mean 1.47 mm). This effect is most likely related to
the cement pockets of the FB implant and suggests
that cement layer thickness is mainly influenced by
implant design. Whether a thicker cement mantle is
beneficial or detrimental is unclear and needs further
research.
The small sample size is a limitation of the study.

However, since the effects were similarly observed for
each pair, the small sample size should not have
biased the results. The transfer of in vitro testing to
in vivo conditions remains limited, which has to be
kept in mind when interpreting the presented results.
Conclusions
In summary, the present study suggests that cement
pockets with undercuts do not alter or enforce bone ce-
ment penetration under a tibial tray in an in vitro
scenario.
bone cement mantles. Left: top view, right: undersurface.
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