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Abstract

Background: This paper reports the development of an in-vitro technique allowing quantification of relative (not
absolute) deformations measured at the level of the cancellous bone of the tibial proximal epiphysis (CBrpg) during
knee flexion-extension. This method has been developed to allow a future study of the effects of low femoral
osteotomies consequence on the CBrpe.

Methods: Six strain gages were encapsulated in an epoxy resin solution to form, after resin polymerisation, six
measurement elements (ME). The latter were inserted into the CBypg of six unembalmed specimens, just below the
tibial plateau. Knee motion data were collected by three-dimensional (3D) electrogoniometry during several cycles
of knee flexion-extension. Intra- and inter-observer reproducibility was estimated on one specimen for all MEs.
Intra-specimen repeatability was calculated to determine specimen’s variability and the error of measurement.

A varum and valgum chirurgical procedure was realised on another specimen to observed CBrpe deformation after
these kind of procedure.

Results: Average intra-observer variation of the deformation ranged from 8% to 9% (mean coefficient of variation,
MCV) respectively for extension and flexion movement. The coefficient of multiple correlations (CMC) ranged from
0.93 to 0.96 for flexion and extension. No phase shift of maximum strain peaks was observed. Inter-observer MCV
averaged 23% and 28% for flexion and extension. The CMC were 0.82 and 0.87 respectively for extension and flexion.
For the intra-specimen repeatability, the average of mean RMS difference and the mean ICC were calculated only for
flexion movement. The mean RMS variability ranged from 7 to 10% and the mean ICC was 0.98 (0.95 - 0.99).

A Pearson’s correlation coefficient was calculated showing that RMS was independent of signal intensity. For the
chirurgical procedure, valgum and varum deviation seems be in agree with the frontal misalignment theory.

Conclusions: Results show that the methodology is reproducible within a range of 10%. This method has been
developed to allow analysis the indirect reflect of deformation variations in CBypg before and after distal femoral
osteotomies. The first results of the valgum and varum deformation show that our methodology allows this kind of
measurement and are encourageant for latter studies. It will therefore allow quantification and enhance the
understanding of the effects of this kind of surgery on the CBype loading.
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Background

Valgus deformity of the knee is a well-known factor in
the aetiology of lateralized gonarthrosis. Following Pau-
wel’s theory [1], Maquet proposed to use frontal lower
limb realignment techniques [2-4]. However, in 25 to
30% of the cases, pain persists after treatment [5]. For
other authors [6], 3D correction of knee joint deforma-
tion could improve the outcome of the realignment
treatment. Only one experimental study on the effects
of high tibial osteotomies on knee joint kinematics and
muscular moment arms of thigh muscles has been pub-
lished [7]. Several studies [8-11] reported joint con-
straint distribution and contact area distribution
for various joints, various static positions and loading
conditions. The methods utilised do not allow tracking
of in-vivo femoro-tibial articular deformations during
continuous knee flexion-extension motion despite the
usefulness of these studies. In-vitro and in-vivo analysis
of dynamic joint deformation patterns is also still a chal-
lenge. The mechanical stress in bones cannot be mea-
sured in a living subject without the use of invasive
surgical procedures, due to obvious ethical concerns.
Indirect alternatives can be found in finite element mod-
elling generated from medical imaging [12]. Previous
studies [13-15] reported results on deformations of the
cancellous bone of the tibial proximal epiphysis (CBrpg)
in static conditions evaluating the mechanical character-
istics of different extracted bone portion in compression,
traction and/or torsion. This paper proposes an in-vitro
method to study the CBrpr deformations using
embedded strain gages during continuous knee motions.
Embedded strain gages were used previously by some
authors to measure hip prosthesis cement deformation
[16] or investigate the stress in the cement layer under-
lying tibial plateau [17]. The utilisation of embedded
strain gages is complex and difficult.

This study did not aim at analyzing the force transmis-
sion in the femoro-tibial joint compartment and did not
allow absolute CBypg. The aim was the quantification the
indirect reflect in the CBrpg of tibial plateau loading
reported by the presented measurement method before
and after various kinds of osteotomies. With such data, it
will be possible to analyze the relative variations of the
local deformation and to increase our understanding of
the relationship between constraint patterns and overall
joint motion. Indeed, the real 3D impact of osteotomies
on tibial plateau loading is poorly reported in the litera-
ture [7]. The direct method presented here should pro-
vide innovative data on that particular topic.

Methods

Specimens and setting

Six fresh-frozen lower limbs (average age: 84 + 9 years;
4 males, 2 females) were obtained from the ULB Body
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Donation program. Thawing occurred at room tempera-
ture 24 hours before specimen preparation and experi-
ment. Each specimen included a full lower limb with its
hemi-pelvis. The pelvis and femur were rigidly mounted
on the experimental jig in an anatomical position
(Figure 1). The distal tendon of 8 muscles of interest
was carefully dissected and cut at their distal musculos-
keletal junction. Distal muscle attachments were left
intact. Muscles dissected were the rectus femoris (RF),
vastus lateralis (VL), vastus intermedius (VI), vastus
medialis (VM), biceps femoris (BF), semitendinosus
(ST), semimembranosus (SM), gracilis (Grac) and tensor
fasciae latae (TFL). All other muscles were kept intact.
Special care was given to respect the integrity of hip and
knee joint capsule and ligaments. One fishing wire (Sur-
flon™, Nylon coated, American Fishing Wire, 90 Lb.,
USA) was attached to each dissected tendon (Figure 1D)
by an orthopaedic surgeon according to Bull’s method
[18,19]. Each fishing wire ran proximally through tun-
nels drilled into the bone at the level of the related mus-
cle origin to allow joint loading following the
physiological muscle lines of action. Total loading was
300 N (RF + VM = 80 N; VL and VI = 60 N each; BF,
ST, SM, Grac, and TFL = 20 N each). Muscle loading
was selected to respect the forces that each muscle
could generate; this was determined from muscle
volume and muscle pennation angle [20]. The fishing
wire of selected muscles (RF, BF, ST, SM, Grac and
TFL) were attached to the mobile axis of six Linear
Variable Displacement Transductors (LVDT, Solartron
Metrology®, West Sussex, UK) to measure tendon
excursion during flexion-extension movement (Figure
1A). Two electrogoniometers [21-23] were used to col-
lect continuous femoro-patellar and femoro-tibial 3D
kinematics (Figure 1B). The results of tendon excursion
and full joint kinematics are not presented here.

Measurement Element (ME)

Six MEs were used in this study. Each ME included two
components: a strain gage (SG) and an epoxy resin cylin-
der. The strain gage was made from cupronickel alloy (60/
40) (Rosette unidirectional®, FLA-1-17, length: 3 mm, 120
Q, TML, Tokyo, Japan) and was embedded in an epoxy
resin solution (LX 112%, Ladd Research Industries, Willis-
ton, USA) (Figure 2A). The resin was selected for its low
shrinkage properties during polymerisation to avoid
damage of the SG. Small polypropylene tubes (@: 4.7 mm)
were used as moulds to encapsulate the SG in the resin.
After polymerisation (1 day at 30°C and 1 day at 60°C), the
MEs were cooled down at room temperature.

Determination of epoxy resin Young’s modulus
Young’s modulus of the epoxy resin was determined to
define the influence of the epoxy resin on further
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Figure 1 Schematic view of the experimental setting. Schematic view of the experimental setting showing a specimen mounted rigidly on
the experimental jig in anatomical position. A: representation of the LVDT placed in the prolongation of the action line of different muscles. B:
tibial 3D electrogoniometer. C: illustration of the loading muscles, RF, VL and VM by cerclage with metallic wires. D: representation of the fixation
of the other muscles according to the bull's method.

A

Figure 2 Representation and location of measurement element. Schematic view and location of MEs. A1 and A2: Schematic view of the ME.
A3: ME used in this study including a Strain Gage. B and C: 3D representation (obtained from medical imaging) of ME locations in the proximal
epiphysis of the tibia. ME1 and ME6: most anterior edge of the medial and lateral condyles, respectively; ME2: most medial point of the medial
condyle, ME3 and ME4 = most posterior edge of the medial and lateral condyles, respectively. M5: most lateral point of the lateral condyle
(tunnels were drilled 10 mm below these landmarks, see text for further details).
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measurement. Ten resin cylinders (L: 12 mm, H: 30
mm) were processed. Cylinders were placed in a servo-
hydraulic test system (MTS 858 Mini Bionix, 10-kN
loading head, Eden Prairie, Minnesota, USA). Compres-
sion force was applied along the longitudinal axis of the
cylinders and was released at the yield point (i.e., corre-
sponding to the limit of the cylinder elastic range).
Young’s modulus was then calculated in the elastic part
of the cylinder deformation [24]. The epoxy resin
Young’s modulus (E) was obtained by equation 1. The
average value was 2.09 + 0. 03 GPa.

D "
(AL / LO)

Where:

E = Young’s modulus (Pa)

F = Force applied (N).

S = cross-sectional area of cylinder (m2).

AL = Length variation (m).

LO = Initial length (m).

Data acquisition

A custom-made device including six amplifying modules
was developed to collect the output from the 6 SGs
(Figure 2B). Each module included a Wheatstone bridge
which allowed the measurement of tension imbalance in
the bridge. These modules were supplied in differential
current (DC) with a floating power supply of 9V. Each
Wheatstone bridge was adjusted using an offset correc-
tion and the parasite noise related to external interfer-
ences were eliminated (common mode rejection). The
ratio between the signal power and the parasite noise
power (i.e., S/N ratio) was equal to 66 db. All modules
were connected to an acquisition board (DAP3200a,
Microstar Laboratories). The acquisition frequency was
208 Hz.

Definition of the strain gage deformation

The deformation (¢) was obtained by equation 2 [25].
This equation shows the relation between the resistance
variation (AR/RO) and the gage factor (Gg). The gage
factor defines the SG deformation in a well-defined
direction. G was given by the gage manufacturer and
was equal to 2.15 + 1%. This value was constant and
independent from the load applied.

AR/ R
Gp
Where:
¢ = Deformation

AR = Resistance variation.
Ro = Nominal resistance of SG (120Q2).
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Gr = Gage factor

Calibration

A custom-made device was built to measure the SG
length variation (AL) and to perform SG calibration. A
SG was embedded into a LX 112 epoxy resin plate (L =
30 mm, 1 = 12 mm, d = 3 mm) linked to a mechanism
(Figure 2E). The latter mechanism allowed stretching of
both resin plate and SG in a controlled way. The elon-
gation range was from 1 pm to 50 pm. Deformation
results were expressed in resistance variation to obtain a
calibration equation (Eq. 3) after Analog-to-Digital Con-
version (ADC). The final deformation & was given by
equation 4. Note that this calibration was dependent on
the above-determined epoxy resin Young’s modulus (see
Eq. 1).

fAr(x) = (3°°x —0.0002) 3)

e—6,.
o (37°x-0.0002) / Ro @
G

Where:

¢ = Deformation

x = ADC variations

Ro = Nominal resistance of SG (120Q).
Gr = Gage factor

Location of MEs

ME location was standardized using computed tomogra-
phy (CT, Siemens SOMATRON, helical mode, slice
thickness = 0.5 mm, inter-slice spacing = 0.5 mm, image
format = DICOM 2.0) on each specimen before con-
straint experiments took place. CT data segmentation
and 3D-model reconstruction of bones were performed
using a dedicated software interface (Amira®, Visage
Imaging, Inc., San Diego, USA). Six tunnels (@: 4.2 mm)
were drilled into the cancellous bone underlying the
tibial plateau at 10 mm below the joint line. Tunnel
depths were 13 mm and strain gauges were placed
10 mm from the cortical bone (Figure 2 Al). ME loca-
tions were standardized using strict definitions describ-
ing anatomical landmark locations on the available 3D
models (Figure 2C). Tunnel orientation was parallel to
the cartilaginous surface of the tibia. Tunnel diameter
size was slightly smaller than the ME diameter to ensure
a tight fit with and a maximal contact between the MEs
and the cancellous bone. One ME was introduced into
each tunnel (Figure 2D), and no glue was used.

Experimental protocol
For each specimen, three repetitions of two cycles of flex-
ion-extension movement were performed. Measurement
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started with the specimen knee in full extension main-
tained by the muscle loading. Flexion was then per-
formed manually by pushing with an open hand on the
distal part of anterior face of the leg. Once knee flexion
was obtained, the manual pressure was released and the
knee passively moved back by the muscle loading of the
quadricipital tendon. All above-mentioned muscle load-
ing was kept in place during the entire measurement ses-
sion. Intra- and inter-observer reproducibility was
analysed on one specimen (specimen 1). To allow repro-
ducibility analysis, three operators independently per-
formed the above data collection (three trials of three
repetitions including two motion cycles) on the same
specimen within a three-hour interval. Valgum and
Varum procedure were realised on another specimen.
These angular corrections (6° and 12°) were applied using
a specially-built control system. Before processing each
repetition for further analysis, the extension of the first
cycle and the flexion of the second cycle were selected to
avoid experimental noise (i.e., system oscillations) usually
observable at the beginning and end of movement. Data
were then normalized to flexion-extension range of
motion.
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Statistical analysis

Inter- and intra-observer reproducibility was analyzed by
coefficients of multiple correlation (CMC) and mean
coefficient of variation (MCV). Intra-observer reproduci-
bility was obtained by comparing the mean of the 3
repetitions of the three trials for one operator. Inter-
observer reproducibility was performed by comparison
of the mean of the 3 repetitions performed by each
operator at 3 different times. For intra-specimen repeat-
ability we calculated the mean RMS difference between
the three repetitions for each ME. An ICC (3.1 Two-
Way Mixed) was also calculated. These were then aver-
aged across MEs and subjects. Pearson’s correlation
coefficients were calculated to analyse if the RMS was
dependent of data amplitude during movement. For val-
gum and varum deviations comparison, a faithful analy-
sis of the different patterns of curve was carried out.

Results

Intra-observer reproducibility

Good superposition of different repetitions was obtained
for all MEs (Figure 3). The CMC showed a mean value of
0.93 for flexion (range: 0.83-0.99) and of 0.96 for extension

Specimen 1
ME 1

Local deformation
(1 Strain)

Local deformation
{p Strain)

Local deformation
(u Strain)
o

Extension

Flexion

Extension > ——

RoM (deg.) RoM (deg.)

Figure 3 Intra-operator reproducibility. Intra-operator variability during flexion and extension motion. ME 1: antero-medial strain gage; ME 2:
medial strain gage; ME 3: postero-medial strain gage; ME 4: postero-lateral strain gage; ME 5: lateral strain gage; ME 6: antero-lateral strain gage.

:
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1
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(range: 0.96-0.99). Mean MCV values were obtained dur-
ing knee extension (8%, range: 4-13%) and flexion (9%,
range: 6- 12%) (Table 1). Deformation patterns were simi-
lar between repetitions performed by the same operator.

Inter-observer reproducibility

MCYV for all MEs averaged 23% (range: 12-43%) and 28%
(range: 15-55%) during flexion and extension, respec-
tively. Mean CMC were 0.87 (range: 0.70-0.98) and 0.82
(range: 0.63-0.99) (Table 1). The deformation magnitudes
(Figure 4) differed between operators, but the shape of
the curves showed similar deformation patterns.

Intra-specimen repeatability

As intra-observer reproducibility data was not statisti-
cally different, this analysis was carried out for the flex-
ion movement. Figure 5 presents graphically the
phenomenon on ME6. For all MEs and specimens, the
mean RMS differences (%) ranged from 3 to 15% and
the mean ICC ranged from 0.95 to 0.99 (Table 2). The
average mean RMS difference of the sample ranged
from 7 and 10%. The mean correlation coefficient was
ranged from -0.22 and 0.55. These values imply that the
RMS differences were independent of signal intensity.

Frontal distal femoral osteotomy

Figure 6 shows after varum and valgum deviation the
cancellous bone deformation variability of the medial
measurement element (ME2). We could divide the flex-
ion motion in three phases: the first from 0° until 30°,
the second from 30° until 65° and the third from 65°
until 90°. During the first phase, the valgum deviations
induce a decrease of CBrpr compared to the intact con-
dition. These decreases were not proportional of the
degrees of deviation. For varum deviations, only the
condition of 12° increases the CBrpg. During the second
phase, the curve patterns of valgum 6° condition
increase until similar values of varum 12° condition.
During the third phase, the varum deformations increase

Table 1 Intra- and inter-observer reliability
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the CBrpr compared to the intact condition and inver-
sely for valgum deformations.

Discussion

These results show that the developed method allows
reproducible in-vitro measurements of the indirect
reflect of deformation variations occurring in the CBrpg
during knee flexion-extension. We are conscious that
the strain gages are designed for being bonded onto the
surface of structure but previous study [16,17] used
strain gages into structure. The cancellous bone is not
homogenous and anisotropic and the orientation and
location of the trabecula are very important to loading
transfer. The strain field in structure point is three
dimensional. There are three normal strains and three
shear strains. In our study we decided consider the mea-
surement of vertical strain. Note that data was depen-
dent of the epoxy resin deformation. The data obtained
were the indirect reflect of the cancellous bone load
transfer. Nevertheless, the introduction of different
structure in the cancellous bone could create a local
reinforcement and modify the cancellous bone
mechanics. During dynamics of gait, ground reaction
force is of primary importance to explain joint loading.
In our experimental setting, an open kinematic chain
was studied. It would be therefore interesting to repro-
duce this study in a closed kinematic chain setting to
take into account the contribution of ground reaction
force, that might affect cancellous bone deformation dif-
ferently as compared to loading along muscle lines of
actions.

Intra-observer reproducibility was satisfactory for both
MCV (not exceeding 10%) and CMC (above 0.93).
Inter-observer reproducibility indicated that similar
measured deformation patterns could be found for all
operators at all ME locations (CMC mean: 0.82 to 0.87),
although these patterns showed different ranges. It
could have been advanced that this range difference
could be related to the different velocities applied by the

Extension to flexion

Flexion to extension

Intra-observer reliability Inter-observer reliability

Intra-observer reliability Inter-observer reliability

MCV(%) cmC MCV(%) cmc MCV(%) cmc MCV(%) cmc
MET1 12 0.83 17 097 MET1 6 0.96 15 0.99
ME2 1 0.98 12 0.95 ME2 9 097 21 093
ME3 9 0.96 13 0.98 ME3 7 097 16 097
ME4 6 0.99 17 0.88 ME4 4 0.99 28 063
ME5 8 0.92 43 0.70 MES5 13 0.88 33 0.73
ME6 10 0.88 34 0.76 ME6 7 0.98 55 0.65
Mean 9 0.93 23 0.87 Mean 8 0.96 28 0.82

Inter- and intra-observer mean coefficient of variation (in %) and coefficient of multiple correlation. ME1: antero-medial Strain gage; ME2: medial Strain gage;
ME3: postero-medial Strain gage; ME4: postero-lateral Strain gage; ME5: lateral Strain gage; ME6: antero-lateral Strain gage.
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Figure 4 Inter-operator reproducibility. Inter-operator variability during flexion and extension motion. ME 1: antero-medial strain gage; ME 2:
medial strain gage; ME 3: postero-medial strain gage; ME 4: postero-lateral strain gage; ME 5: lateral strain gage; ME 6: antero-lateral strain gage.
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operator to flex the knee joint. We studied the correla-
tion between the mean RMS values and mean and maxi-
mal primary motion velocities. The coefficients of
determination (r*) between RMS and motion velocity
and were 0.32 and 0.39, respectively for mean and maxi-
mal velocities. These results do thus not support that
velocity was a factor influencing local bone deformation.

For intra-specimen repeatability we chose to analyse
the flexion movement. Indeed, no difference between
flexion and extension intra-observer reproducibility was
observed. Moreover, it seems more logical to express
our data according to flexion movement. Indeed, knee
joint kinematics and muscular moment arms that are
pertinent to interpret deformation data are generally
expressed during this movement. The average mean
RMS differences (7 to 10%) and the Mean ICC (0.95 to
0.99) showed that maximum variability did not exceed
10% and that a great similarity of the curves was
observed. The mean correlation coefficient was ranged
from -0.22 and 0.55, indicating that RMS differences
were independent of the signal intensity. This implies
that the measurement error is constant and does not
exceed 10%

The curve pattern of ME6 in all specimens (Figure 5)
suggests individual variability of knee deformations. The
intensity variability may be due to some discrepancies in
gage placement even if this was standardized, to the
quality of cancellous bone, especially in elderly people
[13,26]. Indeed, this is approximately 654 (+ 304) MPa
in young subjects, 829 (+ 422) MPa in adults and 613 (+
319) MPa in elderly people [13]. The variability could
also be due to individual anatomical and/or kinematical
variations (e.g. joint geometry, presence or absence of
inconstant ligaments, motion patterns).

Compression tests of the resin cylinders indicated that
the average value of the resin Young’s modulus was 2.09
(+ 0.03) GPa. In comparison to the CBrpr Young’s mod-
ulus [14], the resin Young’s modulus is 2.4 to 66 times
larger than the CBrpg. This means that the epoxy resin
deformation is smaller than the cancellous bone’s and
that the data obtained via the MEs underestimated the
real deformation of the cancellous bone. However, this
system is satisfactory to answer the main aim of this
study, which was developing a method to compare bone
deformation variations between two conditions (i.e.,
before and after osteotomies). For example, Figure 6
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Table 2 Intra-specimen repeatability
Mean Mean Mean
Range Range Range
Specimen Max Min  Mean Mean ICC r Max Min Mean Mean ICC r Max Min  Mean Mean ICC r
(mS) (mS) RMS  RMS (mS) (mS) RMS  RMS (mS) (mS) RMS  RMS
ms) (%) (ms) (%) ms) (%)
ME1 ME2 ME3
S1 13 -10 2 7 098 * 010 288 27 28 9 0.98 -035 71 44 3 3 099 * 013
S2 7 -1 2 1209 * -035 9% -6 10 10 099 -020 162 -19 18 10 097 * 027
S3 -14 49 3 5 098 * 036 72 ~-147 25 11 0.99 059 35 6 3 6 099 * -020
S4 14 18 2 5 097 * 023 33 -62 6 6 098 065 77 -4 8 10 099 * 041
S5 35 68 5 5 099 * 078 -3 -26 1 5 0.99 032 15 -1 1 9 098 * -0.16
S6 -3 -39 4 9 098 * -046 148 20 10 6 0.95 0.07 40 -4 4 10 098 * 004
Average 9 -33 3 7 098 0.11 106 -32 13 8 0.98 041 67 -11 6 8 0.98 0.08
ME4 MES ME6
S1 74 5 3 4 099 * -054 36 -3 5 13 099 -060 10 -121 4 3 098 * 0.70
S2 23 81 9 8 099 * -006 -2 45 5 11 0.97 053 -1 -16 1 8 098 * 049
S3 11 -46 7 12 099 * 042 -4 33 4 11 0.95 074 4 -28 3 11 098 * 045
S4 29 42 11 5 098 * -068 -3 -10 1 5 0.97 038 -1 -15 1 9 098 * 055
S5 -4 -57 5 7 098 * 076 23 -24 5 10 099 043 19 -15 2 6 099 * 060
S6 0 -49 4 9 09% * 030 52 -14 6 10 098 030 -1 -19 2 10 098 * 049
Average 22 -45 6 9 098 -0.22 17  -21 4 10 0.98 048 5 -36 2 8 0.98 0.55

Intra-specimen repeatability for all MEs in flexion. ME1: antero-medial Strain gage; ME2: medial Strain gage; ME3: postero-medial Strain gage; ME4: postero-lateral
Strain gage; MES5: lateral Strain gage; MEG6: antero-lateral Strain gage. *:P < 0.0001.
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showed the CBrpr deformation for ME2 after varum
and valgum deviation for another specimen. The data
showed that the deformation patterns seems to be in
agree with the frontal deviation theory [1,2] were varum
deformity induce a medial shift of the mechanical axis
of the lower limb, increasing medial tibial plateau con-
straint and inversely for valgum deformity. We showed
that before 65°, the varum 6° condition decrease CBrpg.
After 65° the varum 6° condition increase CBrpg com-
pared to the intact condition. The valgum conditions
were not proportional to the degree of frontal deforma-
tion. This fact could be due to the modification of mus-
cles and ligaments tensions. But this hypothesis should
be still confirmed thanks to confrontation with kine-
matics and moment arm data. Even if the introduction
of a rigid element into the cancellous bone can induce a
modification of its mechanic behavior, these preliminary
results showed that our methodology allows objective
measurement of this problematic.

The tunnel size has been selected after several trials to
optimize the contact surface between cancellous bone
and ME. The MEs were only introduce on CBrpg and
no glue was used. No sliding and movement of the ME
in the tunnel were observed. There is currently no other
direct method which allows validation of ME output
data. To the authors’ knowledge, no other ‘direct’
method is available to record cancellous bone deforma-
tions during motion. Only indirect methods exist [12,13]
and these deal with static positions and therefore are
not suitable to validate the protocol presented in this
study. The latter is the first method which allows to
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analyze directly in-situ the variations of cancellous bone
during a joint movement. The deformation pattern for
each individual specimen in some well-defined condi-
tions (e.g., osteotomy) can therefore be compared to
each other. Unfortunately, the method does not allow
the absolute strain values to be obtained since there is
no other direct method is available from the literature
for validation.

Conclusions

The presented method allows the reproducible relative
quantification of deformation variations measured in-
situ at the cancellous bone of the tibial proximal epiphy-
sis. The method has been used in this paper on the
tibial plateau. Intra-observer reproducibility was very
good and the measurement error did not exceed 10% in
average. Inter-observer reproducibility was less accepta-
ble. Different behaviours were observed among speci-
mens. These were probably due to individual variations
in bone quality as previously reported in the literature
[13]. The method can now be used for the first time to
quantify relative bone deformations before and after dis-
tal femoral osteotomies if applied by the same operator.
The preliminary results of valgum and varum condition
seem in agree with frontal misalignment theory. CBrpg
deformation measurements could be confronted to knee
kinematics analysis and thigh muscular moment arms
[7]. This will allow a better understanding of the
mechanism of lateralized gonarthrosis, and contribute to
the development of more appropriate treatments in the
future.
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