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Abstract
Background The patellar height index is important; however, the measurement procedures are time-consuming 
and prone to significant variability among and within observers. We developed a deep learning-based automatic 
measurement system for the patellar height and evaluated its performance and generalization ability to accurately 
measure the patellar height index.

Methods We developed a dataset containing 3,923 lateral knee X-ray images. Notably, all X-ray images were from 
three tertiary level A hospitals, and 2,341 cases were included in the analysis after screening. By manually labeling key 
points, the model was trained using the residual network (ResNet) and high-resolution network (HRNet) for human 
pose estimation architectures to measure the patellar height index. Various data enhancement techniques were 
used to enhance the robustness of the model. The root mean square error (RMSE), object keypoint similarity (OKS), 
and percentage of correct keypoint (PCK) metrics were used to evaluate the training results. In addition, we used the 
intraclass correlation coefficient (ICC) to assess the consistency between manual and automatic measurements.

Results The HRNet model performed excellently in keypoint detection tasks by comparing different deep learning 
models. Furthermore, the pose_hrnet_w48 model was particularly outstanding in the RMSE, OKS, and PCK metrics, 
and the Insall–Salvati index (ISI) automatically calculated by this model was also highly consistent with the manual 
measurements (intraclass correlation coefficient [ICC], 0.809–0.885). This evidence demonstrates the accuracy and 
generalizability of this deep learning system in practical applications.

Conclusion We successfully developed a deep learning-based automatic measurement system for the patellar 
height. The system demonstrated accuracy comparable to that of experienced radiologists and a strong 
generalizability across different datasets. It provides an essential tool for assessing and treating knee diseases early 
and monitoring and rehabilitation after knee surgery. Due to the potential bias in the selection of datasets in this 
study, different datasets should be examined in the future to optimize the model so that it can be reliably applied in 
clinical practice.
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Background
The patellar height is important in the anatomy and bio-
mechanics of the patellofemoral joint. Recently, several 
studies have shown that an abnormal patellar height is 
associated with various knee diseases. These diseases 
include patellar dislocation [1, 2], patellar instability [3], 
Osgood–Schlatter disease [4, 5], anterior knee pain [6], 
chondromalacia patella [7], and anterior cruciate liga-
ment (ACL) injuries [8, 9]. Moreover, abnormalities in 
the patellar height are closely linked to complications 
and poor recovery after total knee arthroplasty (TKA) 
[10–12], tibial osteotomy [13], and ACL reconstruction 
[14]. Therefore, early assessment and treatment of abnor-
mal patellar height are vital to effectively control symp-
toms, prevent and alleviate related diseases, and improve 
patients’ quality of life.

The patellar height is typically measured directly or 
indirectly using radiological or magnetic resonance 
imaging (MRI) methods [15]. However, these standard 
procedures are lengthy, time-consuming, repetitive, 
and require additional computational support. They are 
prone to significant variability among and within observ-
ers, which may affect the accuracy of the measurements 
[16, 17].

Recently, deep-learning algorithms have been increas-
ingly applied across various aspects of the medical field, 
particularly in orthopedics. Kim et al. [18] automated the 
detection and segmentation of lumbar vertebrae from 
radiographs to assess compressive fractures. Similarly, 
Krogue et al. [19] implemented the automatic identifica-
tion and classification of hip fractures. Regarding surgi-
cal planning, Qu et al. [20] utilized MRI for the precise 
segmentation of pelvic bone tumors, aiding the develop-
ment of effective surgical plans for tumor excision and 
reconstruction. Von Schacky et al. [21] segmented and 
classified primary bone tumors, whereas Consalvo et al. 
[22] have detected and differentiated Ewing’s sarcoma 
and acute osteomyelitis. Leung et al. [23] have predicted 
the risks of TKA in patients with osteoarthritis for risk 
assessment. Ye et al. [24] developed a deep learning-
based automatic measurement algorithm using a con-
volutional neural network (CNN) with VGG16 as the 
encoder. Kwolek et al. [25] employed the YOLO neural 
network and U-Net for detecting and segmenting the 
patellofemoral joint, enabling automatic measurements 
of the Caton-Deschamps index (CDI) and Blackburne-
Peel index.

Deep-learning algorithms are particularly effective 
at navigating the complex anatomical structures and 

variations between normal and pathological states in 
humans. They excel at identifying and learning intri-
cate patterns from extensive datasets, which is cru-
cial for accurately measuring patellar height in various 
radiographic images [26]. Furthermore, the automation 
capabilities of deep learning significantly streamline the 
measurement process, reducing both the variability and 
the time required for manual assessments [27].

Therefore, our objective was to develop a novel deep 
learning-based algorithm to automatically measure patel-
lar height, to enable high-precision and rapid analysis of 
medical images.

Methods
Study aim, design, and setting
This multicenter retrospective study aimed to develop a 
deep learning-based algorithm to automatically measure 
patellar height parameters in lateral knee radiographs 
and evaluate its performance and generalization ability. 
We utilized a dataset containing X-ray images from three 
tertiary level A hospitals.

Datasets
The images used in this study’s dataset were obtained 
from three tertiary A-grade comprehensive hospitals: 
The Second Affiliated Hospital of Xi’an Jiaotong Univer-
sity, Xi’an Honghui Hospital, and The Second Affiliated 
Hospital of Shanxi Medical University. This retrospective 
study was approved by the ethics committees of the three 
hospitals. The ethics committees waived the requirement 
for informed consent due to the study’s retrospective 
nature. We continuously collected imaging and clinical 
data between April 2022 and December 2023 through 
the imaging and hospital information system. Patients 
aged ≥ 20 years (with mature bones) undergoing a lateral 
knee radiograph were eligible for inclusion. The exclu-
sion criteria were as follows: (1) knee osteoarthritis (Kell-
gren–Lawrence grade > 2); (2) poor quality radiographs 
with insufficient rotation (the distance between the edge 
of the femoral condyles ˃5 mm) or knee flexion ˂30°; (3) 
overlapping knees; and (4) unclear superior or inferior 
poles of the patellar or patellar ligament endpoints. The 
osteoarthritis criteria were used to include radiographs 
with clear patellar height markers. We retrospectively 
analyzed 3,923 knee joints, of which 2,341 met the inclu-
sion criteria. A random selection of 90% of the cases from 
The Second Affiliated Hospital of Xi’an Jiaotong Univer-
sity (2,017 X-ray images) was used for training, and 10% 
(224 X-ray images) were used as the internal test set. For 

Trial registration The study was registered at the Medical Research Registration and Filing Information System 
(medicalresearch.org.cn) MR-61-23-013065. Date of registration: May 04, 2023 (retrospectively registered).
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external validation, we further evaluated datasets from 
the Xi’an Honghui Hospital (60 X-ray images as external 
test set 1) and The Second Affiliated Hospital of Shanxi 
Medical University (40 X-ray images as external test set 
2).

The dataset required labeling before training the neu-
ral network. The LabelMe software was used to manually 
annotate the keypoints in the lateral knee radiographs, 
generating JSON format annotation files. Three key-
points were labeled from the 2,341 images. Images from 
each of the three hospitals were annotated by radiologists 
(R1, R2, and R3) with over 10 years of experience from 
their respective institutions. Figures 1, 2 and 3 illustrate 
the data collection process, keypoint annotation demon-
stration, and overall model architecture, respectively.

Dataset preparation
An experiment was conducted using the PyTorch 1.10 
framework in Python 3.8 (Python Software Foundation, 
Wilmington, DE, USA) and Cuda 11.3 (Nvidia Corp., 
Santa Clara, CA, USA) environments to demonstrate the 
performance and effectiveness of the constructed model. 
The experimental setup was based on the Ubuntu 18.04 
operating system (Canonical Ltd., London, England) with 
an Intel i7-10700  F processor (Intel, Santa Clara, CA, 
USA) and was equipped with an Nvidia GeForce RTX 
4070 GPU (Nvidia Corp.) and 32 GB RAM. We opti-
mized several parameters of our deep learning models to 
balance computational efficiency and training effective-
ness based on the capabilities of our NVIDIA GeForce 
RTX 4070 GPU, which has 12 GB of VRAM. We chose a 
batch size of 8 after extensive testing, which maximized 
VRAM usage and model training speed, particularly 
when using the computationally intensive pose_hrnet_
w48 model with an input size of 384 × 288. For consis-
tency, this batch size was applied across all models. The 
Adam optimizer was selected for its robust performance 
and rapid convergence. To manage computational load 
while preserving image quality, we experimented with 
input sizes of 256 × 192 and 384 × 288 pixels. Through 
preliminary testing, this approach not only reduced the 
volume of data processed by the model but also enhanced 
training and inference efficiency without significant 

Fig. 2 Keypoint marking and calculation method for the ISI 
of PH. Patella_1, upper pole of patella; patella_2, inferior pole 
of patella; tibia_1, insertion of the patellar ligament. The ISI 
is the ratio of A to B; A =

√
X1− X22 + Y1− Y22 , 

B =
√
X2− X32 + Y2− Y32  ISI, Insall–Salvati Index

 

Fig. 1 Data collection process
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feature loss. Therefore, we uniformly adjusted the image 
size to 256 × 192 or 384 × 288 pixels and employed data 
augmentation techniques such as random rotation, scal-
ing, and flipping to enhance the model’s robustness and 
generalization ability.

Model selection
The residual network for human pose estimation (Pose_
ResNet) is an advanced human pose estimation method 
that leverages the robustness of deep residual networks 
(ResNets) to effectively locate human body keypoints 
[28, 29]. The network initially extracts image features 
through convolutional layers, which can recognize com-
plex patterns in the images and provide the necessary 
visual information for detecting human-body keypoints. 
The output is a set of heat maps, each corresponding to a 
specific body keypoint, representing the probabilistic dis-
tribution of the keypoint’s possible locations within the 
image. During training, the loss function typically com-
pared the predicted heat maps with the true heat maps 
to optimize the network parameters. The final keypoint 
locations are determined through post-processing steps 
such as finding the local maxima in the heatmaps. This 
architecture was built on the fundamental principles 
of ResNet by integrating deep convolutional layers with 
residual connections. These connections mitigate the 
issue of vanishing gradients, thereby enabling the training 
of deeper networks to enhance feature extraction without 
losing crucial information during the process.

The High-Resolution Network for Human Pose Esti-
mation (Pose_HRNet) is an efficient network for human 
pose estimation designed to improve keypoint detec-
tion accuracy by maintaining high-resolution feature 
maps throughout the process [30–33]. Starting with a 

high-resolution subnetwork, it progressively adds high-
to-low-resolution subnetworks in more stages. Then, it 
connects multiresolution subnetworks in parallel to learn 
features on different scales. This multiscale approach 
enhances the robustness of the model to various chal-
lenges in pose estimation, such as occlusions and varying 
sizes. The global context and local detail information are 
effectively fused throughout the process by exchanging 
information across parallel multiresolution subnetworks. 
Finally, the keypoints are estimated on the network’s out-
put high-resolution feature maps. This approach ben-
efits from semantically richer and spatially precise result 
representations.

Performance and generalization of keypoint detection
We assessed the landmark detection performance of 
five models, pose_resnet_50, pose_resnet_101, pose_
resnet_152, pose_hrnet_w32, and pose_hrnet_w48, using 
root mean square error (RMSE), object keypoint similar-
ity (OKS), and percentage of correct keypoints (PCK). 
Furthermore, we compared the parameter counts and 
computational complexities of the models. Subsequently, 
an appropriate model was selected to evaluate the perfor-
mance of the external test dataset. This was performed 
to assess the accuracy of knee joint radiographs obtained 
from different devices across various algorithms.

  • RMSE measures the model accuracy using the square 
difference between the average predicted and actual 
values, indicating the error magnitude.

  • OKS evaluates keypoint detection accuracy by 
considering object scale and keypoint distance, 
offering a normalized accuracy measure that 
penalizes larger errors more.

Fig. 3 Overall model architecture diagram
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  • PCK calculates the share of keypoints accurately 
detected within a set distance from true positions, 
reflecting the model’s precision in keypoint 
localization.

Performance and generalization of insall–Salvati index (ISI) 
measurement
The analyses compared the average ISI test results across 
the three test sets. In addition, we calculated the intra-
class correlation coefficient (ICC) to evaluate the reli-
ability and consistency of the manual and automatic 
measurements. The ICC reflects abstract consistency, 
with values ≥ 0.75 considered sufficiently reliable [34]. 
This approach was used to assess the performance and 
generalizability of ISI measurements.

Statistical analysis
Statistical analyses were performed using PASW Statis-
tics v18 (IBM Corp., Armonk, NY, USA) and Microsoft 
Excel 2019 (Microsoft Corp., Redmond, WA, USA). We 
employed ANOVA to compare the mean ages of different 
groups to identify any statistically significant differences 
in age distributions. For categorical variables such as sex, 
side, osteoarthritis grade, and surgery status, chi-square 
tests were utilized to assess the homogeneity of these 
variables across the groups. All statistical tests were two-
tailed, and a p-value of less than 0.05 was considered to 
indicate statistical significance.

Results
General data distributions
In this study of 2,241 knee radiographs, the average ages 
of the patients forming the training, internal, first exter-
nal, and second external sets, were 50.10 ± 17.77 years 
(range, 20–87 years), 50.76 ± 16.96 years (range, 21–83 
years), 48.88 ± 15.01 years (range, 23–86 years), and 
47.43 ± 13.01 years (range, 20–81 years), respectively. 
Table 1 presents the overall patient characteristics.

Performance and generalization of keypoint detection
Quantitative analysis
Experiments were conducted on keypoint-detection 
tasks using different deep-learning models. We primarily 
compared five models: pose_resnet_50, pose_resnet_101, 
pose_resnet_152, pose_hrnet_w32, and pose_hrnet_w48. 
We examined the impact of the input sizes of 256 × 192 
and 384 × 288 pixels on model performance. In the com-
parative analysis, we focused on the number of model 
parameters (#Params), computational complexity 
(GFLOPs), and three performance metrics: RMSE, OKS, 
and PCK. The results are shown in Table 2; Figs. 4, 5 and 
6.

Model Parameters and Computational Complexity: The 
parameter counts for pose_resnet_50, pose_resnet_101, 
and pose_resnet_152 were 34.0 M, 53.0 M, and 68.6 M, 
respectively, with computational complexities of 8.9, 
12.4, and 15.7 GFLOPs, respectively. In contrast, pose_
hrnet_w32 and pose_hrnet_w48 had parameter counts 
of 28.5  M and 63.6  M, respectively, with computational 
complexities of 7.1 and 14.6 GFLOPs, respectively. A 
positive correlation was observed between the model 

Table 1 Patient characteristics
Training data set, n (%) Internal test set, n (%) External test set, n (%) P-value

External test set 1 External test set 2
No. of images 2017 224 60 40
Age* (years) 50.10 ± 17.77 50.76 ± 16.9 53.88 ± 15.01 49.43 ± 13.01 0.642
Sex 0.161

Male 904(45) 103(46) 25(42) 11(28)
Female 1113(55) 121(54) 35(58) 29(73)

Side 0.801
Left 1060(53) 123(55) 29(48) 22(55)
Right 957(47) 101(45) 31(52) 18(45)

Osteoarthritis 0.001
Grade 0 1410(70) 150(67) 40(67) 20(50)
Grade 1 365(18) 39(17) 15(25) 6(15)
Grade 2 242(12) 35(16) 5(8) 14(35)

Surgery 0.586
Preoperatively 1810(90) 196(88) 54(90) 34(85)
Postoperatively 207(10) 28(13) 6(10) 6(15)

* Data are presented as mean ± standard deviation

Statistical analysis indicated significant differences in the distribution of osteoarthritis severity across the datasets (p < 0.05)
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parameter count and computational complexity. The 
results of the performance analysis are as follows:

  • RMSE: The pose_hrnet_w48 model scored 10.60 
and the pose_hrnet_w32 score was 11.84. However, 
the pose_resnet series had higher RMSE values with 
pose_resnet_152 having the highest value of 29.06.

  • OKS: The pose_hrnet_w48 model scored the highest 
at 0.9592, while pose_hrnet_w32 scored 0.9505. 
In the pose_resnet series, pose_resnet_50 scored 
0.8408.

  • PCK: The pose_hrnet_w48 model had the highest 
score of 0.8705. The pose_hrnet_w32 model scored 
0.7961. The Pose_ResNet series generally exhibited 
lower PCK scores.

Qualitative analysis
From the image analysis perspective, our patellar height 
measurement system can accurately identify the patella’s 
upper and lower poles and the patellar tendon’s end-
points. The precision of this identification is high, with 
virtually no deviation discernible to the human eye 
(Fig.  7). Therefore, it is evident from the effectiveness 
diagrams of patellar keypoint detection after total knee 
arthroplasty that the patellar height measurement system 
can still effectively identify and measure keypoints even 
with the implantation of knee prostheses (Fig. 8).

Generalized analysis
Our study also included an analysis of the model’s gener-
alizability. Tables 3 and 4 show the model’s performance 
on external test sets from other institutions. In the exter-
nal test set 1 from Xi’an Honghui Hospital, as presented 
in Table  3, the HRNet model exhibited an RMSE value 

Table 2 Performance metrics for keypoint detection on the internal test set
Model Input size #Params GFLOPs FPS RMSE OKS PCK
Pose_resnet_50 256 × 192 34.0 M 8.9 162.12 21.58 0.8408 0.3378
Pose_resnet_101 256 × 192 53.0 M 12.4 85.81 25.69 0.7884 0.2440
Pose_resnet_152 256 × 192 68.6 M 15.7 63.42 29.06 0.7620 0.2292
Pose_hrnet_w32 256 × 192 28.5 M 7.1 33.05 11.84 0.9505 0.7961
Pose_hrnet_w48 256 × 192 63.6 M 14.6 31.20 10.60 0.9592 0.8705
Pose_resnet_50 384 × 288 34.0 M 20.0 149.26 20.51 0.8705 0.4360
Pose_resnet_101 384 × 288 53.0 M 27.9 87.44 20.98 0.8577 0.4301
Pose_resnet_152 384 × 288 68.6 M 35.3 60.99 28.38 0.8101 0.2946
Pose_hrnet_w32 384 × 288 28.5 M 16.0 32.96 10.64 0.9598 0.8765
Pose_hrnet_w48 384 × 288 63.6 M 32.9 31.80 10.33 0.9625 0.8795
Model: Indicates the model used. Input size: Size of input to the network. #Params: The amount of parameters in the model. GFLOPs: demand for computational 
capability. FPS: number of frames processed by the image per second. RMSE: root mean square error used to measure the model’s accuracy. OKS: object keypoint 
similarity that reflects the accuracy of keypoint detection. PCK: percentage of correct keypoints, another metric for assessing keypoint detection performance

Fig. 5 Comparison of OKS of different models OKS, object keypoint 
similarity

 

Fig. 4 Comparison of RMSE of different models RMSE, root mean square 
error

 



Page 7 of 12Liu et al. Journal of Orthopaedic Surgery and Research          (2024) 19:324 

between 2 and 3, an OKS > 0.96, and a PCK > 0.99. Simi-
larly, on external test set 2 from the Second Affiliated 
Hospital of Shanxi Medical University, as presented in 
Table 4, HRNet’s RMSE ranged between 7 and 9, with an 
OKS > 0.94 and a PCK > 0.88.

Performance and generalization of the ISI measurement
Radiologists with over 10 years of experience calculated 
the ISI index values with averages of 1.0444 ± 0.1453, 
1.0587 ± 0.1727, and 1.0826 ± 0.1448 for the internal test 
set, external test set 1, and external test set 2, respectively. 
The deep learning algorithm based on pose_hrnet_w48 
automatically calculated ISI index values with averages 

of 1.0377 ± 0.1323, 1.0637 ± 0.1900, and 1.0492 ± 0.1363 
for the internal test set, external test set 1, and external 
test set 2, respectively (Table 5). ICC was used to evaluate 
the consistency between manual and automatic measure-
ments. For R1 vs. Model, the ICC = 0.809; R2 vs. Model: 
ICC = 0.885; and R3 vs. Model: ICC = 0.830 (Table 6).

Discussion
Currently, insufficient attention has been given to the 
measurement of patellar height indices, primarily for the 
following reasons. First, there is a lack of comprehensive 
understanding among physicians regarding the role of 
this index in the diagnosis and assessment of knee joint 
diseases. However, the patellar height index is crucial to 
diagnosing abnormal patellar positions and related dis-
eases. Balcarek et al. [2] confirmed that patella alta sig-
nificantly correlated with increased incidences of patellar 
dislocations, identifying it as a key risk factor for insta-
bility. Dejour et al. [3] found that 24% of patients with 
patellar instability exhibited patella alta, which impaired 
knee mechanics and heightened dislocation risks. Simi-
larly, Visuri et al. [5] linked patella alta with Osgood–
Schlatter disease, emphasizing its typical presentation of 
a higher patellar position. Luyckx et al. [6] explored how 
patella alta affected anterior knee pain by altering joint 
forces and pressures. Lu et al. [7] reported that abnormal 
patellar heights disrupted knee biomechanics, potentially 
increasing cartilage damage. Furthermore, Degnan et al. 
[9] discovered that a high Insall–Salvati ratio was a sig-
nificant indicator of ACL damage risks in children, while 
Nishizawa et al. [12] noted that patella elevation in poste-
rior-stabilized TKA led to increased joint space by reduc-
ing flexion restrictions.

Fig. 7 Visualized results of keypoint detection on three datasets. From left to right are the internal test set, external test set 1, and external test set 2

 

Fig. 6 Comparison of PCK of different models PCK, percentage of correct 
keypoints
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Second, the manual measurement of patellar height 
indices involves subjectivity and variability, as doctors or 
technicians rely on personal experience and judgment, 
leading to potentially different results among various 
people taking measurements [16, 17]. Finally, manual 
measurements are time-consuming and inefficient, par-
ticularly when dealing with large datasets. Therefore, 
there is an urgent need to develop an automated, objec-
tive, and rapid tool to measure patellar height indices.

With the widespread application of deep learning algo-
rithms in the medical field, researchers have begun to 
explore using this advanced technology to automatically 
measure the patellar height index. Ye et al. [24] devel-
oped an automatic measurement algorithm based on 
deep learning, employing a CNN framework for land-
mark detection, with the VGG16 network serving as the 
core encoder. This method demonstrated high accuracy 
for the ISI, CDI, and a new method proposed by the Kee-
rati Index (KI). However, it was slightly less accurate for 
the modified CDI. Kwolek et al. [25] used the “You Only 

Look Once” neural network to detect the patellofemoral 
joint area. They employed U-Net for bone segmentation, 
enabling the automatic measurement of the CDI and 
Blackburne–Peel index, thereby facilitating the calcula-
tion of the patellar height.

This study introduces a novel measurement system 
of patella height based on deep learning that integrates 
an HRNet for two-dimensional keypoint detection and 
mathematical formulae for analyzing joint coordinates, 
requiring only a single image input to obtain results. To 
ensure the reliability of the labeled data for the patellar 
height measurement system, several steps were taken to 
address inter-observer variability and to enhance con-
sistency during the annotation process. First, the key 
points on the lateral knee radiographs were manually 
annotated by experienced radiologists, each with over ten 
years of experience at their respective institutions. This 
level of expertise ensured high standards of annotation 
accuracy. Additionally, the annotations underwent mul-
tiple review rounds to ensure no significant discrepancies 
between observers. Second, the ICC was used to evalu-
ate the consistency between manual and automatic mea-
surements, with ICC values ranging from 0.809 to 0.885. 
The close ICC values indirectly indicate a high reliability 
in annotations among different observers, as the model’s 
automatic measurements were trained using the manual 
annotations from one hospital’s radiologists. Thirdly, the 
LabelMe software was used to label the dataset, ensuring 
standardized annotations across all images. These mea-
sures collectively helped to maintain the reliability of the 
annotations, enabling the effective training and valida-
tion of the deep learning models for measuring patellar 
height.

All hardware selections were made to facilitate the 
training and inference of our models. We first consid-
ered software environment compatibility; PyTorch 1.10 
and Python 3.8 are compatible with the reproduction 
code of our models. The choice of CUDA version 11.3 
was dictated by its compatibility with the selected RTX 
4070 GPU and the PyTorch framework. Ubuntu 18.04, 

Table 3 Performance metrics for keypoint detection on external test set 1
Model Input size #Params GFLOPs FPS RMSE OKS PCK
Pose_hrnet_w32 256 × 192 28.5 M 7.1 33.14 2.4566 0.9674 1.0000
Pose_hrnet_w48 256 × 192 63.6 M 14.6 31.84 2.3717 0.9665 0.9944
Pose_hrnet_w32 384 × 288 28.5 M 16.0 32.99 2.1979 0.9703 0.9944
Pose_hrnet_w48 384 × 288 63.6 M 32.9 30.48 2.0737 0.9747 1.0000

Table 4 Performance metrics for keypoint detection on external test set 2
Model Input size #Params GFLOPs FPS RMSE OKS PCK
Pose_hrnet_w32 256 × 192 28.5 M 7.1 30.49 8.7414 0.9473 0.8917
Pose_hrnet_w48 256 × 192 63.6 M 14.6 31.18 8.1060 0.9494 0.8833
Pose_hrnet_w32 384 × 288 28.5 M 16.0 32.43 7.1375 0.9571 0.9000
Pose_hrnet_w48 384 × 288 63.6 M 32.9 31.74 8.0596 0.9544 0.9000

Table 5 Comparison of average ISI test results on three test sets
Date set Ground truth Predicted value
Internal data set 1.0444 ± 0.1453 1.0377 ± 0.1323
External data set 1 1.0587 ± 0.1727 1.0637 ± 0.1900
External data set 2 1.0826 ± 0.1448 1.0492 ± 0.1363
Ground truth: Patellar height indices calculated by the radiologists with over 
10 years of experience. Predicted value: Patellar height indices automatically 
calculated using the deep learning algorithm pose_hrnet_w48. The results of 
each index are presented as mean ± standard deviation

Table 6 Evaluation of the patellar height measurement system 
using ICC

ICC
R1 vs. Model 0.809
R2 vs. Model 0.885
R3 vs. Model 0.830
R1: Radiologist from the Second Affiliated Hospital of Xi’an Jiaotong University; 
R2: Radiologist from Xi’an Honghui Hospital; R3: Radiologist from the Second 
Affiliated Hospital of Shanxi Medical University; Model: A deep-learning 
algorithm model based on pose_hrnet_w48; ICC: Intraclass Correlation 
Coefficient
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a popular and stable Linux distribution, was chosen for 
its reliability and security, although the version of the 
operating system does not impact experimental results. 
In terms of hardware performance, the choice of GPU is 
crucial. Ideally, the more advanced the GPU, the better; 
however, given our current experimental conditions, we 
used the Nvidia GeForce RTX 4070 GPU. It has 12 GB 
of VRAM and 5888 CUDA cores, offering 29 TFLOPS of 
computational power, more than sufficient for training 
HRNet. The Intel i7-10700 F processor, with 8 cores and 
16 threads, a base frequency of 2.9 GHz, and a turbo fre-
quency of 4.8 GHz, provides robust multi-core and high-
frequency capabilities suitable for CPU-intensive tasks 
such as data preprocessing and model evaluation. The 32 
GB of memory ensures that training is not bottlenecked 
by memory limitations. Overall, these choices were made 
based on a comprehensive consideration of experimental 
conditions, compatibility, and performance.

The differences in the distribution of osteoarthritis 
severity across the datasets (p < 0.05) may be linked to the 
smaller sample sizes in the external test sets. However, 
due to the large sample size of the training set, it may not 
affect the effectiveness of key point identification in the 
test set.

Lower RMSE values correlate with higher model accu-
racy in predicting patellar height, crucial for ensuring 
reliable measurements in clinical environments. Higher 
OKS scores signify that the model’s predictions are both 
precise and consistent across various knee sizes and posi-
tions, enhancing its utility in diverse clinical scenarios. 
Additionally, a high PCK score demonstrates the mod-
el’s reliability in identifying keypoints on the patella and 
related structures, essential for diagnosing conditions 
such as patellar instability or dislocation. Pose_hrnet_
w48 and pose_hrnet_w32 demonstrated higher accuracy 
and efficiency than other models in this keypoint detec-
tion task, especially pose_hrnet_w48, which performed 
the best across all performance metrics (Figs.  4, 5 and 
6). Although the pose_hrnet series models had higher 
parameter counts and computational complexities, their 
performance improvements were significant. Conversely, 
although the pose_resnet series models had relatively 
lower computational complexities, their accuracy and 
efficiency in keypoint detection need to be enhanced. 
Therefore, selecting an appropriate model for keypoint 
detection tasks requires a comprehensive consideration 
of the availability of computational resources and the 
demand for detection performance. The speed of the var-
ious models discussed in this study is sufficient to meet 
the needs of clinical real-time image processing. Given 
the critical importance of accuracy in patellar height 
measurement in clinical practice, we ultimately selected 
the pose_hrnet_w48 model from HRNet as the bench-
mark model for our measurement system. Despite its 
larger parameter size and relatively high computational 
demand (measured in GFLOPS), it excelled in key per-
formance metrics, achieving an OKS of 0.9625, a RMSE 
of 10.33, and a PCK of 0.8795. Compared with models 
based on ResNet, this represents a significant improve-
ment in these metrics. Furthermore, the pose_hrnet_w48 
model processes images at 31.80 frames per second 
(FPS), indicating its capacity to handle 31.80 images per 
second.

The model’s performance on external test sets fur-
ther showcased the strong generalizability of the HRNet 
model for detecting knee joint keypoints across vari-
ous datasets. In addition, a comparison of the average 
ISI across the three test sets shows that the difference 
between the predicted and actual ISI values is negligible. 
A comparison of the ISI values obtained by radiologists 
from different hospitals (R1, R2, R3) with those calculated 
by our deep learning model based on pose_hrnet_w48 for 
patellar height measurement showed excellent reliability 
in the results obtained by the artificial intelligence calcu-
lation compared with those by the radiologists, indicat-
ing that the model has produced results similar to those 
of radiologists with extensive experience (R1 vs. Model: 
ICC = 0.809; R2 vs. Model: ICC = 0.885; R3 vs. Model: 

Fig. 8 Rendering of keypoint detection after total knee replacement
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ICC = 0.830). These results demonstrate the precision 
and reliability of the patellar height measurement system 
based on pose_hrnet_w48 across various datasets.

This system’s primary advantages and improvements 
are mainly reflected in the following aspects. First, unlike 
the serial convolution method from high to low resolu-
tion adopted by existing networks such as ResNet and 
vanishing gradient (VGGNet), HRNet employs a paral-
lel connection strategy. This maintains a high-resolution 
expression throughout the inference process and achieves 
multiscale fusion, allowing for a richer and more accurate 
estimation of keypoints on high-resolution feature maps 
[30]. Second, considering that abnormalities in patellar 
height are closely associated with complications or poor 
recovery after TKA [10–12] and ACL reconstruction 
[14], we specifically included the lateral knee radiographs 
of patients after these surgeries in our custom dataset. 
Finally, the training dataset for this study was exclusively 
derived from the Second Affiliated Hospital of Xi’an Jiao-
tong University, while datasets from the Second Affiliated 
Hospital of Shanxi Medical University and the Xi’an Hon-
ghui Cross Hospital were used solely for testing to vali-
date the generalization capabilities of the deep learning 
model. Differences in imaging protocols and parameter 
settings across hospitals are real, but were substantially 
mitigated during the image preprocessing stage of the 
deep learning model through adjustments in resolution 
and the application of data augmentation techniques 
such as random flipping and rotation. These methods 
significantly enhanced the model’s robustness. The ratio-
nale behind this setup was to test the applicability of the 
model trained on data from the Second Affiliated Hospi-
tal of Xi’an Jiaotong University in broader contexts. The 
successful performance of the model on datasets from 
various hospitals indicates its strong potential for clinical 
application.

In the future, the application of automated patellar 
height measurement will reduce human errors and vari-
ability associated with manual methods, which is criti-
cal for diagnosing diseases related to abnormal patellar 
heights. Accurate patellar height indices will also aid 
orthopedic surgeons in devising treatment strategies, 
including surgical planning such as alignment and bal-
ance of the patellofemoral joint in TKA. Additionally, this 
technology can effectively monitor disease progression 
and recovery post-surgery, ensuring timely and appro-
priate interventions that can shorten recovery times and 
improve overall patient outcomes.

Compared to previously developed models for auto-
matically measuring patellar height using deep learn-
ing, this study utilizes a large, multicenter dataset and 
the advanced HRNet architecture, achieving notably low 
RMSE and high OKS and PCK scores. Despite the out-
standing results achieved in this study, there were some 

limitations. First, training and testing the model on spe-
cific hospital datasets may not fully represent the global 
diversity of knee joint anatomy. Additionally, county and 
township hospitals may employ different imaging pro-
tocols for knee X-rays, which could impact the model’s 
ability to accurately detect keypoints. Second, the data-
set primarily included images with clear patellar height 
markers, which may have affected the outcomes in 
patients with abnormal patellar morphology. Third, as a 
purely linear measurement method, the ISI only consid-
ers the patellar height parameter and fails to comprehen-
sively evaluate other anatomical patella structures, such 
as the patellar type and posterior tibial slope. To mitigate 
these limitations, future research should train the model 
with datasets from different races, regions, populations, 
and devices and focus on optimizing specific patient 
groups to enhance the model’s applicability across differ-
ent patient types. By integrating more closely with clinical 
practice, the model could be guided towards improve-
ments and optimizations for patients with abnormal 
patellar morphology. Furthermore, consideration should 
be given to introducing more anatomical structure indi-
cators to comprehensively assess patellar anatomy and 
the use of three-dimensional imaging techniques (such 
as computed tomography and MRI) for a comprehen-
sive assessment of patellar anatomy and function. By 
implementing these measures, we anticipate effectively 
improving the limitations of the existing model, thereby 
enabling its true application in clinical settings.

Conclusions
This study successfully developed and validated a deep 
learning-based automatic patellar height measurement 
system. This system can accurately measure the patel-
lar height index, performing on par with experienced 
radiologists. Extensive dataset testing demonstrated the 
system’s excellent generalization ability and reliability, 
particularly for processing radiographs from different 
hospitals and equipment. This measurement system is 
expected to help in the assessment, treatment, and post-
operative monitoring of knee joint diseases, thereby pro-
viding a powerful tool for enhancing patients’ quality of 
life. Due to the potential bias in the selection of datasets 
in this study, the model still has some shortcomings. In 
the future, further optimizing and incorporating more 
anatomical structure indicators will significantly improve 
the application scope and accuracy of the system, offering 
a more precise and comprehensive assessment tool for 
clinical use.
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