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Abstract
Background  Accurate estimation of implant size before surgery is crucial in preparing for total knee arthroplasty. 
However, this task is time-consuming and labor-intensive. To alleviate this burden on surgeons, we developed a 
reliable artificial intelligence (AI) model to predict implant size.

Methods  We enrolled 714 patients with knee osteoarthritis who underwent total knee arthroplasty from March 2010 
to February 2014. All surgeries were performed by the same surgeon using implants from the same manufacturer. We 
collected 1412 knee anteroposterior (AP) and lateral view x-ray images and retrospectively investigated the implant 
size. We trained the AI model using both AP and lateral images without any clinical or demographic information and 
performed data augmentation to resolve issues of uneven distribution and insufficient data. Using data augmentation 
techniques, we generated 500 images for each size of the femur and tibia, which were then used to train the model. 
Using data augmentation techniques, we generated 500 images for each size of the femur and tibia, which were then 
used to train the model. We used ResNet-101 and optimized the model with the aim of minimizing the cross-entropy 
loss function using both the Stochastic Gradient Descent (SGD) and Adam optimizer.

Results  The SGD optimizer achieved the best performance in internal validation. The model showed micro F1-score 
0.91 for femur and 0.87 for tibia. For predicting within ± one size, micro F1-score was 0.99 for femur and 0.98 for tibia.

Conclusion  We developed a deep learning model with high predictive power for implant size using only simple 
x-ray images. This could help surgeons reduce the time and labor required for preoperative preparation in total knee 
arthroplasty. While similar studies have been conducted, our work is unique in its use of simple x-ray images without 
any other data, like demographic features, to achieve a model with strong predictive power.
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Introduction
Preoperative templating in total knee arthroplasty is 
essential for achieving satisfactory outcomes. In particu-
lar, accurate size prediction allows surgeons to avoid size 
mismatch or tibial overhang [1]. Appropriate size pre-
diction can also improve preparedness for unexpected 
situations during surgery (e.g., implant or equipment 
contamination) through the preparation of additional 
implants and equipment. Furthermore, it could allow 
hospitals to manage their inventory more efficiently [2, 
3]. Despite the numerous benefits of preoperative tem-
plating for both surgeons and patients, it is a time-con-
suming task, and the results can vary depending on the 
individual performing it. Therefore, numerous efforts 
have been made to carry out preoperative templating 
more accurately and conveniently [4–6].

To improve the accuracy of templating, three-dimen-
sional (3D) methods have been explored, but con-
ventional templating using radiographs is still more 
commonly used. This is because 3D templating is more 
labor-intensive, and the difference in accuracy between 
3D and conventional templating is not statistically sig-
nificant [7]. Instead, the researches using artificial intel-
ligence (AI) technology to predict the size of the implants 
more quickly and accurately have been conducted. How-
ever, most of these studies have relied solely on demo-
graphic features (age, sex, BMI, weight, height etc.) to 
predict implant size [8–10]. And only one research has 
used radiographs and demographic features simultane-
ously [11]. Demographic features such as gender, height, 
and weight provide quantitative information sufficient to 
estimate an individual’s bone size, and models using these 
features for predicting implant size have reported accu-
racies exceeding 80%. However, to date, there have been 
no reports of a reliable implant size prediction model 
developed using only X-rays, without any demographic 
or scaling information provided. Can an artificial neu-
ral network successfully predict the appropriate implant 
size using only X-rays in an environment with minimal 
scaling information, such as demographic features? Moti-
vated by this curiosity, we initiated our study and created 
a reliable AI model using a convolutional neural network 
(CNN), which yielded satisfactory results [12].

Methods
Data acquisition and preparation
From March 2010 to February 2014, a total of 714 
patients with knee osteoarthritis who underwent total 
knee arthroplasty were enrolled in the study. All surger-
ies were performed by the same surgeon and exclusively 
utilized the NexGen® product from Zimmer Biomet, spe-
cifically the posterior stabilized (PS) type. Anteroposte-
rior (AP) and lateral view x-ray images of the patients’ 
knees were collected, and the inserted implant sizes 

were investigated retrospectively. During the surgery, 
the implant size was determined using the sizing trials 
provided by Zimmer Biomet. For both the femur and 
tibia, trial implants were applied to assess factors such 
as rotation and overhang, ultimately guiding the deci-
sion on the appropriate implant size. Cases requiring size 
adjustments due to rotation or gap balance issues were 
excluded from the study at the outset.

All images were converted into the grayscale Joint Pho-
tographic Experts Group (JPEG) format and resized each 
image to a resolution of 224 × 224 pixels to make it com-
patible with the original ResNet network architecture 
[13]. 20% of the total images were randomly extracted for 
the test images.

Deep learning model development
In this study, to predict the implant size, ResNet-101 was 
used to predict the implant size. The ResNet architec-
ture, which involves repeated convolutional and pooling 
layers, was trained using preprocessed images as input 
training data. The first layer with max pooling about 
input images was extracted to feature map through con-
volution of 7 × 7 size kernel. The kernel of size 1 × 1, 3 × 3, 
and 1 × 1 performs 64, 128, 256, and 512 convolution 
operations, and finally average pooling (Fig.  1). Femur 
and tibia dataset were divided into 80% as a training data-
set and 20% as a test dataset.

To increase the number of training images, the images 
were augmented using geometric transformations. The 
images of class which has the most numerous images, 
like femur insert size D and tibia insert size 1, were only 
horizontally flipped. ImageFilter in Pillow packages was 
applied to the other images, respectively: blur, contour, 
detail, edge enhance, edge enhance more, emboss, find 
edges, sharpen, smooth, and smooth more. Images were 
rotated to 45° to fulfill 500 images.

Using images generated through data augmentation, we 
trained the femur model with 2,000 images and the tibia 
model with 2,500 images, utilizing the 101-layer ResNet 
architecture (Fig.  2). The 101-layer Resnet models were 
evaluated using 5-fold cross validation. The learning rate 
of the 101-layer ResNet that has been observed as 0.0001 
and batch size is set to 20. In this work, the Stochastic 
Gradient Descent (SGD) optimizer used to reduce loss 
performance. All images were resized according to the 
selected model requirements and the results were col-
lected. Similarly, all the images are resized by 224 × 224 
before fed into the neural network ResNet.

Based on the training dataset, the model was optimized 
with a target of minimizing the cross-entropy loss func-
tion using the SGD optimizer. The final output score was 
calculated as the sum value of the model. Cross entropy 
loss was defined as:
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Where C is the number of classes, x is the input, y is the 
target, w is the weight and N spans the minibatch dimen-
sion. The maximal number of training epochs was set to 
be 50. The initial learning rate was set to 0.001 and would 
be decayed by 0.1 every 10 epochs. Continuous vari-
ables were described as the mean ± standard deviation. 
The performance of the classifier is calculated using test 
samples. The confusion matrix is calculated for evaluat-
ing classifier performances. It is generated by comparing 
the responses of the classification algorithm to the test 

set with the acutal values in the data set. Micro-averaging 
F1 score is based on the cumulative True Positive (TP), 
False Positive (FP), True Negative (TN) and False Nega-
tive (FN) of the dataset.

Micro-Average Precision (Pmicro) is calculated as:

	
Pmicro =

TP total

TP total + FP total

Micro-Average Recall (Rmicro) is calculated as:

	
Rmicro =

TP total

TP total + FNtotal

Micro F1 score (F1micro) is calculated as:

Fig. 2  Graphical representation illustrating the alteration in image quantity after augmentation. (A) 1,130 each image both AP and lateral combined and 
amplified to 2,000 for femur dataset. (B) Same images were augmented to 2,500 for tibia dataset

 

Fig. 1  Implant size detection framework using ResNet-101 (A) Training workflow based on 101-layer residual network. Inputted front or lateral X-ray im-
ages independently after augmentation. (B) Overlapped X-ray images in pairs as input images then augmentation
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F1micro = 2× Pmicro × Rmicro

Pmicro +Rmicro

System requirement
The information of the computer used in this study was 
as follows: Intel Xeon 4144 (2.20 GHz), 128 gigabytes of 
RAM, and t GeForce RTX 3090 Ti Ubuntu 18.04 LTS. 
Model development was performed by Python (version 
3.7.11) with libraries of torch (version 1.8.0), and statisti-
cal analyses were performed with a R software.

Results
Three versions of the predictive model were developed. 
First, models using only AP or lateral images were cre-
ated. Second, a model using both AP and lateral images 
without discrimination was developed. The accuracy of 
these models was then compared.

Training accuracy of all models was around 80% 
(Fig. 3). The model using the AP images showed the low-
est accuracy in both femur (90.7%) and tibia (85.11%) size 
prediction. (Table 1) Although it was a slight difference, 
the model using the lateral images had the highest accu-
racy (femur 90.78%, tibia 87.84%). The model using over-
all images showed good accuracy in femur prediction 
same of lateral model. But, in tibia prediction, it showed 
slight lower accuracy (86.17%) than lateral model.

The final model for predicting exact implant size dem-
onstrated a micro F1-score 0.91 for femur and 0.87 for 
tibia. For predicting within ± one size, the micro F1-score 
was 0.99 for femur and 0.98 for tibia (Fig. 4).

Discussion
The AI model, which uses only simple radiographs to fig-
ure out the implant model, has already been extensively 
researched and produces high performance [9, 14–16]. 
However, there is currently no report on a model using 
only radiographs to predict component size. Most reports 
used demographic features only or combination with 
other information. The significant correlation between 
demographic feature and implant size has been reported, 
and there has also been a size prediction model using the 
Baysien model [17]. In 2022, Kunze KN et al. [9]. showed 
more than 95% accuracy in predicting ± one size of the 
implant using age, sex, height, weight and BMI of 11,777 
patients. However, the accuracy of predicting exact size 
was only 42.2%. Only 1 study, which used radiographs, 
Yue Y et al. [11]. developed an error correct output cod-
ing model using demographic features and radiographs 

Table 1  The prediction accuracy of each model used in this 
study

AP Lateral Overall
Femur 90.7% 90.78% 90.78%
Tibia 85.11% 87.94% 86.17%
AP = Anteroposterior

Fig. 4  The graph of micro F1-score. The blue chart graph is score of pre-
dicting exact size. The orange chart graph is score of predicting within 
± one size

 

Fig. 3  Accuracy curve based on 100 epochs. (A) Training and validation accuracy with 101-layer ResNet for femur classification model. (B) Training and 
validation accuracy with 101-layer ResNet for tibia classification model
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of 308 patients in 2022 and reported accuracy of 86.27% 
and 88.23% in prediction of femur and tibia size.

During the study, prediction accuracies of 70.59% and 
68.72% were achieved using only simple radiographs. 
Notably, our prediction model demonstrated excep-
tional performance with a micro F1-score exceeding 0.98 
when allowing for a margin of ± one size, solely based on 
simple X-rays without any additional information. Even 
the model for predicting exact implant size have shown 
micro F1-score 0.91 for femur and 0.87 for tibia. The dif-
ference between study of Yue Y and this study are (1) the 
number of our patients was larger and (2) only data aug-
mentation was used without applying transfer learning. It 
was believed that this approach could result in a model 
with better accuracy. In 2023, According to a report of 
Riechelmann F et al [18], even if surgeons conduct 2D 
size template, the exact size match was observed only 
34% of cases and size match within ± one size in 57.5%. 
Considering the report by Riechelmann F and the results 
from other AI studies, these findings are notably impres-
sive. Additionally, the model demonstrated the high-
est performance when using lateral images, highlighting 
the effectiveness of this approach. The superior perfor-
mance of the model using lateral images is likely due to 
the increased sensitivity of surgeons performing TKA to 
anteroposterior size mismatch compared to mediolateral 
size mismatch.

This study showed satisfactory results in predict-
ing the component size of TKA patients performed by 
a single institution, one surgeon. It could be considered 
the model incorporates surgeon’s implant preference. It 
could be considered as a lack of diversity or data volume 
in this study, but it also means that each individual who 
follow our method can get a more suitable predictive 
model for their own. Moreover, this study is made with 
a relatively simple algorithm using only simple radio-
graphs, so everyone can easily follow it and can get a reli-
able size prediction model. This is expected to relieve the 
surgeon’s labor and time for preoperative planning.

As mentioned above, the limitation of this study is that 
it has been performed in one institution and one surgeon 
The radiographs of about 700 patients gathered from a 
single institution couldn’t represent the population suf-
ficiently. (1) Since the current model was trained only by 
small Asians, size mismatch would occur when it has to 
predict the size out of the learning range. (2) The predic-
tion accuracy would be affected by the characteristics 
of the imaging device and the imaging method, so addi-
tional algorithm modifications are required to apply the 
current model to a multicenter study.

Conclusion
A deep learning model with high predictive power for 
implant size was developed using a small number of 
patient groups. This model is expected to contribute sig-
nificantly to preoperative planning and implant prepa-
ration for total knee arthroplasty. While similar studies 
have been conducted, this model uniquely achieves suf-
ficient predictive power with only radiographs.
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