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Abstract
Background  In recent years, deep learning (DL) technology has been increasingly used for the diagnosis and 
treatment of lumbar intervertebral disc (IVD) degeneration. This study aims to evaluate the performance of DL 
technology for IVD segmentation in magnetic resonance (MR) images and explore improvement strategies.

Methods  We developed a PRISMA systematic review protocol and systematically reviewed studies that used DL 
algorithm frameworks to perform IVD segmentation based on MR images published up to April 10, 2024. The Quality 
Assessment of Diagnostic Accuracy Studies-2 tool was used to assess methodological quality, and the pooled 
dice similarity coefficient (DSC) score and Intersection over Union (IoU) were calculated to evaluate segmentation 
performance.

Results  45 studies were included in this systematic review, of which 16 provided complete segmentation 
performance data and were included in the quantitative meta-analysis. The results indicated that DL models showed 
satisfactory IVD segmentation performance, with a pooled DSC of 0.900 (95% confidence interval [CI]: 0.887–0.914) 
and IoU of 0.863 (95% CI: 0.730–0.995). However, the subgroup analysis did not show significant effects of factors 
on IVD segmentation performance, including network dimensionality, algorithm type, publication year, number of 
patients, scanning direction, data augmentation, and cross-validation.

Conclusions  This study highlights the potential of DL technology in IVD segmentation and its further applications. 
However, due to the heterogeneity in algorithm frameworks and result reporting of the included studies, the 
conclusions should be interpreted with caution. Future research should focus on training generalized models on 
large-scale datasets to enhance their clinical application.
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Introduction
Chronic low back pain is a leading cause of global disabil-
ity, which increases medical burden [1, 2]. Lumbar inter-
vertebral disc (IVD) degeneration is a common cause 
of pain, which is considered as the precursor to other 
lumbar degenerative diseases [3, 4]. Magnetic resonance 
imaging (MRI), with its unique advantages in soft tis-
sue visualization, provides clear depictions of the IVDs’ 
morphology and structure, establishing itself as the main 
diagnostic tool for IVD degeneration [5]. However, the 
interpretation of lumbar spine MRI is complex and time 
consuming, necessitating considerable surgical expertise 
[6]. The increasing number of patients in recent years has 
further amplified the demand for radiologists and spinal 
surgeons.

The development of artificial intelligence (AI) presents 
the potential for rapid, accurate, and stable imaging anal-
ysis [7–10]. AI, once trained on extensive datasets, can 
surpass human experts in medical image processing [8]. 
Despite the scarcity of AI systems for widespread clinical 
use in spinal surgery, there has been a significant increase 
in research concerning AI’s role in IVD degeneration 
[8, 10]. In 2023, a systematic review and meta-analysis 
revealed that machine learning and deep learning (DL) 
algorithms can offer relatively accurate and repeatable 
diagnosis of lumbar disc herniation and degeneration 
grading [5]. These techniques are also applicable to diag-
nose other disc-related diseases, support clinical deci-
sion, and predict patient outcomes [11–13].

However, the further optimization and clinical applica-
tion of these algorithms hinge on a fundamental require-
ment: image segmentation. In MRI assessment of IVDs, 
accurate segmentation delineates the regions of inter-
est for diagnostic models, enhancing their precision and 
interpretability [14]. The IVD segmentation technique 
can be applied to quantitative imaging assessments, 
including the automatic measurement of disc height and 
protrusion distance. These assessments were previously 
performed manually by physicians, which was a tedious 
and time-consuming process with low consistency in 
measurement results [15]. Moreover, AI algorithms can 
use image segmentation data to construct three-dimen-
sional models of IVDs for applications in CT/MRI image 
fusion, surgical planning, and navigation [16]. DL algo-
rithm frameworks, such as U-net, have become the state-
of-the-art and primary methods for image segmentation 
[6, 10, 17]. However, to our knowledge, there has been no 
systematic investigation or summary of the performance 
of DL technology in IVD segmentation and quantitative 
measurement within lumbar spine MRI.

This systematic review and meta-analysis aims to 
bridge this knowledge gap by evaluating the performance 
of DL models in segmenting and measuring IVDs in MRI 
scans, with a focus on segmentation accuracy. We believe 

that this review will offer a comprehensive overview for 
further research and application in this critical area.

Methods
General guidelines
This systematic literature review strictly followed the 
guidelines outlined by the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA, 
see supplementary file 1) [18, 19]. The protocol of this 
study has been registered in PROSPERO (https://www.
crd.york.ac.uk/prospero/) under the registration number 
CRD42024534092. Given the nature of this systematic 
review and meta-analysis, ethical approval and informed 
consent from participants were not required.

Search strategy and review process
A systematic literature search was conducted indepen-
dently by two researchers (A.W. and C.Z.), with records 
collected from three major databases up to the search 
date of April 10, 2024. The databases included PubMed, 
Embase, and Web of Science (including Medline). The 
following key terms were used for literature search: 
“Deep Learning,” “Artificial Intelligence,” “Neural Net-
works,” “Segmentation,” “Feature extraction” “Inter-
vertebral Disc,” and “Lumbar Vertebrae.” Additionally, 
references from included studies were reviewed to iden-
tify any relevant literature.

Titles and abstracts of the identified studies were 
screened for eligibility by the two researchers indepen-
dently. A list of references from relevant studies and sys-
tematic reviews was also screened. Disagreements were 
resolved by a third researcher and co-author (L.Z.).

Inclusion and exclusion criteria
Inclusion criteria for this review were: (1) studies involv-
ing adult participants; (2) utilization of MRI to assess 
IVDs; (3) application of DL methodologies with com-
prehensive data on segmentation performance; (4) 
acceptance of both retrospective and prospective study 
designs.

Exclusion criteria included: (1) reviews, letters, guide-
lines, editorials, or errata; (2) studies involving animals, 
cadavers, in vivo biomechanics, or patients with lumbar 
tumors or trauma; (3) studies with overlapping cohorts, 
which would be summarized but not included in meta-
analyses; (4) use of other machine learning algorithms 
other than DL; (5) studies of low quality; and (6) non-
English publications.

Quality assessment
The quality of included studies was assessed using the 
second version of the Quality Assessment Tool for 
Diagnostic Accuracy Studies (QUADAS-2) [20], which 
included four domains: patient selection, index test, 
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reference standard, and flow and timing. For patient 
selection, the focus was on the inclusion of a well-defined 
patient population with clear criteria for inclusion and 
exclusion. For the index test, the explicit description of 
the DL algorithm for segmenting and evaluating IVDs 
was scrutinized. The reference standard domain evalu-
ated the reliability of the ground truth determination 
through manual segmentation and quantitative measure-
ment. The flow and timing domain assessed the clarity of 
the research flow [21].

Data extraction
The following variables were extracted and recorded: (1) 
study attributes, including the primary author, publica-
tion year, study design, and duration; (2) medical data, 
including patient count and object of the study; (3) char-
acteristics of MRI scanning; (4) DL specifics including 
the algorithm framework, dataset partition, and data 
augmentation strategies; (5) performance metrics for 
IVD segmentation, including dice similarity coefficient 
(DSC) score, precision, recall, and Intersection over 
Union (IoU).

For summarization and subgroup analysis, the algo-
rithms applied in the included studies were categorized 
into U-Net variants, Deeplab variants, Generative Adver-
sarial Networks (GAN) variants, and CNN variants. The 
U-Net variants included 2D/3D U-Net networks and 
those combined with frameworks like ResNet, as well as 
other U-Net-like algorithms. CNN variants referred to 
other CNN or FCN frameworks not covered by the afore-
mentioned categories. Given the specialized features 
of most algorithms, these classifications may be very 
crude. For detailed characteristics of a particular algo-
rithm, consultation of the original literature is strongly 
recommended.

Statistical analysis
Statistical analyses were performed using the Com-
prehensive Meta-Analysis software (version 3, Biostat, 
Englewood, NJ, USA). A random-effects model was 
applied for the meta-analysis, with p < 0.05 indicating 
statistical significance. Forest plots were generated to 
visualize the estimated DSC and IoU scores and the over-
all performance. Subgroup analyses were performed to 
explore relationships between outcomes and potential 
influencing factors. Heterogeneity between studies was 
assessed using the Q-test and Higgins I² statistics, cate-
gorized as follows: 0–25% (not important), 26–50% (low), 
51–75% (moderate), and 76–100% (high). Publication 
bias was investigated using a funnel plot, with asymmetry 
evaluated by the Egger’s test.

Results
Basic characteristics
The PRISMA flowchart for the literature search is shown 
in Fig.  1. Initially, 583 publications were identified 
through database searching, and an additional 4 publi-
cations were retrieved through cross-referencing. After 
removing duplicates, 376 publications were screened, 
and 295 of them were excluded based on the titles and 
abstracts. Ultimately, 45 publications were included in 
the systematic review after full text screening [15, 22–65]. 
However, only 16 publications were eligible for the meta-
analysis [22–37]. Since they provided sufficient quanti-
tative data. It should be noted that 2 of the publications 
were based on the same cohort [29, 36], but differences in 
the MRI slices used for training and the algorithm frame-
works led to their both inclusion in the meta-analysis. 
Attempts to contact corresponding authors of other pub-
lications did not obtain the necessary data.

Table  1 outlines the basic characteristics of the 
included studies and objects. Most studies were designed 
retrospectively and performed based on single-center 
datasets, including public datasets. However, since these 
studies only involve the processing of medical images, 
retrospective or prospective studies may not make a sig-
nificant difference in data quality. The number of patients 
across the studies ranged considerably, from as few as 8 
[57] to as many as 520 [55]. The study subjects primar-
ily included healthy individuals and patients with various 
types of degenerative lumbar diseases. Many publications 
did not report the study durations.

Table  2 shows the information about the MR scans 
and DL strategies. 35 of the studies used sagittal slices 
for IVD segmentation, while axial and coronal slices 
were also used in other studies. The specific MRI slices 
selected for segmentation varied. 16 of the studies used 
mid- or para-sagittal slices, which can clearly show the 
IVD structures. Some studies used several or all sagittal 
or axial slices, or used 3D SPACE sequences. In terms of 
image capturing methods, 35 of the studies implemented 
T2 sequences, while other studies implemented both 
T1 and T2 sequences, or fused images produced by T2 
images registered in T1 images. Although the scanner, 
slice thickness, Tesla, and image size may affect the IVD 
segmentation, many studies did not report detailed infor-
mation about these items, especially those with multiple 
data sources. Therefore, this study did not further sum-
marize these data.

Data preprocessing and DL algorithms
The preprocessing of medical image data aims to enhance 
image quality and augment sample size to improve train-
ing effectiveness. Image cropping and resizing aims to 
standardize image dimensions for ease of training, or 
to pre-crop images to specific segments or regions of 



Page 4 of 12Wang et al. Journal of Orthopaedic Surgery and Research          (2024) 19:496 

interest, and it was used in many studies [15, 22–25, 27, 
29, 30, 33, 36, 39, 40, 42–44, 46, 48–51, 62, 64, 65]. Nor-
malization, which standardizes the intensity values of 
images, was also employed in some studies [15, 24, 25, 
28–31, 35, 36, 39, 44, 46, 48–51, 62, 64]. Data augmenta-
tion includes applying transformations such as rotation, 
flipping, and contrast enhancement, and some studies 
utilized this strategy to increase the amount of the train-
ing dataset [15, 22, 28–30, 32, 34, 36, 39, 43, 44, 46–48, 
60, 62, 64]. Padding [24, 25, 36, 48, 62, 65] is also an 
optional preprocessing method. As shown in Table 2, all 
data were randomly or manually partitioned into train-
ing, testing, and validation sets. Some studies randomly 
grouped MR image slices, while others, especially those 
employing 3D algorithmic frameworks, grouped data by 
patient, meaning all data from a single patient’s examina-
tion belonged exclusively to one dataset.

Most studies included in this review employed specifi-
cally designed or improved algorithms for IVD segmen-
tation, with the U-net network and its variants being 
the most commonly applied models (28 studies), includ-
ing classic 2D/3D U-net, V-net, ResUnet, etc. GANs 
and DeepLab segmentation networks were utilized in 4 
and 2 studies, respectively, while the remaining studies 
employed other variants of CNNs or FCNs. The informa-
tion about the algorithms is summarized in Table 2, and 

we will further discuss the characteristics of the various 
algorithms in the discussion section.

DSC and IoU are the most commonly used perfor-
mance metrics for automatic IVD segmentation. The 
reported DSC ranged from 0.810 [27] to 0.982 [40]. 
While the reported IoU ranged from 0.771 [42] to 0.972 
[52]. Among the included studies, 3 studies performed 
IVD segmentation only at a specific segment (L4/5 or 
L5/S1). 5 studies also segmented other structures of 
the lumbar spine, such as the vertebral body and spinal 
canal, and reported only the overall segmentation results 
for all structures, with the reported DSC ranging from 
0.803 [62] to 0.948 [58]. Other evaluation indexes of IVD 
segmentation, such as precision and recall, were also 
reported in several studies [24, 25, 29, 31, 41, 43, 46, 48, 
65], with the reported precision ranging from 0.868 [41] 
to 0.986 [46], and the recall ranging from 0.904 [24] to 
0.950 [46].

Several studies conducted automatic quantitative mea-
surements of IVDs based on image segmentation [15, 
49, 61], including measurements of disc height and area. 
These studies all reported good consistency between 
automatic segmentation and the gold standard (manual 
measurements). However, due to differences in mea-
surement methods and evaluation metrics, this study 
did not summarize the performance of the quantitative 
measurements. The authors believe that quantitative 

Fig. 1  PRISMA flowchart for the current meta-analysis
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measurements are also reflect of the accuracy of auto-
matic segmentation.

Methodological quality
All integrated studies underwent quality assessment 
using the QUADAS-2 tool. Regarding bias risk within 
patient selection, 8 studies were classified as having a 

high risk of bias since they did not report clear inclusion 
and exclusion criteria [23, 30, 34, 42, 52, 58, 59, 64]. The 
ambiguity of the subjects may limit the applicability of the 
results. 6 studies exhibited an indeterminate risk of bias 
[33, 38, 49, 50, 62, 63]. Concerning the reference stan-
dard, 5 studies were assessed with a high risk of bias due 
to the lack of description on ground truth establishment 

Table 1  The patient and study characters
First author& publication year Study design Institution Duration Study subjects Patients included (n)
Li X, 2018 [22] Retrospective Single-center NA Healthy subjects 12
Han Z, 2018 [64] Retrospective Multi-center NA Multiple pathologies included 253
Kim S, 2018 [52] Retrospective Single-center NA NA 20
Pang S, 2019 [50] Retrospective Single-center NA Multiple pathologies included 235
Rehman F, 2019 [34] Retrospective Single-center NA NA 20
Al-Kafri AS, 2019 [45] Retrospective Single-center 2015–2016 Low back pain patients 515
Huang J, 2020 [62] Retrospective Single-center NA Community people 100
Iriondo C, 2020 [31] Retrospective Single-center NA Healthy and low back pain patients 31
Han Z, 2021 [37] Retrospective Multi-center NA Multiple pathologies included 253
Cheng YK, 2021 [42] Retrospective Single-center 2016–2020 Multiple pathologies included NA
Das P, 2021 [28] Retrospective Single-center NA NA 8
Gaonkar B, 2021 [30] Retrospective Single-center NA NA 103
Suri A, 2021 [47] Retrospective Single-center 2005–2014 Healthy and osteoporosis patients NA
Mbarki W, 2021 [53] Retrospective Single-center NA NA NA
Pang S, 2021 [36] Retrospective Single-center NA Multiple pathologies included 215
Liu Z, 2022 [25] Prospective Single-center 2020–2020 Lumbar disc herniation patients 100
Pang S, 2022 [29] Retrospective Single-center NA Multiple pathologies included 416
Zheng HD, 2022 [49] Retrospective Multi-center 2019–2020 NA 420
Sustersic T, 2022 [46] Retrospective Multi-center NA Healthy and disc herniation 243
Gong H, 2022 [33] Retrospective Single-center NA NA 62
Chen T, 2022 [24] Retrospective Single-center 2020–2020 Healthy, disc herniation, and spinal stenosis 100
Kuang X, 2022 [35] Retrospective Single-center NA Community people 40
Hou C, 2022 [61] Retrospective Single-center NA NA NA
Altun S, 2022 [55] Retrospective Single-center NA Lumbar spinal stenosis patients 300
Wang H, 2023 [38] Retrospective Single-center 2019–2020 Lumbar disc herniation patients 70
Coppock JA, 2023 [40] Retrospective Single-center NA Healthy subjects 25
He S, 2023 [57] Retrospective Single-center NA Healthy and disc degeneration patients 214
Liu H, 2023 [58] Retrospective Single-center NA NA 8
Yilizati-Yilihamu EE, 2023 [63] Retrospective Single-center NA NA 172
Li H, 2023 [65] Retrospective Single-center NA NA 215
Hess M, 2023 [27] Retrospective Single-center NA Multiple pathologies included 27
Qinhong D, 2023 [32] Retrospective Multi-center NA NA 228
He S, 2023 [59] Retrospective Multi-center NA NA NA
Bharadwaj UU, 2023 [26] Retrospective Single-center 2008–2019 Multiple pathologies included 200
Soydan Z, 2023 [44] Retrospective Single-center 2016–2020 Low back pain patients 363
Saenz-Gamboa JJ, 2023 [43] Retrospective Single-center 2015–2016 Multiple pathologies included 181
Altun İ, 2023 [56] Retrospective Single-center NA Lumbar spinal stenosis patients 520
He S, 2023 [41] Retrospective Single-center NA Healthy and disc degeneration patients 263
Wang M, 2023 [48] Prospective Single-center NA Healthy and disc degeneration patients 50
Pang C, 2023 [39] Retrospective Single-center 2015–2016 Low back pain patients 515
He S, 2024 [60] Retrospective Single-center NA Healthy and disc degeneration patients 214
Cheng YK, 2024 [23] Retrospective Single-center 2016–2020 Multiple pathologies included NA
Deng Y, 2024 [51] Retrospective Single-center NA NA 172
He S, 2024 [54] Retrospective Single-center NA Healthy and disc degeneration 276
Zhu Z, 2024 [66] Prospective Single-center 2020–2020 NA 50
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First author& publica-
tion year

Train/valida-
tion/test 
dataset (n)

Scanning 
direction

Slice Sequence Algorithm Classification of 
algorithm

Network 
dimen-
sionality

Li X, 2018 [22] 18/0/6a Sagittal Sagittal slices T2 MsFCN CNN variants 3D
Han Z, 2018 [64] 203/0/50bc Sagittal Para-sagittal T1/T2 Spine-GAN GAN variants 2D
Kim S, 2018 [52] 20/0/5bc Sagittal Mid-sagittal T2 BSUNet U-Net variants 2D
Pang S, 2019 [50] 188/0/47bc Sagittal Mid-sagittal T2 CARN CNN variants 2D
Rehman F, 2019 [34] 20/0/5b Sagittal Mid-sagittal T2 U-Net U-Net variants 2D
Al-Kafri AS, 2019 [45] 38,676/0/9669b Sagittal and 

axial
All sagittal and axial 
slices

T1/T2 
registration

SegNet CNN variants 2D

Huang J, 2020 [62] 50/0/50a Sagittal Mid-sagittal and 
para-sagittal

T2 U-Net U-Net variants 2D

Iriondo C, 2020 [31] 62/0/18b Sagittal Sagittal T1/T2 
registration

CFCM CNN variants 2D/3D

Han Z, 2021 [37] 203/0/50bc Sagittal Para-sagittal T1/T2 NSL GAN variants 2D
Cheng YK, 2021 [42] 2674/0/308b Sagittal Mid-sagittal T2 MultiResUNet U-Net variants 2D
Das P, 2021 [28] 16/0/8a Sagittal Sagittal T2 RIMNet CNN variants 3D
Gaonkar B, 2021 [30] 15/0/67a Sagittal Sagittal T2 U-Net U-Net variants 2D
Suri A, 2021 [47] 898/0/225bc Sagittal Sagittal slices T1/t2 SpineTK CNN variants 2D
Mbarki W, 2021 [53] 1500/0/500b Axial Axial slices T2 CycleGAN GAN variants 2D
Pang S, 2021 [36] 172/0/43ac Sagittal Sagittal slices T2 SpineParseNet U-Net variants 3D
Liu Z, 2022 [25] 80/0/20ac Axial 3D SPACE T2 3D U-Net U-Net variants 3D
Pang S, 2022 [29] 373/0/43bc Sagittal Mid-sagittal T2 DGMSNet Deeplab variants 2D
Zheng HD, 2022 [49] 316/0/104c Sagittal Mid-sagittal T2 BianqueNet CNN variants 2D
Sustersic T, 2022 [46] 195/24/24a Sagittal and 

axial
Sagittal and axial T2 DiscNet U-Net variants 2D

Gong H, 2022 [33] 170/0/33bc Sagittal Sagittal slices T2 ResAttenGAN GAN variants 2D
Chen T, 2022 [24] 70/10/20ac Axial 3D SPACE T2 3D U-Net U-Net variants 3D
Kuang X, 2022 [35] 20/10/10a Sagittal 7 or more sagittal slices T2 Spine-GFlow U-Net variants 3D
Hou C, 2022 [61] 1157/100/290b Axial Axial slices T1/T2 

registration
FC-DenseNet U-Net variants 2D

Altun S, 2022 [55] 270/0/30a Axial All axial slices T2 3D U-Net U-Net variants 3D
Wang H, 2023 [38] 56/0/14a Axial 12 axial slices T2 3D segmenta-

tion model
CNN variants 3D

Coppock JA, 2023 [40] 22/2/1a Sagittal 3D SPACE T2 U-Net U-Net variants 3D
He S, 2023 [57] 545/156/78b Sagittal Mid-sagittal and 

para-sagittal
T2 DLS-Net U-Net variants 2D

Liu H, 2023 [58] 13/0/3a Sagittal Sagittal T2 MLP-Res-Unet U-Net variants 2D
Yilizati-Yilihamu EE, 2023 
[63]

138/4/30ac Sagittal NA T2 SAFNet CNN variants 3D

Li H, 2023 [65] 172/0/43bc Sagittal Mid-sagittal T2 SSCK-Net CNN variants 2D
Hess M, 2023 [27] 160/80/16b Sagittal 8 sagittal slices T1 2D V-Net U-Net variants 2D
Qinhong D, 2023 [32] 182/0/46a Sagittal Sagittal slices T1/T2 MAS-Net U-Net variants 3D
He S, 2023 [59] 621/0/155bc Sagittal Sagittal slices T2 U-Net variants U-Net variants 2D
Bharadwaj UU, 2023 [26] 150/20/30a Axial All axial slices T2 2D V-Net U-Net variants 2D
Soydan Z, 2023 [44] 327/0/36b Sagittal Mid-sagittal T2 U-Net U-Net variants 2D
Saenz-Gamboa JJ, 2023 
[43]

96/49/36a Sagittal Sagittal slices T1/T2 
registration

U-Net variants U-Net variants 2D

Altun İ, 2023 [56] 1404/0/156b Axial L3-5 axial slices T2 ResUNet U-Net variants 2D
He S, 2023 [41] 607/0/152bc Sagittal Mid-sagittal and 

para-sagittal
T2 Lightweight 

ANN
U-Net variants 2D

Wang M, 2023 [48] 32/8/10ac Axial 3D SPACE T2 3D Deeplab V3+ Deeplab variants 3D
Pang C, 2023 [39] 1082/154/309b Axial Axial images T1/T2 

registration
SGRNet U-Net variants 2D

He S, 2024 [60] 621/0/155bc Sagittal Mid-sagittal and 
para-sagittal

T2 SALW-Net CNN variants 2D

Table 2  Characteristics of used datasets and algorithms frameworks
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[22, 49, 50, 52, 62]. 2 studies exhibited an indeterminate 
risk of bias [38, 57]. All studies were considered to have 
low risk of bias in the index test and flow and timing, 
since an explicit algorithm model and a clarified research 
flow are necessary conditions for this type of research to 
be recognized. However, judging the performance of the 
proposed models solely based on the description in the 
articles may not be sufficiently accurate. The repeatability 
and applicability of applying algorithmic models for auto-
matic IVD segmentation can only be confirmed through 
further external validation.

Regarding applicability, Subjects recruited from the 
community and patients with lower back or leg pain were 
considered to match the review question. 9 studies were 
assessed as having high concern in patient selection [22, 
28, 32–34, 40, 52, 57, 64]. The datasets included images 
from specific treatment stages, reformatted images, 
images without clear patient information. 9 studies were 
assessed as having indeterminate concern [23, 30, 42, 49, 
50, 58, 59, 62, 63]. The datasets were derived from hos-
pital databases but without associated patient informa-
tion. Concerning the reference standard, 5 studies were 
assessed with high concern [22, 49, 50, 52, 62] and one 
study exhibited an indeterminate concern [57] due to 
lack or insufficient description. The detailed information 
of quality assessment was shown in Figure S1 and Table 
S1.

Meta-analysis of the included studies
As is shown in Fig.  2, the pooled value of DSC from 
14 studies was 0.900 (95% confidence interval [CI]: 
0.887–0.914) [22, 24–32, 34–37]. The Higgins I2 statistic 
showed not important heterogeneity across the studies 
(I2 = 20.501). A sensitivity analysis confirmed the robust-
ness of the results, as the overall effect sizes remained 
statistically significant even when any individual study 
was excluded from the analysis (Figure S2). In addition, 
4 studies reported the IoU of IVD segmentation [23, 28, 

33, 35], and the pooled value was 0.863 (95% CI: 0.730–
0.995, I2 = 0.000, p = 0.073, Fig. 3).

Subgroup analysis
Subgroup analyses were conducted to determine if fac-
tors such as network dimensionality, type of algorithm, 
publication year, number of patients included, scan-
ning direction, data augmentation, and cross validation 
might influence the effect of IVD segmentation (DSC). 
The detailed results are shown in Table 3. Although the 
Higgins I² statistics indicated moderate heterogene-
ity between subgroups for network dimensionality (I² = 
73.174) and publication year (I² = 65.760), the Q-test sug-
gested no significant difference between subgroups when 
stratified by these factors (p > 0.05). The forest plots of the 
subgroup analyses are presented in Figures S3-S8.

Publication bias
Publication bias analysis was conducted for the DSC 
using a funnel plot (Figure S9), as the number of studies 
available for other outcome evaluation metrics was lim-
ited. The p-value of the Egger’s test was 0.458, suggesting 
no significant publication bias.

Discussion
The global prevalence of low back pain is 18%, with IVD 
pathology identified as a significant contributor [66]. 
The interpretation of imaging for IVD diseases is often 
time-consuming and challenging. In light of recent 
advancements in AI, particularly DL, the application of 
these technologies to medical imaging has the potential 
to improve current medical practices. This systematic 
review and meta-analysis showed that the pooled DSC for 
lumbar IVD segmentation in MRI using various DL tech-
niques was 0.900, with a 95% CI of 0.887–0.914, indicat-
ing a satisfactory level of accuracy. This technology can 
be further applied in diagnosis, measurement and evalu-
ation, and surgical planning. To the best of our knowl-
edge, this is the first systematic review and meta-analysis 

First author& publica-
tion year

Train/valida-
tion/test 
dataset (n)

Scanning 
direction

Slice Sequence Algorithm Classification of 
algorithm

Network 
dimen-
sionality

Cheng YK, 2024 [23] 2674/0/308b Sagittal Mid-sagittal T2 MultiResUNet U-Net variants 2D
Deng Y, 2024 [51] 1953/0/216b Sagittal Sagittal T2 U-Net and 

BiSeNet 
complementary 
network

U-Net variants 2D

He S, 2024 [54] 795/0/99b Sagittal Mid-sagittal and 
para-sagittal

T2 DLS-Net U-Net variants 2D

Zhu Z, 2024 [66] 40/0/10ac Coronal, 
sagittal, and 
axial

3D SPACE T2 3D U-Net U-Net variants 3D

a Grouped by number of patients, b Grouped by number of slices, c 5-fold cross validation

Table 2  (continued) 
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to address this topic. However, due to inconsistencies in 
reporting metrics and algorithm frameworks among the 
included studies, the interpretation of the results should 
be approached with caution.

In this systematic review and meta-analysis, the 
reported DSC for IVD segmentation ranged from 0.810 
to 0.982. The studies exhibited no significant heterogene-
ity. This may be because the structural contours of IVDs 
in lumbar MR images are usually clear, making automatic 
IVD segmentation easier and more stable than structures 
that are harder to distinguish, such as tumors [67]. The 
included studies were divided into different subgroups 
based on various criteria, but no significant statistical 

differences were found between any of the subgroups. 
We think that most studies used high-quality lumbar 
MRI datasets and followed similar research designs and 
processes. Additionally, all studies were based on lim-
ited datasets, and the algorithm design is the main fac-
tor affecting IVD segmentation performance. Although 
the applied algorithms can be broadly classified, almost 
no two studies used identical algorithm frameworks. 
For instance, the U-Net network, widely used for medi-
cal image segmentation due to its symmetric encoder-
decoder structure, captures both global context and local 
details [68]. With technological advancements, there are 
now several common variants like U-Net + + and V-Net. 

Fig. 3  Forest plot of deep learning algorithms’ Intersection over Union score

 

Fig. 2  Forest plot of deep learning algorithms’ dice similarity coefficient
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Researchers can optimize the performance of specific 
algorithms by adjusting the number of convolutional lay-
ers, replacing convolution kernels and pooling layers, and 
introducing other structures. It may be difficult to quan-
tify the specific impact of these strategies on segmenta-
tion performance.

Based on the above discussion, it is worth noting the 
improvement strategies proposed by studies to achieve a 
precise and practical algorithm model for IVD segmen-
tation. Researchers have made several representative 
improvements in various aspects:

(1) To mitigate poor training quality or overfitting 
caused by limited datasets, in addition to common strat-
egies such as cross-validation, Pang [15] proposed a 
method called adaptive local shape-constrained mani-
fold regularization, this method forces the output of the 
cascade amplifier regression network to lie on the target 
output manifold using local linear representation, which 
reduces the overfitting of the model. Das [28] and Li [22] 
conducted IVD segmentation using the MACCAI Chal-
lenge datasets, which contained multimodal MR images 
of a few patients. They used region-to-image matching 
and dropout strategies to improve feature learning and 
generalization, maximizing the utilization of multiple 
MRI sequences. Another solution is to make the data 
more useful. Gaonkar [30] designed the Eigenrank by 
Committee (EBC) algorithm. EBC can choose images 
that are harder to classify for training, which improves 
the effectiveness of manual annotation and gives bet-
ter results compared to randomly partitioned training 
sets. Although data augmentation is a common strat-
egy to increase the sample size. Some scholars believe 
that methods such as rotation and contrast adjustment 
may change key information in the MRI and therefore 
may not be suitable for such rigorous medical images 

[5]. In the subgroup analysis of this study, data enhance-
ment showed no significant effect on segmentation 
performance.

(2) To improve the performance and usability of algo-
rithms, a common strategy is to use multi-scale feature 
fusion [32, 33, 43, 49, 50, 62]. By utilizing multi-branch 
structures, such as BiSeNet and PSPNet, it combines 
high-resolution details from low-level features and 
semantic information from high-level features. This 
approach fully leverages the small inter-class differences 
and large intra-class variations in spinal anatomy fea-
tures, enhancing detection capability. Multi-scale feature 
fusion also helps the model understand the broader ana-
tomical context and relationships within the spinal struc-
ture, which allows it to segment various spinal structures 
at the same time [50]. Another popular approach is semi-
supervised learning (SSL), which combines labeled data 
with weakly labeled or unlabeled data. Common meth-
ods include self-training, pseudo-labeling, and generative 
models. SSL has many advantages, such as increasing the 
amount of data, reducing the workload of expert labeling, 
enhancing the model’s generalization ability, and allow-
ing AI systems to identify imaging features that may be 
undetectable by human doctors [29, 64]. Other strategies 
include the level set approach [34] and residual refine-
ment attention [33] (for tracking and refining image 
boundaries), mixed loss functions [63] (to enhance model 
robustness), and ensemble learning [43] (to combine out-
puts from multiple models), etc. Additionally, He [38, 41, 
53, 56, 58, 59], Wang [38], and Liu [57] proposed reduc-
ing convolutional parameters and calculation complex-
ity. These approaches minimize the algorithm’s size and 
memory usage while maintaining segmentation perfor-
mance, which is crucial for applying and deploying such 
algorithms in further clinical practice.

Table 3  Results of subgroup analyses
Group by Subgroup Number of studies DSC (95% CI) I2 (%) p
Network dimensionality 2D 7 0.891 (0.875–0.901) 73.174 0.098

3D 8 0.909 (0.894–0.923) 0
Type of algorithm U-Net variants 9 0.897 (0.879–0.914) 46.056 0.439

CNN variants 4 0.908 (0.881–0.934) 0
Deeplab variants 1 0.930 (0.878–0.982) 0
GAN variants 1 0.874 (0.823–0.925) 0

Publication year Before 2022 7 0.908 (0.891–0.925) 65.760 0.230
After 2022 8 0.894 (0.879–0.910) 0

Number of patients < 100 7 0.897 (0.875–0.918) 31.430 0.688
≥ 100 8 0.903 (0.883–0.923) 0

Scanning direction Sagittal 12 0.896 (0.881–0.912) 25.037 0.294
Axial 3 0.915 (0.884–0.947) 0

Data augmentation Yes 7 0.905 (0.886–0.925) 0 0.465
No 8 0.895 (0.877–0.914) 44.260

Cross validation Yes 6 0.901 (0.880–0.922) 0 0.913
No 9 0.900 (0.882–0.917) 48.859
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(3) Several studies have further explored the use of 
IVD segmentation. The segmented IVDs can be used to 
diagnose degenerative diseases such as IVD herniation 
[26, 44]. Recent advancements include the application of 
meta-interpretive learning, dimensionality reduction and 
integration of MR images, and multi-input, multi-class 
algorithms, aiming for more precise diagnosis and report 
generation [37, 41, 46]. To improve the appearance of 
segmentation, Hou [60] introduced Gaussian divergence 
loss and contour loss to address issues such as irregular 
edges and isolated segments. Meanwhile, He [58] devel-
oped a filling algorithm for sparse segmented images, 
which leverages contextual information from adjacent 
slices to generate interpolated slices and smooth the 3D 
reconstructed image. 3D reconstruction of the IVD and 
surrounding structures has been explored for clinical 
applications, particularly for morphological evaluation 
and surgical planning of the lumbar spine [24, 25, 65]. 
However, these applications still rely on manual planning 
by physicians, and there is a lack of systematic automated 
surgical planning algorithms.

Through our review of the studies in this field, we have 
identified areas that require improvement to drive tech-
nological advancements. First, the training data rather 
than the algorithm framework is the essence of deter-
mining algorithm performance. However, due to gaps in 
specialized knowledge and the confidentiality require-
ment of medical data, we have not yet encountered 
research that can truly be considered “big data”. Such 
research should encompass diverse ages, races, and other 
variables to minimize bias and include a broader range 
of pathologies, such as internal fixation, infections, and 
deformities, to ensure applicability. Second, most related 
studies are conducted by engineers rather than clinicians, 
resulting in a primary focus on algorithm design. Many 
studies lack detailed reports on patient inclusion and 
ground truth establishment, which may limit the mod-
els’ applicability. Therefore, closer collaboration between 
engineers and clinicians is essential for further research. 
Third, although no significant differences were observed 
in the subgroup analysis, we still recommend that future 
studies employ more 3D MRI data, as it provides richer 
detail and aids subsequent applications. A considerable 
number of studies train segmentation on specific slices, 
such as midsagittal slices, which, while providing critical 
information, are not sufficiently suitable for direct clini-
cal application. Finally, as many scholars have recently 
highlighted, the practical issues of software implementa-
tion of models, ethical approval, and cost-effectiveness 
must be addressed in future research [7, 10]. Despite 
these challenges, current advancements demonstrate a 
promising outlook for the application of DL technology. 
Therefore, continuing to explore ways for DL technology 

to provide tangible benefits to clinicians and patients 
remains worthwhile.

Additionally, this systematic review and meta-analysis 
have some limitations. First, there are certain discrep-
ancies in the reporting metrics of the reviewed studies, 
and many do not provide complete data on segmenta-
tion performance, such as standard deviations or confi-
dence intervals, resulting in a limited number of studies 
that can be included in quantitative summaries. Second, 
image segmentation requires less complete patient base-
line data compared to diagnostic and prognostic studies, 
however, the heterogeneity of datasets may still limit the 
significance of this study’s results. Third, there is cur-
rently very limited peer review and external validation of 
the models.

Conclusion
In conclusion, the DL algorithm enables automatic seg-
mentation of IVDs in MRI imaging with relatively sat-
isfactory performance. This technology has potential 
applications in diagnosis, measurement and evaluation, 
and surgical planning. However, the current results 
should be interpreted with caution due to limitations, 
such as small sample sizes, differences in reporting met-
rics, and lack of external validation of the algorithms.

In future studies, it is recommended to use larger and 
more diverse datasets for training, and to promote exter-
nal validation and applied research of the algorithms. Cli-
nicians and DL experts can work together to guide this 
technology and bring tangible benefits to patients and 
clinical practice.
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