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Abstract

Background: Although the individual effects of hyperbaric oxygen (HBO) and low-intensity pulsed ultrasound
(LIPUS) on osteoarthritic (OA) chondrocytes have been reported, the effects of HBO combined with LIPUS treatment
are unknown.

Methods: OA chondrocytes were obtained from patients undergoing knee replacement surgery. RNA was isolated
for real-time polymerase chain reaction (PCR) analysis of inducible nitric oxide synthase (iNOS), type-II collagen,
and aggrecan gene expression. The protein levels of MMP-3 and TIMP-1 were quantified by enzyme-linked
immunosorbent assay (ELISA) after LIPUS or HBO treatment. The data are given as mean ± standard deviation (SD)
of the results from three independent experiments. A p value less than 0.05 was defined as statistically significant.

Results: Our data suggested that ultrasound and HBO treatment increased cell bioactivity of OA chondrocytes.
Real-time PCR analysis showed that HBO treatment increased the mRNA of type-II collagen, aggrecan, and TIMP-1
but suppressed the iNOS expression of OA chondrocytes. LIPUS treatment increased the type-II collagen and iNOS
expression of OA chondrocytes. ELISA data showed that HBO or LIPUS treatment increased TIMP-1 production of
OA chondrocyte. MMP-3 production was suppressed by HBO treatment. HBO combined with LIPUS treatments
resulted in additive effect in TIMP-1 production and compensatory effect in iNOS expression.

Conclusion: HBO combined with LIPUS treatment-induced increase of the anabolic factor (TIMP-1)/catabolic factor
(MMP-3) ratio may provide an additive therapeutic approach to slow the course of OA degeneration.

Keywords: Low-intensity pulsed ultrasound, Hyperbaric oxygen, Osteoarthritis, TIMP-1, MMP-3, Aggrecan,
Type-II collagen
Background
Mechanical stimulus is thought to be one of the im-
portant factors regulating chondrocyte metabolism [1].
Excessive mechanical stimulus has been reported to des-
troy articular cartilage directly and also induce other
destructive factors [2]. Conversely, insufficient mechanical
stimulus, such as that due to joint immobilization, has
also been associated with cartilage destruction [3]. On the
other hand, moderate (physiological) mechanical stimulus
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has been confirmed not only to promote articular cartilage
anabolism [4] but also to inhibit catabolism [5,6].
Low-intensity pulsed ultrasound (LIPUS) is a represen-

tative therapy in the orthopedic field and is clinically
used to treat fractures with nonunion and to promote
bone union [7]. Application of high-intensity continuous
ultrasound (1–300 W/cm2) generates considerable heat
in living tissues. In contrast, LIPUS (<100 mW/cm2) has
much lower intensities with nonthermogenic and non-
destructive actions. Mechanical strains received in the
skeleton result in the promotion of bone formation, possibly
by inducing chondrocyte proliferation [8,9]. In this con-
text, LIPUS has been shown to enhance the endochondral
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ossification in the healing process of fractured bones
[10,11].
Ultrasound treatment has been tried as an approach to

encourage cartilage repair [12]. Previous in vitro work
has shown that the expression levels of integrins a5 and
b1, as well as chondrocytic markers, Sox5, Sox9, colla-
gen II, and aggrecan, were increased in chondrocytes ex-
posed to a continuous ultrasound signal at 5.0 MHz
(0.14 mW/cm2) [13]. Previous in vivo study in a New
Zealand rabbit that modeled full-thickness osteochon-
dral defects has demonstrated that exposure to LIPUS
significantly improves the morphologic features and his-
tologic characteristics of repaired cartilage [14]. Another
in vivo experimental rat osteoarthritis model also de-
monstrated efficacy in cartilage restoration [15]. Expo-
sure to LIPUS could significantly affect chondrocyte
proliferation, phenotype expression, and matrix produc-
tion; however, inconsistent effects were also observed.
Previous report suggested that VEGF induced by HBO

is through c-Jun/AP-1 activation and through simulta-
neous activation of ERK and JNK pathways in umbilical
vein endothelial cells [16]. HBO-suppressed ERK1/2 and
p38 MAPK mediate nitric oxide-induced apoptosis on
human degenerated intervertebral disc cells [17]. In OA
chondrocytes, the MAP kinases, AP-1, and NF-κB tran-
scription factors have been shown to play a predominant
role in the expression of metalloproteinases (MMPs) and
inflammatory genes and protein [18]. Our previous study
demonstrated that attenuation of apoptosis and en-
hancement of proteoglycan synthesis in rabbit cartilage
defects by HBO treatment are related to the suppression
of IL-1β and nitric oxide (NO) production [19]. HBO
treatment prevents NO-induced apoptosis in articular
cartilage injury via enhancement of the expression of
heat shock protein 70 [20].
Although the individual effect of HBO or LIPUS on

the chondrocytes have been reported, the effect of HBO
combined with LIPUS treatment is still controversial.
We harvested the articular cartilage from patients who
receive total knee arthroplasty (TKA). We investigate
whether the beneficial effect on OA will be synergistic
up-regulation (such as aggrecan, type-II collagen, and
TIMP-1 expression) and the subversive effect will be
complementary compensation (such as iNOs expression)
after HBO combined with LIPUS treatment.

Methods
The experimental protocol was approved by the Human
Subjects Institutional Review Board of the Chang Gung
Memorial Hospital.

Cell isolation and cell culture
Articular cartilage specimens (tibial plateaus and femoral
condyles) were obtained from 20 Ahlbäck grade IV or
Kellgren and Lawrence grade IV OA patients who re-
ceive TKA surgery. The specimen was obtained under
aseptic conditions, and the cartilage was dissected on
ice. The chondrocytes were released from the articular
cartilage by sequential digestion with 1 mg/ml collage-
nase (Sigma, St. Louis, MO, USA) in Dulbecco's minimal
essential medium (DMEM/F-12) (Gibco, Grand Island,
NY, USA) containing 5% fetal bovine serum (FBS) and
incubated at 37°C until the fragments were digested.
The isolated chondrocytes were centrifuged (1,000 rpm
for 5 min), washed with PBS, and seeded in T-75 tissue
culture flasks (Falcon, BD Biosciences, Drive Franklin
Lakes, NJ, USA) in 15 ml of medium (DMEM/F-12) sup-
plemented with 20% (v/v) FBS and antibiotics (mixture of
100 U/ml of penicillin and 100 μg/ml of streptomycin;
Gibco). The cultures were incubated in a humidified
atmosphere of 5% CO2/95% air until cell confluence.

Cell exposure to intermittent HBO
About 3 × 104 cells are platted on the 35-mm cell culture
dish (Falcon) with medium (DMEM/F-12) containing 10%
FBS and incubated at 37°C in a humidified atmosphere of
5% CO2 and 95% air. Control cells were maintained in 5%
CO2/95% air (non-HBO) through the experimental pro-
tocol. All hyperoxic cells were exposed to 100% O2 for
25 min then to air for 5 min at 2.5 atmospheres ab-
solute (ATA) in a hyperbaric chamber (Sigma II, Perry
Baromedical Corporation, Riviera Beach, FL, USA) with a
total treatment of 90 min per 48 h.

Cell exposure to LIPUS treatment
About 3 × 104 cells are platted on the 35-mm cell culture
dish with medium (DMEM/F-12) containing 10% FBS
and incubated at 37°C in a humidified atmosphere of 5%
CO2 and 95% air. A UV-sterilized transducer (Exogene
3000; Smith & Nephew Inc., Memphis, TN, USA) that
generated 1.5-MHz US in a pulsed-wave mode (200-μs
pulse burst width with repetitive frequency of 1 kHz at
an intensity of 30 mW/cm2) was immersed vertically
into each culture well and placed to just contact the sur-
face of the medium. The distance between the transducer
and the cells was approximately 5–6 mm. The exposure
time was 20 min per 48 h.

Cell exposure to LIPUS combined with HBO
The cells were treated with LIPUS first and then with
HBO as previously described.

RNA extraction and real-time PCR analysis
At 24 h after each treatment, cellular RNA was isolated
using an RNeasy mini kit (Qiagen, Valencia, CA, USA)
and reverse-transcribed into cDNA with the ImProm-II
reverse transcription system (Promega, Madison, WI,
USA). For real-time PCR detection of iNOs, aggrecan,
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and type-II collagen RNA transcripts, cDNA was ana-
lyzed on an ABI PRISM 7900 sequence detection system
using the TaqMan PCR Master Mix (Applied Biosystems,
Foster City, CA, USA). The cycle threshold (Ct) values
were obtained, and the data was normalized to GAPDH
expression using the ΔΔCt method to calculate relative
mRNA levels of each target gene.

MMP-3 ELISA assay
The cells were plated at 3 × 104 cells per 35-mm tissue
culture dish (Falcon) in 2.5 ml of medium (DMEM/
F-12) containing 5% FBS. The level of TIMP-1 in the
conditioned media after each treatment was determined
using a commercial immunoassay kit (Quantikine Human
TIMP-1, R&D System, Minneapolis, MN, USA). At in-
tervals of 48, 96, and 144 h, 200 μl of conditioned media
was accumulated and tested according to the manufactu-
rer's instructions. The measurements were performed in
triplicate.

TIMP-1 ELISA assay
The cells were plated at 3 × 104 cells per 35-mm tissue
culture dish in 2.5 ml of medium (DMEM/F-12) con-
taining 5% FBS. The level of TIMP-1 in the conditioned
media after each treatment was determined using a com-
mercial immunoassay kit (Quantikine Human TIMP-1,
R&D System). At intervals of 48, 96, and 144 h, 200 μl
of conditioned media was accumulated and tested ac-
cording to the manufacturer's instructions. The measure-
ments were performed in triplicate.

Results
Effect of HBO and LIPUS on MMP-3 production
Figure 1 shows the effect of HBO, LIPUS, and HBO
combined with HBO on MMP-3 production (data are
presented as mean ± SD; control group vs. HBO group:
Figure 1 Effect of HBO and LIPUS on MMP-3 production. MMP-3
production in OA chondrocytes was significantly down-regulated by
the HBO treatment (*p < 0.05).
6.01 ± 0.23 ng/ml vs. 5.05 ± 0.12 ng/ml, p < 0.05; control
group vs. LIPUS group: 6.01 ± 0.23 ng/ml vs. 5.81 ±
0.15 ng/ml, p > 0.05; control group vs. ILPUS + HBO
group: 6.01 ± 0.23 ng/ml vs. 5.62 ± 0.21 ng/ml, p > 0.05,
n = 3). The MMP-3 production in OA chondrocytes was
significantly down-regulated by the HBO treatment.

Effect of HBO and LIPUS on TIMP-1 production
Figure 2 shows the effect of HBO, LIPUS, and HBO
combined with HBO on TIMP-1 production (data are
presented as mean ± SD; control group vs. HBO group:
0.85 ± 0.06 ng/ml vs. 1.23 ± 0.12 ng/ml, p < 0.05; control
group vs. LIPUS group: 0.85 ± 0.06 ng/ml vs. 1.26 ±
0.05 ng/ml, p < 0.05; control group vs. LIPUS +HBO
group: 0.85 ± 0.06 ng/ml vs. 1.89 ± 0.09 ng/ml, p < 0.01,
n = 3). The TIMP-1 production in OA chondrocytes
was significantly up-regulated by the HBO and LIPUS
treatment. In addition, the HBO combined with LIPUS
treatment resulted in an additive effect in the TIMP-1
production.

Effect of HBO and LIPUS on gene expression of iNOs,
aggrecan, and type-II collagen
Figures 3, 4, and 5 show the effects of HBO and LIPUS on
transcription of iNOs (data are presented as mean ± SD;
HBO group/control group: 0.69 ± 0.07 fold, p < 0.05;
LIPUS group/control group: 1.49 ± 0.11 fold, p < 0.05;
HBO + LIPUS group/control group: 0.95 ± 0.12 fold,
p > 0.05; n = 3; Figure 3), aggrecan (data are presented
as mean ± SD; HBO group/control group: 2.25 ± 0.32
fold, p < 0.05; LIPUS group/control group: 1.14 ± 0.15
fold, p > 0.05; HBO+ LIPUS group/control group: 2.01 ±
0.12 fold, p < 0.05; n = 3; Figure 4), and type-II collagen
(data are presented as mean ± SD; HBO group/control
group: 1.57 ± 0.22 fold, p < 0.05; LIPUS group/control
Figure 2 Effect of HBO and LIPUS on TIMP-1 production. TIMP-1
production in OA chondrocytes was significantly up-regulated by
the HBO and LIPUS treatment. In addition, the HBO combined with
LIPUS treatment resulted in an additive effect in the TIMP-1 production
(*p < 0.05, **p < 0.01).



Figure 3 Effect of HBO and LIPUS on transcription of iNOS. HBO
suppressed while LIPUS increased the gene expressions of iNOS in
OA chondrocytes (*p < 0.05). HBO combined with LIPUS treatments
resulted in compensatory effect in the iNOS expression.

Figure 5 Effect of HBO and LIPUS on transcription of type-II
collagen. HBO or LIPUS treatment significantly increased the gene
expressions of type-II collagen (*p < 0.05) in OA chondrocytes as
compared with the control cells.
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group: 1.68 ± 0.15 fold, p < 0.05; HBO+ LIPUS group/
control group: 1.51 ± 0.12 fold, p < 0.05; n = 3; Figure 5)
in OA chondrocytes. HBO suppressed while LIPUS in-
creased the gene expressions of iNOS in OA chondrocytes.
HBO combined with LIPUS treatments resulted in com-
pensatory effect in iNOS expression (Figure 3). HBO or
LIPUS treatment significantly increased the gene expres-
sions of aggrecan (Figure 4) and type-II collagen (Figure 5)
in OA chondrocytes as compared with the control cells.

Discussion
The secretion of proteolytic enzymes by the cartilage has
been confirmed to contribute to the loss of extracellular
matrix in OA. MMPs are capable of degrading the mac-
romolecules of connective tissue matrices and have been
considered the major proteases responsible for the patho-
logic destruction of tissue [21]. Moreover, an imbalance
Figure 4 Effect of HBO and LIPUS on transcription of aggrecan.
HBO or LIPUS treatment significantly increased the gene expressions
of aggrecan (*p < 0.05) in OA chondrocytes as compared with the
control cells.
between MMPs and their inhibitors, tissue inhibitors of
metalloproteinases (TIMPs), is responsible for the patho-
genic sequence of cartilage degradation [22].
To elucidate whether mechanical stimulation by LIPUS

combined with HBO treatment is chondrocyte-protective,
we studied the effect of LIPUS combined with HBO treat-
ment at several intensities on the protein expression of
MMPs and TIMPs. LIPUS may potentially protect ar-
ticular cartilage by inhibiting MMP-13 and MMP-1
mRNA expression in an intensity-dependent manner [23].
TIMP-1 mRNA expression was inhibited significantly by
LIPUS stimulation of the articular cartilage explants at
67 mW/cm2 but up-regulated by the stimulation of the
cultured chondrocytes at 30 mW/cm2 [23]. In the present
study, the MMP-3 production was significantly down-
regulated by the HBO treatment but not by the LIPUS
stimulation (Figure 1). The TIMP-1 production in OA
chondrocytes was significantly up-regulated by the HBO
or LIPUS treatment (Figure 2). We further showed that
HBO combined with LIPUS treatment resulted in an ad-
ditive effect in the TIMP-1 production (Figure 2). HBO
combined with LIPUS treatment-induced increase of the
anabolic factor (TIMP-1)/catabolic factor (MMP-3) ratio
may provide a therapeutic approach to slow the course of
OA chondrocyte degeneration.
Nitric oxide (NO) is a highly reactive nitrogen radical

implicated in multiple biological processes, including
regulation of vascular tone, platelet and leukocyte adhe-
sion, neurotransmission, mediation of excessive vasodi-
latation, and cytotoxic actions of macrophages against
microbes and tumor cells [24]. Ultrasound stimulates
NF-κB activation and iNOS expression in cultured pre-
osteoblasts [25]. Exposure to LIPUS increases NO and
prostaglandin release, which are required for mechanic-
ally induced bone formation [26]. However, apoptosis of
chondrocytes can be induced by NO [10,16,27]. HBO
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treatment prevents NO-induced apoptosis in articular
cartilage injury via enhancement of the expression of
heat shock protein 70 [20]. In the present study, HBO
suppressed while LIPUS increased the gene expressions
of iNOS in OA chondrocytes (Figure 3). HBO combined
with LIPUS treatment resulted in compensatory effect in
iNOS expression in OA chondrocytes (Figure 3), thus
may prevent NO-induced apoptosis.
HBO treatment increased PG synthesis in vivo [19,20].

However, the effect of LIPUS to stimulate chondrocyte
matrix synthesis is still controversial. Several in vitro
studies have been undertaken to characterize the effects
of LIPUS on chondrocytes in both monolayer and 3D
model systems. These studies report the up-regulation of
aggrecan and collagen II genes [28-30] and GAG synthe-
sis [31]. However, conflicting reports suggest that LIPUS
induces, at best, a transient effect on chondrocyte cul-
ture systems in terms of GAG and collagen II produc-
tion [32] and aggrecan gene expression [33]. In the
present study, similar results suggested that the aggrecan
and type-II collagen mRNA expression in the OA chon-
drocytes were significantly up-regulated by HBO treat-
ment. However, there was no additive effect in aggrecan
and type-II collagen mRNA expression by HBO com-
bined with LIPUS treatment (Figures 4 and 5).
In this paper, the author combined a chemical factor

(hyperbaric oxygen) and a mechanical factor (LIPUS)
treatment. The weighting of these two factors are equal
in the combined treatment, and the induced increase of
the (TIMP-1)/catabolic factor (MMP-3) ratio may pro-
vide an additive therapeutic approach to slow the course
of OA degeneration. Although the effects of the com-
bined factors are better than those of a single factor, the
optimal combination ratio of these two factors needs
further investigation.
Conclusion
HBO combined with LIPUS treatment resulted in an
additive effect in the TIMP-1 production and a com-
pensatory effect in iNOS expression. Therefore, we will
apply similar techniques of HBO combined with LIPUS
therapy in future studies of cartilage injury models. The
advantage of HBO combined with LIPUS treatment is
that it is a useful tool for clinics and a more applicable
clinical therapy.
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