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Background
Polydactyly is a common congenital limb anomaly, 
occurring in approximately 2.14 per 1000 live births in 
China [1]. Polydactyly includes syndromic polydactyly 
and isolated polydactyly (IPD). IPD is further classi-
fied into three categories: preaxial polydactyly, which 
involves a non-functional duplicated thumb on the hand 
or foot; postaxial polydactyly, featuring a fully or partially 
duplicated digit on the ulnar side of the hand or foot; 
and central polydactyly, a less common type involving 
anomalies of the index, middle, or ring fingers [2]. Sur-
gical interventions, such as removal of supernumerary 
digits and redundant skeletal structures, are the primary 
treatments to maintain joint stability and soft tissue bal-
ance [3]. Various genes have been identified as con-
tributing to IPD, including the GLI family zinc finger 3 
(GLI3, OMIM 165,240), zinc finger protein 141 (ZNF141, 
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Abstract
Background Polydactyly is a prevalent congenital anomaly with an incidence of 2.14 per 1000 live births in China. 
GLI family zinc finger 3 (GLI3) is a classical causative gene of polydactyly, and serves as a pivotal transcription factor in 
the hedgehog signaling pathway, regulating the development of the anterior-posterior axis in limbs.

Methods Three pedigrees of polydactyly patients were enrolled from Hunan Province, China. Pathogenic variants 
were identified by whole-exome sequencing (WES) and Sanger sequencing.

Results Three variants in GLI3 were identified in three unrelated families, including a novel deletion variant (c.1372del, 
p.Thr458GlnfsTer44), a novel insertion-deletion (indel) variant (c.1967_1968delinsAA, p.Ser656Ter), and a nonsense 
variant (c.2374 C > T, p.Arg792Ter). These variants were present exclusively in patients but not in healthy individuals.

Conclusions We identified three pathogenic GLI3 variants in polydactyly patients, broadening the genetic spectrum 
of GLI3 and contributing significantly to genetic counseling and diagnosis for polydactyly.
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OMIM 194,648), IQ domain-containing protein E (IQCE, 
OMIM 617,631), GLI family zinc finger 1 (GLI1, OMIM 
165,220), Family with sequence similarity 92, member A 
(FAM92A, OMIM 617,273), KIAA0825 (OMIM 617,266), 
Dachshund family transcription factor 1 (DACH1, OMIM 
603,803), Mirror-image polydactyly 1 (MIPOL1, OMIM 
606,850), and Paired-like homeodomain 1 (PITX1, 
OMIM 602,149) [4–12]. Notably, GLI1 and GLI3 are cru-
cial for limb development, with GLI3 being a classical 
gene implicated in polydactyly [13].

The GLI3 gene, located on chromosome 7p14.1, 
encodes an 1580-amino acid protein that exists in two 
isoforms: the full-length activator (GLI3-A) and the trun-
cated repressor (GLI3-R) [14]. The GLI3 protein plays a 
pivotal role in limb development by acting as a nuclear 
transducer and negative regulator of Soni Hedgehog 
(SHH) signaling, which establishes the zone of polar-
izing activity essential for the formation of the anterior-
posterior limb axis [15, 16]. Loss-of-function variants 
in GLI3 can lead to various limb development disor-
ders, including Greig cephalopolysyndactyly syndrome 
(GCPS; OMIM 175,700), preaxial polydactyly type A/B 
(PAPA/PAPB; OMIM 174,200), Pallister Hall syndrome 
(PHS; OMIM 146,510), postaxial polydactyly type A1 
and B (OMIM 174,200) and preaxial polydactyly type III 
(OMIM 174,700) [17–20].

In this study, we recruited several families with poly-
dactyly and identified three GLI3 variants, includ-
ing a novel deletion variant (NM_000168.6: c.1372del, 
p.Thr458GlnfsTer44), a novel insertion-deletion 
(indel) variant (NM_000168.6: c.1967_1968delinsAA, 
p.Ser656Ter), and a previously reported nonsense vari-
ant (NM_000168.6: c.2374  C > T, p.Arg792Ter). These 
findings broaden the genetic spectrum associated with 
GLI3 and enhance genetic counseling and diagnosis of 
polydactyly.

Methods
Ethical compliance
This study was approved (2,023,030,444) by the Ethics 
Committee of Xiangya Hospital, Central South Univer-
sity, Changsha, China. We performed this study in accor-
dance with the principles outlined in the Declaration of 
Helsinki. The patients/participants or their guardians 
provided written informed consent to participate in the 
study.

Participants/patients
Three families (Family I-III) were investigated in this 
study. Peripheral blood samples were collected from 
probands and their family members. Clinical data were 
recorded carefully.

Whole-exome sequencing
Genomic DNA was extracted using a DNeasy Blood and 
Tissue Kit (Qiagen, Valencia, CA, USA). Exome capture 
and whole-exome sequencing (WES) were conducted at 
Berry Genomics (Beijing, China). 1  µg DNA was cap-
tured using the SureSelect Human All Exon Kit V6 (Agi-
lent Technologies, Inc., CA, USA) and sequenced using 
the Illumina HiSeq4000 platform (Illumina Inc., CA, 
USA). Briefly, the genomic DNA was randomly extracted 
using a Covaris S220 sonicator (Covaris, Inc., MA, USA). 
The fragmented DNA underwent three enzymatic steps: 
end repair, a-tailing, and adapter ligation. The adapter-
ligated DNA fragments were amplified using Herculase II 
Fusion DNA Polymerase (Agilent). Finally, the exosomes 
in the pre-capture libraries were captured using the Sure-
Select capture library kit (Agilent). After DNA quality 
assessment, the captured DNA library was subjected to 
WES on the Illumina HiSeq4000 platform. Downstream 
processing was carried out using the Genome Analysis 
Toolkit (GATK), Varscan2, and Picard, and variant calls 
were made with the GATK Haplotype Caller 12. Vari-
ant annotation was performed according to Ensemble 
release 82, and filtering was conducted using ANNOVAR 
Documentation.

The filtering strategies conformed to those used in 
our previous study [21]. Variants with an alternative 
allele frequency > 0.001 in the 1000G database (http://
www.1000genomes.org/) and the GnomAD database 
(https://gnomad.broadinstitute.org/) were used for fur-
ther analysis. These filtered variants were predicted 
their pathogenicity using MutationTaster (http://www.
mutationtaster.org/), Polyphen-2 (http://genetics.bwh.
harvard.edu/pph2/), SIFT (http://provean.jcvi.org/index.
php), and CADD (https://cadd.gs.washington.edu/snv) 
[22]. Bone development related genes were used to filter 
candidate variants [23].

Co-segregation analysis
Co-segregation analysis was performed on each fam-
ily member using Sanger sequencing. The primer pairs 
(GLI3-1-F: 5’- C C T C C T G T T G T G T C T G A T T C T T-3’; 
GLI3-1-R: 5’- G G T T C C T G A A T A C C A T C C A C T T-3’; 
GLI3-2-F: 5’- G A G G C T C A T G T C A C C A A G A A-3’; 
GLI3-2-R: 5’- C T G T G A A G T C A G A A G G A G A G T G-3’; 
GLI3-3-F: 5’- C C A A A T G G A T G G A G C A C G T A-3’; GLI3-
3-R: 5’- C G G A T G G T T A C A G C G T C A T T-3’) used for 
PCR amplification were designed using Primer 5. The 
sequences of the PCR products were determined using 
an ABI 3100 Genetic Analyzer (ABI, Foster City, CA, 
USA) [22].

http://www.1000genomes.org/
http://www.1000genomes.org/
https://gnomad.broadinstitute.org/
http://www.mutationtaster.org/
http://www.mutationtaster.org/
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://provean.jcvi.org/index.php
http://provean.jcvi.org/index.php
https://cadd.gs.washington.edu/snv
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Results
Clinical description
We conducted an investigation into three Chinese 
families (Family I-III) from Hunan Province of China 
(Table  1). Family I consists of six immediate members, 
four of whom have exhibited features of polydactyly or 
syndactyly (Fig.  1A). Radiography showed that the pro-
band presented syndactyly of the fourth and fifth fingers 
on the right hand and polydactyly of thumbs on each foot 
(Fig. 1B). Additionally, his sister was affected by syndac-
tyly on all limbs, and his mother had surgically corrected 
dysmorphic toes. The family reported a history of poly-
dactyly in the deceased grandfather’s toes.

Proband II from Family II was born with polydactyly 
affecting both hands and feet, with no similar conditions 
reported in the family’s history (Fig. 1C and D). Surgical 
removal of the extra fingers was performed at a different 
hospital when the patient was one year old, and subse-
quent toe resection occurred at our hospital, resulting in 
successful recover (Fig. 1E).

Proband III from Family III displayed heptadactyly 
on both feet, polydactyly on the first and fifth toes, and 
syndactyly between the first and second toes, with no 
reported familial history of these anomalies (Fig. 1F and 
G). The extra toes were surgically removed (Fig.  1H). 
Considering the clinical manifestations in Family I and 

Table 1 Clinical details of patients in this study
Family I Family II Family II
Proband I Mother Grandfather Sister Proband II Proband III

Upper limb Polydactyly - - - - Bil -
Syndactyly Bil (4-5) - - Bil - -

Lower limb Polydactyly Bil (1) Bil Bil - Bil Bil (1,5)
Syndactyly - - - Bil - Bil (1-2)

Bil, bilateral; 1, thumb or toe; 2/4/5, the second/fourth/fifth finger

Fig. 1 Clinic description of the probands with polydactyly related to GLI3. (A) Pedigree of Family I. (B) Clinical features of proband I. (C) Pedigree of Family 
II. (D) Clinical features of proband II before surgery. (E) Clinical features of proband II after surgery. (F) Pedigree of Family III. (G) Clinical features of proband 
III before surgery. (H) Clinical features of proband III after surgery. Squares = men; circles = women; black symbols = individuals with variants; Slashes = in-
dividuals who die; arrows = the probands
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III, we made primary diagnosis of mild GCPS, whereas 
the proband from Family II appeared to have IPD [13].

Genetic analysis
Using WES and Sanger sequencing, we identified three 
GLI3 variants in the probands from three families, 
including two novel variants (NM_000168.6: c.1372del, 
p.Thr458GlnfsTer44 and c.1967_1968delinsAA, 
p.Ser656Ter) and one known variant (NM_000168.6: 
c.2374 C > T, p.Arg792Ter). According to the standards of 
the American College of Medical Genetics and Genom-
ics (ACMG) standards, these variants were designated as 
“pathogenic” (Table 2).

In Family I, WES produced 9.7 Gb of data, achieving 
98.1% coverage of the target region and over 10× coverage 
for 99.0% of the targets. After excluding common vari-
ants in the 1000G and GnomAD databases, and retaining 
variants predicted to be disease-causing using Muta-
tionTaster, Polyphen-2, SIFT and CADD, which were 
also positioned in genes associated with bone develop-
ment, one GLI3 variant (c.1372del, p.Thr458GlnfsTer44) 
was identified. Sanger sequencing further confirmed 
the heterozygous frameshift variant in GLI3 in Proband 
I (Fig.  2A). Adherence to ACMG guidelines, this vari-
ant was deemed “pathogenic”: it was a frameshift vari-
ant often leading to loss of function (PVS1), was absent 
in control cohorts from the 1000G and GnomAD data-
bases (PM2) and co-segregated with the polydactyly phe-
notype in Family I (PP1). It was also predicted to have a 
deleterious effect on the gene product as determined by 
tools such as MutationTaster (PP3). Additionally, align-
ments of GLI3 amino acid sequences across various 
species showed high conservation in this region (p.458–
466) (Fig.  2B), demonstrating the critical nature of this 
sequence.

In Family II, we identified the heterozygous nonsense 
variant (c.1967_1968delinsAA, p.Ser656Ter) in Proband 

II (Fig. 2C). According to the ACMG guidelines, this vari-
ant was classified as a nonsense variant (PVS1). It has not 
been observed in healthy population databases (PM2), 
and bioinformatic tools predict its deleterious effects 
(PP3). Consequently, it was designated as “pathogenic”.

In Family III, a heterozygous variant (c.2374  C > T, 
p.Arg792Ter) was identified, which was a known trun-
cation variant (Fig.  2D) [24]. Similarly, according to the 
ACMG guidelines (PVS1, PM2, PP3), this variant was 
considered “pathogenic”.

Discussion
GLI3 is a pivotal transcription factor in the SHH 
signaling pathway, comprising multiple domains: 
a repressor domain (RD), a suppressor of fusion 
(SUFU) site, a zinc finger domain (ZFN), a cleav-
age site (CS), a CREB-binding protein (CBP) domain, 
and two transactivation domains (TAD1 and TAD2). 
The ZFN domain facilitates GLI3’s DNA binding, 
enabling transcriptional suppression or activation 
of SHH target genes. Additionally, the CS domain 
allows GLI3 to be cleaved from GLI3-A to GLI3-R by 
the proteasome [25–28]. In this study, we identified 
three GLI3 variants (c.1372del, p.Thr458GlnfsTer44, 
c.1967_1968delinsAA, p.Ser656Ter, and c.2374  C > T, 
p.Arg792Ter) in polydactyl y patients. The variant 
p.Thr458GlnfsTer44, located in the ZFN domain, 
disrupts transcriptional functions, while variants 
p.Ser656Ter and p.Arg792Ter, positioned in or adjoin-
ing the CS, directly influence the GLI3-A to GLI3-R 
conversion (Fig. 2E).

It has been suggested that the location of GLI3 vari-
ants significantly impacts the manifestation of digital 
anomalies due to the dual role of GLI3 as an activa-
tor or repressor in the SHH pathway [29]. In mouse 
model, GLI3 haploinsufficiency, often resulting from 
loss-of-function variants upstream of or within the 

Table 2 Information and pathogenicity classification of GLI3 variants in this study
Patient Gene Variant Pathogenicity 

prediction
GnomAD 1000G OMIM clinical 

phenotype
American Col-
lege of Medi-
cal Genetics 
classification

Proband I GLI3 NM_000168.6: c.1372del, 
p.Thr458GlnfsTer44

MutationTaster: D
Polyphen-2:-
SIFT: -
CADD: -

- - AD; Polydactyly, 
postaxial, types A1 
and B; Polydactyly, 
preaxial, type IV

Pathogenic 
(PVS1, PM2, 
PP1, PP3)

Proband II GLI3 NM_000168.6: 
c.1967_1968delinsAA, 
p.Ser656Ter

MutationTaster: D
Polyphen-2: -
SIFT: -
CADD: -

- - Pathogenic 
(PVS1, PM2, 
PP3)

Proband III GLI3 NM_000168.6: 
c.2374 C > T, p.Arg792Ter

MutationTaster: D
Polyphen-2:-
SIFT: -
CADD: 37

- - Pathogenic 
(PVS1, PM2, 
PP3)

D, disease causing; AD, autosomal recessive
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ZFN domain, has been linked to the pathogenesis 
of GCPS, characterized by cranial enlargement and 
a wide interorbital distance [30]. In this study, the 
frameshift variant p.Thr458GlnfsTer44 in Family I 
introduces a premature stop codon, leading to a GLI3 
protein lacking the essential ZFN domain for DNA 
binding, which may contribute to GCPS, corroborat-
ing earlier research findings. The CS domain is critical 
in regulating the ratio of GLI3-A/GLI3-R, thus, vari-
ants in the CS region can result in an excess of GLI3-R 
in limb buds and the neural tube, which predominantly 
drives the pathogenesis of PHS. PHS is associated with 
diverse anomalies including hypothalamic hamartoma, 
cleft larynx, imperforate anus, and pulmonary lobation 
anomalies [31]. This study also identified two trunca-
tion variants (p.Ser656Ter and p.Arg792Ter) within 
the CS domain, which may result in premature termi-
nation of GLI3, loss of GLI3-A function, and exces-
sive production of GLI3-R (Fig.  2E). Notably, while 
the patient in Family II was diagnosed with IPD, and 
the patient in Family III with mild GCPS, neither pre-
sented craniofacial anomalies. Research by Sczakiel 
et al. indicated that GLI3 variants linked to IPD can 
also occur in the ZFN and CS domains, challenging 
previous beliefs that such variants are confined to the 
C-terminal TAD domain, aligning whit our findings in 
Family II [32].

A previous study proposed that GLI3 expression 
could demarcate between posterior and anterior hand 
anomalies. Specifically, GLI3 haploinsufficiency has 
been linked to the etiology of preaxial polydactyly, 
whereas postaxial polydactyly arises from abnormal 
truncations in the TAD [33]. In this study, Proband I, 
exhibited preaxial polydactyly traits, carried a truncat-
ing variant upstream of the ZFN in GLI3, likely lead-
ing to GLI3 haploinsufficiency. Conversely, Proband II, 
who displayed postaxial polydactyly, harbored a trun-
cating variant in the CS domain of GLI3, potentially 
resulting in TAD functional deficiency. These obser-
vations align with findings from Bass et al. However, 
despite the variant in Proband III being associated 
with a TAD deficiency, the phenotype included both 
preaxial and postaxial polydactyly, highlighting gaps 
in current understanding of the relationship between 
GLI3 variant locations and clinical manifestations. 
Future research is warranted to elucidate this associa-
tion more comprehensively.

To investigate the genotype-phenotype correlation 
further, we analyzed 246 cases of polydactyly linked 
to GLI3 variants (Fig. 3A). A predilection for variants 
in the C-terminal region of GLI3 was noted. Statisti-
cal analyses confirmed that the majority of polydactyly 
cases resulted from by loss-of-function GLI3 variants 
(Fig.  3B), with 144 cases (approximately 59%) associ-
ated with GCPS (Fig.  3C), corroborating previous 

Fig. 2 Genetic description of the probands with polydactyly related to GLI3. (A, C, D) Sanger sequencing results of the GLI3 variant among the probands. 
(B) Alignment analysis of the region (p.458–466) in the GLI3 amino acid sequence showed that the region was highly conserved. (E) Localization of the 
variant in GLI3. Red region = frameshift variant; RD = repressor domain; SUFU = SUFU site; ZFN = zinc finger domain; CS = cleavage site, TAD = transactiva-
tion domain
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studies [13]. In this study, both Family I and III demon-
strated features of GCPS. Furthermore, prior research 
estimated the incidence of IPD at 1.01 per 1000 live 
births [34], and our analysis revealed that a only 13% of 
IPD cases involved truncating GLI3 variants (Fig. 3D). 
In this study, all patients exhibited GLI3 truncations, 
yet the patients in Family II was diagnosed with IPD, 
whereas patients in Family I and III showed milder 
forms of GCPS, primarily affecting hands or feet. 
These findings suggest a tendency for milder pheno-
typic manifestations among GLI3 truncation carriers 
in Hunan Province. Remarkably, a further statistical 
assessment of all IPD patients confirmed that loss-of-
function GLI3 variants are also a predominant patho-
genic factor (Fig. 3E).

In this study, surgical procedures were performed on 
patients affected by polydactyly to remove the super-
numerary fingers. This process may result in dam-
age to the muscles and bones in the affected areas, 
impacting the patients’ daily lives during the recovery 
period. Recent studies have identified multiple genes 

associated with susceptibility to skeletal muscle injury 
and repair capacity [35–40], and significant differences 
in single nucleotide polymorphisms (SNPs) of these 
genes have been observed among populations with dif-
ferent levels of physical activity [41, 42]. These findings 
suggest that analyzing specific SNPs of susceptibility 
genes in patients could be beneficial in predicting their 
postoperative recovery capacity. For patients with high 
muscle susceptibility and low repair capacity, it may be 
advisable to consider therapeutic measures that pro-
mote muscle repair during surgery. For example, based 
on the ability of mesenchymal stem cells (MSCs) to 
differentiate into various mesenchymal tissues, apply-
ing MSCs to the injury site may significantly improve 
the biomechanical properties, structure, and function 
of the muscle postoperatively [43].

Conclusions
In conclusion, we identified a novel frameshift variant 
(c.1372del, p.Thr458GlnfsTer44), a novel indel variant 
(c.1967_1968delinsAA, p.Ser656Ter) and a previously 

Fig. 3 Analysis of polydactyly related to GLI3 reported in other studies. (A) Variants of the GLI3 protein have been reported. (B) Types of GLI3 variants 
involved in polydactyly. (C) Polydactyly types caused by GLI3 variants. (D) Polydactyly types caused by GLI3 truncation variants. (E) Types of GLI3 variants 
involved in isolated polydactyly. RD = repressor domain; SUFU = SUFU site; ZFN = zinc finger domain; CS = cleavage site; CBD = CREB-binding protein (CBP) 
domain; TAD = transactivation domain; TA1 = transactivation domain 1; TA2 = transactivation domain 2
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reported nonsense variant (c.2374 C > T, p.Arg792Ter) 
associated with polydactyly. This study not only elu-
cidates potential mechanisms underlying GLI3-medi-
ated polydactyly syndromes and broadens the variant 
spectrum of the GLI3 gene, but also explores the cor-
relation between genotype and phenotype.
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