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Abstract 

Background  Ubiquitin/ubiquitin-like (Ub/UBL)-related genes have been reported to be associated with the survival 
of osteosarcoma patients but have not yet been systematically explored.

Methods  The prognostic value of Ub/UBL-related genes, immune cell infiltration and clinicopathological features 
of patients were explored by Cox and LASSO regression analyses. A prognostic model was established and then vali-
dated in the GSE21257 dataset. The differential expression of hub genes in osteosarcoma was confirmed by qRT-PCR, 
western blotting and immunohistochemistry.

Results  Tripartite Motif Containing 8 (TRIM8) and Ubiquitin Like With PHD And Ring Finger Domains 2 (UHRF2) 
were screened as genes with prognostic value in osteosarcoma. Kaplan–Meier analysis and scatter plots indicated 
that patients in the high gene significance score group tended to have a worse prognosis. The concordance index, 
calibration analysis and receiver operating characteristic analysis suggested that the model had good prediction 
accuracy and high sensitivity and specificity. Decision curve analysis revealed that patients could obtain greater net 
benefit from this model. Functional analyses of the differentially expressed genes indicated that they were involved 
in important functions and pathways. TRIM8 and UHRF2 were confirmed to be highly expressed in osteosarcoma cell 
lines and tissues.

Conclusions  TRIM8 and UHRF2 are potential prognostic genes in osteosarcoma, and these results provide insights 
into the roles of these genes and their implications for patient outcomes.
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Background
Osteosarcoma, which occurs mainly in children and ado-
lescents, is the most common primary malignant bone 
tumor, and it is characterized by the production of oste-
oid and immature bone by mesenchymal cells or osteo-
genic progenitor cells [1–4]. Moreover, osteosarcoma is 
a rare malignancy that accounts for less than 1% of all 
cancer cases in America [2]. According to the SEER 18 
database, the incidence of osteosarcoma between 2000 
and 2014 was 3.3 per million [1]. There are two incidence 
peaks in different age groups: one occurs in adolescence, 
and the other occurs in individuals older than 60 years of 
age [2]. Although the incidence of osteosarcoma is low, it 
is a lethal tumor with high mortality and metastasis rates. 
The 5-year relative survival rate decreases with increas-
ing age. In the 0–9  year age group, the survival rate is 
71.8%, and the survival rate decreases to 33.1% in elderly 
patients (> 60  years) [1]. Moreover, the survival rate is 
as low as 20% in patients with metastatic disease [5–7]. 
Although great progress has been made in the treatment 
of osteosarcoma, there has been limited improvement in 
patient survival since the 1980s, when standard therapy 
was established [8]. Therefore, it is necessary to further 
explore the prognostic factors of osteosarcoma; such 
studies can not only contribute to the understanding of 
osteosarcoma but also reveal potential therapeutic tar-
gets of osteosarcoma.

Ub/UBL protein modification is an important post-
translational modification that enables cells to dynami-
cally react to intracellular or environmental changes [9, 
10]. The processes by which these two modifications 
are mediated are similar and reversible. When catalyzed 
by specific enzymes, ubiquitin and small ubiquitin-like 
modifiers are added to a substrate, signals are transduced, 
and a series of subsequent molecular events are triggered. 
Many vital cellular functions, such as DNA repair, cell 
cycle progression, cell proliferation and cell apoptosis, are 
regulated in this way [10, 11]. Moreover, dysregulation 
of these functions is closely related to cancer [9, 12–18]. 
More importantly, several Ub/UBL-related genes have 
recently been shown to have prognostic value in osteo-
sarcoma [19–22]. The ubiquitin-like protein FAT10 has 
been identified as a promoter of osteosarcoma growth 
[20, 23]. Zhang D et  al. [24] demonstrated that down-
regulation of Ubiquitin-Specific Protease (USP) 22 inhib-
its proliferation, invasion, and epithelial-mesenchymal 
transition in osteosarcoma cells. Sévère et al. [25] showed 
that targeting the E3 ubiquitin ligase Casitas B-lineage 
lymphoma inhibits osteosarcoma cell growth and sur-
vival, and reduces tumorigenesis. Additionally, USP9X 
[26], USP39 [27], USP7 [28], the E3 ubiquitin ligase Rlim 
[29] and MDM2 [30] have been implicated in the tumori-
genesis, progression, and metastasis of osteosarcoma.

Therefore, in this study, we used bioinformatics meth-
ods to explore the prognostic value of Ub/UBL-related 
genes in osteosarcoma. The prognostic value of immune 
cell infiltration and clinicopathological features was also 
investigated to improve the prediction accuracy and sta-
bility of the prognostic model from different perspectives. 
Although many prognostic biomarkers, even several Ub/
UBL-related genes, have been identified in osteosarcoma, 
the role of other Ub/UBL-related genes in the prognosis 
of patients with osteosarcoma has not been investigated. 
Therefore, we explored the prognostic value of all the Ub/
UBL-related genes that have been reported to date. Our 
study not only provides further clarity about the roles of 
Ub/UBL-related genes in the prognosis of patients with 
osteosarcoma but also serves to complement existing 
predictive models.

Methods
Data collection
GDC TARGET-OS RNA-seq count data (n = 88), pheno-
type data (n = 524) and survival data (n = 288) together 
with GTEX normal tissue RNA-seq count data (UCSC 
Toil RNA-seq Recompute) were downloaded from the 
UCSC Xena website (https://​xenab​rowser.​net/​hub/). 
Patients for whom overall survival (OS) data or OS time 
data were missing were excluded. After screening, the 
RNA expression and clinical data of 84 osteosarcoma 
patients, such as age, sex, race, ethnicity, primary site, 
and metastasis status, were extracted for further research. 
Moreover, RNA expression data from 379 normal sub-
jects in the GTEX database were extracted (data from the 
same subject were merged by the mean). Then, RNA 
expression data from 84 osteosarcoma patients and 379 
normal subjects were merged, and the data were trans-
formed to transcripts per million (TPM) for further anal-
ysis. The formula was as follows: TPM =

qi/li
n
∑

i=1

(qi/li)
× 10

9 , 

where qi denotes reads mapped to transcripts, li denotes 
the transcript length, and 

n

i=1

(qi/li) denotes to the sum of 

mapped reads to transcripts normalized by transcript 
length [31].

The GSE21257 dataset [32], which contains the larg-
est sample size of osteosarcoma bulk RNA sequence data 
available in the Gene Expression Omnibus (GEO) data-
base (https://​www.​ncbi.​nlm.​nih.​gov/​geo/), was used as 
an external validation cohort. Therefore, the expression 
and clinical data of 53 osteosarcoma patients, which were 
submitted on Apr 08, 2010 by the Centre for Molecular 
Medicine Norway, were downloaded from the GEO web-
site (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​
acc=​GSE21​257) on February 10, 2022. RNA expression 
data of 53 osteosarcoma patients were analyzed by the 

https://xenabrowser.net/hub/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257
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Illumina human-6 v2.0 expression beadchip (using nuIDs 
as identifiers), transformed by the variance stabilizing 
transformation (vst) algorithm and subsequently normal-
ized by robust spline normalization.

A collection of 1344 Ub/UBL-related genes was down-
loaded from the Integrated Database of Regulators for 
Ubiquitin and Ubiquitin-like Conjugation Database 
(iUUCD) (http://​iuucd.​biocu​ckoo.​org/). Subsequently, 
984 common Ub/UBL-related genes between the merged 
expression data and GSE21257 expression data were 
selected for further analysis.

Identification of genes with prognostic significance by Cox 
and LASSO regression analyses.
Cox regression analysis is a popular method that is com-
monly used in survival analyses. Univariate Cox regres-
sion analysis is used to evaluate the impact of a single 
predictor variable on survival time. In contrast, multi-
variate Cox regression simultaneously considers multi-
ple predictor variables, adjusting for other covariates, to 
assess their independent effects on survival time. Least 
absolute shrinkage and selection operator (LASSO) 
regression analysis is a linear regression method that 
incorporates regularization to select relevant predic-
tors by penalizing the absolute size of coefficients. This 
approach aids in feature selection and mitigates issues 
such as overfitting and multicollinearity that are often 
encountered in multivariate Cox regression analysis.

In this study, the TARGET-OS cohort was used as a 
training set. The “survival” package and Cox regression 
analysis were used to explore the prognostic value of the 
984 common genes in the training set [33]. Genes with 
a P value < 0.05 in the univariate Cox regression analy-
sis were incorporated into the subsequent multivariate 
Cox regression analysis. Multivariate regression analysis 
revealed genes with a P value < 0.05 to be independent 
prognostic indicators for osteosarcoma. Finally, LASSO 
regression analysis with 10 cross validations was per-
formed to further screen genes with prognostic value 
[34].

Gene significance score calculation and survival analysis
The gene significance score for each selected gene was 
calculated by multiplying the expression value (high-
throughput sequencing data using TPM data, array 
data using normalized gene expression data) by its 
coefficient value. Then, by summing the scores of all 
the selected genes, we obtained a gene significance 
score for each sample. The formula was as follows: 
significance Score =

∑n
i=1

(

Expgenei × coefficientgenei
)

  . 
Thereafter, the samples were stratified into low- and 
high-score groups according to the median gene signifi-
cance score. Then, KM survival analysis was performed 

and scatter plots and heatmaps were generated to explore 
the characteristics of the patents in the two groups.

Infiltration score calculation and screening
The “MCPcounter” package was used to calculate the 
infiltration scores of fibroblasts, endothelial cells and 8 
immune cell types at the tumor site [35]. Then, the gene 
significance score, cell infiltration score of 10 cell types 
and clinicopathological features were screened by univar-
iate (P value < 0.05) and multivariate (P value < 0.05) Cox 
regression analyses. Indicators with P values < 0.05 were 
selected as the final indicators for the prognostic model.

Establishment of a prognostic model and its assessment 
with the training set
A Cox proportional hazards model was established 
according to the final indicators and then visualized by a 
nomogram. The concordance index (C-index), calibration 
analysis, time-dependent receiver operating character-
istic (ROC) analysis and decision curve analysis (DCA) 
were performed to evaluate the prediction accuracy and 
discriminatory capacity of the model in the training set.

Validation of the model in an independent external set
With GSE21257 as the validation set, KM analysis was 
performed with the high- and low-significance score 
groups (stratified by the median). The characteristics of 
the patients in different groups were explored by scatter 
plots and heatmaps. Moreover, the C-index, calibration 
analysis, time-dependent ROC analysis and DCA were 
also employed to evaluate the prediction accuracy and 
discriminatory capacity of the model.

Gene expression profile and PPI network analysis 
of the selected genes
Patients were stratified into low- and high-score groups 
according to the median gene significance score. Then, 
the expression profiles of the prognostic genes in dif-
ferent score groups were explored in both the training 
and validation sets to determine whether they were dif-
ferentially expressed. Potential protein–protein interac-
tion (PPI) network analysis of the genes was performed 
via the STRING website, with an interaction score ≥ 0.4 
(https://​cn.​string-​db.​org/).

Identification of DEGs between the high‑ and low‑gene 
significance score groups and functional analysis
To preliminarily explore the possible mechanism under-
lying the difference in prognosis between the low- and 
high-significance score groups, the “DESeq2” package 
was used to identify DEGs with adjusted P values < 0.05 
and |log2fold change|> 1 in the TARGET-OS cohort 
(high-score group versus low-score group). Then, GO 

http://iuucd.biocuckoo.org/
https://cn.string-db.org/


Page 4 of 20Wen et al. Journal of Orthopaedic Surgery and Research          (2024) 19:356 

and KEGG clustering analysis and gene set enrichment 
analysis (GSEA) were used to investigate the functional 
enrichment of the DEGs. Finally, PPI network analy-
sis was performed to explore the interactions among 
the proteins that were encoded by the DEGs with the 
STRING website with interaction scores ≥ 0.4 (https://​cn.​
string-​db.​org/).

Validation of the hub gene expression in cell lines 
by real‑time fluorescent quantitative PCR (qRT‑PCR) 
and Western blotting
Cell culture
The normal human osteoblast cell line hFOB1.19 was 
purchased from the Shanghai Institute of Biochemis-
try and Cell Biology (Shanghai, China, catalog number: 
GNHu14). The MG63 cell line was purchased from iCell 
Bioscience Inc. (Shanghai, China, catalog number: iCell-
h140). The 143B cell line was purchased from FuHeng 
BioLogy (Shanghai, China, catalog number: FH0438). 
All the cells were cultured in Dulbecco’s modified Eagle’s 
medium/nutrient mixture F-12 (DMEM/F-12, Gibco, 
United States, catalog number: 11320033) supplemented 
with 10% fetal bovine serum (FBS, Gibco, catalog num-
ber: 26010074) and 1% penicillin/streptomycin (Solar-
bio, Beijing, China, catalog number: P1400). The human 
osteoblast cell line hFOB 1.19 was cultured at 34 °C with 
5% carbon dioxide, and the osteosarcoma cell lines were 
cultured at 37 °C with 5% carbon dioxide in a humidified 
atmosphere.

qRT‑PCR
Real-time fluorescent quantitative PCR (qRT-PCR) 
was used to measure the mRNA expression of Tripar-
tite Motif Containing 8 (TRIM8) and Ubiquitin Like 
With PHD And Ring Finger Domains 2 (UHRF2) in the 
osteoblast and osteosarcoma cell lines. TRIzol reagent 
(CWBIO, Beijing, China, catalog number: CW0580S) 
was used to extract total RNA from the osteoblast and 
osteosarcoma cells. Then, cDNA was reverse transcribed 
from 1 μg of the extracted RNA using HiScript II Q RT 
SuperMix for qPCR (+ gDNA wiper) (Vazyme, Nanjing, 
China, catalog number: R223-01). The special prim-
ers (Table 1) and ChamQ Universal SYBR qPCR Master 
Mix (Vazyme, Nanjing, China, catalog number: Q711-02) 
were used to perform qRT-PCR with the CFX Connect™ 
fluorescent quantitative PCR detection system (Bio-Rad 
Laboratories (Shanghai) Co., Ltd., Shanghai, China) with 
the following steps: 95 °C for 10 min, 95 °C for 10 s, 58 °C 
for 30 s, and 72 °C for 30 s (40 cycles). β-actin was used as 
an internal control, and the 2−ΔΔCT method was used for 
data analysis. The experiment was repeated three times.

Western blotting analysis
The protein expression of TRIM8 and UHRF2 in the 
osteoblast and osteosarcoma cell lines was quantified 
by the Western blotting analysis. β-actin was used as an 
internal control. The cells were lysed with RIPA buffer 
(Beyotime Biotechnology, Shanghai, China, catalog num-
ber: P0013B) supplemented with 2% protease inhibitor 
(APPLYGEN, Beijing, China, catalog number: P1265) 
at 4  °C for 30  min. Equal amounts (0.83  μg) of protein 
from hFOB1.19, MG63, and 143B cells were separated 
by 10% SDS-PAGE, and transferred to PVDF mem-
branes (Millipore, Darmstadt, Germany, catalog number: 
IPVH00010), and then, the membranes were blocked 
with 5% skim milk. The membranes were incubated 
with the primary antibodies (anti-TRIM8: 1:1000 dilu-
tion, Proteintech Group Inc., Rosemont, IL, USA, cata-
log number: 27463-1-AP; anti-UHRF2: 1:1000 dilution, 
Affinity Biosciences, Cincinnati, OH, USA, catalog num-
ber: DF6930; anti-β-actin: 1:2000 dilution, TransGen Bio-
tech, Beijing, China, catalog number: HC201) overnight 
at 4  °C. After the membranes were rinsed with TBST 
buffer three times, they were incubated with an HRP-
labeled secondary antibody (1:2000 dilution, Servicebio, 
Wuhan, China; catalog number: GB23301/GB23303) 
for 1  h. After the membranes were incubated with the 
highly sensitive plus ECL luminescent reagent for 2 min, 
an ultrasensitive multifunctional imager (Tanon-5200, 
Shanghai, China) was used to visualize the bands.

Immunohistochemical staining for proteins encoded 
by prognostic genes
Immunohistochemical staining was used to identify the 
differentially expressed proteins that were encoded by 
the prognostic genes between osteosarcoma and normal 
bone tissues. Paraffin-embedded osteosarcoma tissue 
sections were obtained from 3 osteosarcoma patients 
at Jiangxi Provincial People’s Hospital (approved by the 
Ethics Committee of Jiangxi Provincial People’s Hospital 
(1 August 2022), NO. 2022-059). Immunohistochemical 
staining of the proteins was performed according to the 
protocol described below. The sections were dewaxed, 

Table 1  The sequences of the primers that were used in the 
RT-PCR experiments

Gene Sequence (5′ to3′)

TRIM8-F GAC​GGA​GGA​TGT​CAG​CTT​CA

TRIM8-R TCA​GGT​GGC​CGA​TCT​TAG​TG

UHRF2-F ATT​CTT​GCT​CCT​GTC​GTG​TATGT​

UHRF2-R CTT​GAG​TCT​TTC​ACC​AGC​CTTT​

β-actin-F TGG​CAC​CCA​GCA​CAA​TGA​A

β-actin-R CTA​AGT​CAT​AGT​CCG​CCT​AGA​AGC​A

https://cn.string-db.org/
https://cn.string-db.org/
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hydrated, subjected to antigen retrieval in boiling anti-
gen retrieval buffer (1  mM EDTA, pH 8.0) for 20  min, 
incubated with 3% hydrogen peroxide, blocked with 5% 
bovine serum albumin (S12012, Shanghai Yuanye Bio-
Technology Co., Ltd, Shanghai, China), incubated with 
primary antibodies at 4 °C overnight (anti-TRIM8: 1:200 
dilution, Proteintech Group Inc.; anti-UHRF2: 1:100 dilu-
tion, Affinity Biosciences), and incubated with secondary 
antibodies for 30  min (1:100 dilution, ZSGB-BIO, Bei-
jing, China; catalog number: ZB-2301). Then, the sec-
tions were stained with 3,3’-diaminobenzidine (CWBIO, 
catalog number: CW0125M), stained with hematoxylin, 
dehydrated and sealed. Then, the sections were observed 
under a microscope (CX43, OLYMPUS, Tokyo, Japan). 
Two randomly chosen fields per Sect.  (400 ×) were uti-
lized to determine the positive rate through the IHC Pro-
filer function within ImageJ software. Subsequently, the 
positive rates of both groups were compared and visual-
ized using GraphPad Prism 8.3.0 for Windows (Graph-
Pad Software, Boston, Massachusetts, USA; www.​graph​
pad.​com).

Statistical analysis
In this study, R software v3.63 was used to process the 
data and generate charts, and Cytoscape software v3.7.1 
was used to visualize the PPI network. Normally distrib-
uted continuous data were subjected to statistical analysis 
using either Student’s t test or one-way ANOVA, while 
nonnormally distributed continuous data were analyzed 
using the Mann–Whitney U test. Categorical variables 
were examined by the chi-square test or Fisher’s exact 
test. A P value less than 0.05 was considered to indicate 
statistical significance.

Results
Clinicopathological features of the osteosarcoma patients 
who were enrolled in this study
Eighty-four patients from the TARGET-OS database 
(training set) and 53 osteosarcoma patients from the 
GSE21257 database (validation set) were included in this 
study. The baseline characteristics of the two cohorts 
were similar (Table 2).

Ub/UBL related genes screened by multiple survival 
analyses
The overall process of analysis of this study is shown in 
the flowchart (Fig.  1A). Among the 984 common Ub/
UBL-related genes, 86 exhibited a P value < 0.05 in the 
univariate Cox regression analysis, and among these 86 
genes, 46 displayed a P value < 0.05 in the multivariate 
Cox regression analysis (Supplementary file 1). Finally, 
TRIM8 and UHRF2 were identified as prognostic hub 
genes in osteosarcoma by LASSO regression analysis 
(λ = lambda.1se) (Fig. 1 B-C).

The prognosis of patients in different gene significance 
score groups
Patients were stratified into high- and low-gene signifi-
cance score groups according to the median score (gene 
significance score = TRIM8 * 0.00426934 + UHRF2 * 
0.03053178). The KM plot revealed that the red and blue 
curves closely overlapped and crossed paths within the 
first 12  months, but after that point, a clear divergence 
emerged (Fig.  2A). Consequently, for the sake of result 
reliability, our subsequent discussion focused primarily 
on the prognostic value of the model for predicting out-
comes beyond 12  months. The KM plot demonstrated 

Table 2  Clinicopathological features of osteosarcoma patients in the different cohorts

Characteristics Level TARGET-OS GSE21257 P value Test

Sample size (n) 84 53

Age (years), No. (%)  < 18 66 (78.6) 34 (64.2) 0.077 Exact

 ≥ 18 18 (21.4) 19 (35.8)

Sex, No. (%) Female 37 (44.0) 19 (35.8) 0.376 Exact

Male 47 (56.0) 34 (64.2)

Primary site, No. (%) Femur 38 (45.2) 27 (50.9) 0.611 Exact

Tibia 21 (25.0) 15 (28.3)

Fibula 8 (9.5) 2 (3.8)

Others 17 (20.2) 9 (17.0)

Metastasis, No. (%) Absent 63 (75.0) 39 (73.6) 0.844 Exact

Present 21 (25.0) 14 (26.4)

OS, No. (%) Alive 57 (67.9) 30 (56.6) 0.205 Exact

Dead 27 (32.1) 23 (43.4)

OS.time (Months: median [Q1, 
Q3])

48.65 [20.63, 69.15] 45.00 [27.00, 94.00] 0.122 Kruskal

http://www.graphpad.com
http://www.graphpad.com
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that, 12 months after the initial diagnosis, patients in the 
high-score group exhibited a notably worse prognosis 
(P = 0.0026). Additionally, patients with elevated expres-
sion levels of TRIM8 and UHRF2 also had worse out-
comes, with P values of 0.0026 and 0.0081, respectively 
(Fig. 2B-C). Figure 2D provides insights into the charac-
teristics of patients in both the high- and low-significance 
score groups. The high-score group had a higher inci-
dence of mortality and shorter overall survival (middle 
of Fig. 2D). In the lower section of Fig. 2D, the heatmap 
shows the expression patterns of TRIM8 and UHRF2 in 
the samples, illustrating the increasing gene significance 
scores. Notably, the expression profile of TRIM8 closely 
mirrored the increasing scores that were observed among 
patients in the training set.

Further screening of final independent indicators 
for the prognostic model
The infiltration scores of fibroblasts, endothelial cells 
and 8 immune cell types in the training and validation 
sets are provided in Supplementary Files 2, and 3. The 
gene significance score, metastasis, and monocytic line-
age (cell originating from monocytes) [36] infiltration 
at the tumor site were screened as the final indicators 

by univariate and multivariate Cox regression analyses 
(Table 3).

Establishment of a prognostic model and its evaluation 
in the training set
A Cox proportional hazards model was established 
by the final indicators and visualized by a nomogram, 
which could be used to predict the survival probability 
of a patient by summing the points of the 3 final indica-
tors (Fig. 3A). The higher the total points are, the lower 
the survival probability. The C-index of the model in the 
training set was 0.797 (95% CI: 0.751–0.843). Calibra-
tion analysis (Fig. 3B) revealed that the predicted 2-, 3-, 
and 5-year overall survival rates were highly consistent 
with the overall survival observed. The C-index and the 
calibration analysis both indicated good predictive accu-
racy of the model in the training set. The time-dependent 
ROC analysis indicated that the area under the curve 
(AUC) values for the 2-, 3-, and 5-year predictions of the 
model in the training set were 0.88, 0.80 and 0.80, respec-
tively, which suggested good predictive specificity and 
sensitivity of the model (Fig. 3C). The DCA of the model 
for 3-year prediction showed a high net benefit of the 
nomogram (Fig. 3D).

Fig. 1  Flowchart of this study and LASSO Cox regression analysis of the prognostic genes. A Flowchart of this study. B LASSO coefficient profiles 
for the 46 genes identified by tenfold cross-validation. C Partial likelihood deviance with changing log (λ) plotted by LASSO regression in tenfold 
cross-validation
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Validation of the model in the GSE21257 dataset
KM analysis of the GSE21257 dataset revealed that 
patients in the high-significance score group had poorer 
outcomes than those in the low-significance score group 
after 2  years (Fig.  4A). Notably, a similar pattern was 

observed where the two curves in the Kaplan–Meier 
plot closely converged and intersected between 6 
and 18  months, mirroring the findings in the train-
ing set. Fortunately, the prognostic value of the model 
after 18  months was not affected. Figure  4B provides a 

Fig. 2  KM analysis and characteristics of patients in different groups of the training set. A The KM plot for the high- and low-gene significance 
groups in the TARGET-OS cohort. B The KM plot for the high- and low-expression groups of TRIM8 in the TARGET-OS cohort. C The KM plot 
for the high- and low-expression groups of UHRF2 in the TARGET-OS cohort. D Characteristics of patients in the high- and low-significance score 
groups: upper panel: the x-axis refers to samples with increasing gene significance scores, and the y-axis refers to the gene significance scores; 
middle panel: the x-axis refers to samples with increasing gene significance scores, and the y-axis refers to the survival times of patients; and lower 
panel: the heatmap for the expression of TRIM8 and UHRF2 in samples ranked by the gene significance scores
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graphical depiction of patient characteristics in the high- 
and low-score groups through a scatter plot and heatmap. 
Patients from the GSE21257 dataset in the high-score 
group exhibited a higher frequency of mortality and 
shorter overall survival. The heatmap in Fig.  4B illus-
trates that the overall expression patterns of TRIM8 and 
UHRF2 in patients were consistent with the increasing 
trend of the gene significance score. Notably, compared 
with the heatmap from the training set, the expression 
profile of UHRF2 was more consistently aligned with 
the increasing scores that were observed for the patients 
from the GSE21257 dataset.

The C-index in the validation set was 0.708 (95% CI: 
0.65–0.766), which was slightly lower than that in the 
training set. Calibration analysis (Fig.  4C) revealed that 
the predicted overall survival from 2 to 5  years became 
increasingly more consistent with the observed overall 
survival. Moreover, the predicted 3- and 5-year overall 
survival rates were highly consistent with the overall sur-
vival rates observed. The C-index and calibration analysis 

both suggested the high predictive accuracy of the model 
in the validation set. The time-dependent ROC analysis 
showed that the AUC values for the 2-, 3-, and 5-year 
predictions of the model in the training set were 0.61, 
0.81 and 0.80, respectively (Fig. 4D). The 2-year AUC in 
the validation set was much lower than that in the train-
ing set, but the 3-year and 5-year AUCs in the validation 
set were just as good as those in the training set; these 
results suggested the stable and reliable predictive value 
of the model for 3- and 5-year survival. The DCA of the 
model for 3-year prediction in the validation set also 
indicated a higher net benefit of the nomogram (Fig. 4E).

Differential expression analysis and PPI network analysis 
of TRIM8 and UHRF2
TRIM8 and UHRF2 expression in the tumor group 
was significantly higher than that in the normal group 
(Fig. 5A-B). In the training set, TRIM8 exhibited a nota-
bly higher expression level in the high score group, while 
in the validation set, UHRF2 displayed a significantly 

Table 3  Screening indicators for the prognostic model by univariate and multivariate Cox analyses

95% CI: 95% confidence interval; #N/A: Not applicable

Bold values indicate statistical significance of P-values

Characteristics Univariate Cox regression Multivariate Cox regression

Hazard.Ratio(95% CI) P.Value Hazard.Ratio(95% CI) P.Value

Metastasis 4.76(2.22–10.22) 0.000061 3.8(1.7–8.48) 0.001
Gene significance score 0.30(0.13–0.69) 0.005 0.29(0.12–0.66) 0.003
Monocytic lineage 0(0–0) 0.012 0(0–0) 0.043
B lineage 0(0–4.59E + 30) 0.237 #N/A #N/A

CD8 + T cells 0(0–3.37E + 211) 0.296 #N/A #N/A

Cytotoxic lymphocytes 0(0–6.86E + 32) 0.587 #N/A #N/A

Endothelial cells 1.08E + 49 (0–4.02E + 235) 0.606 #N/A #N/A

Fibroblasts 1.4(0.27–7.25) 0.686 #N/A #N/A

Myeloid dendritic cells 0(0–2.71E + 286) 0.218 #N/A #N/A

Neutrophils 0(0-Inf ) 0.760 #N/A #N/A

NK cells 0(0-Inf ) 0.492 #N/A #N/A

T cells 0(0-Inf ) 0.855 #N/A #N/A

Age 1(1–1) 0.976 #N/A #N/A

Gender 0.71(0.34–1.52) 0.382 #N/A #N/A

Ethnicity (Hispanic or Latino)

Not Hispanic or Latino 0.36(0.13–1.03) 0.056 #N/A #N/A

Unknown 0.61(0.12–3.20) 0.557 #N/A #N/A

Primary site (Femur)

Fibula 0.69(0.16–3.01) 0.619 #N/A #N/A

Tibia 0.30(0.09–1.03) 0.056 #N/A #N/A

others 0.81(0.32–2.08) 0.663 #N/A #N/A

Race (Asian)

White 0.75(0.17–3.29) 0.699 #N/A #N/A

Black or African American 0.30(0.03–3.40) 0.334 #N/A #N/A

Unknown 2.29(0.44–11.92) 0.326 #N/A #N/A
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Fig. 3  Visualization and evaluation of the model in the training set. A The nomogram of the Cox proportional hazards model. B The 2-, 3-, 
and 5-year calibration analysis of the model in the training set. C Time-dependent ROC curve analysis of the model in the training set. D The 3-year 
DCA in the training set

Fig. 4  Evaluation of the model in the validation set. A The KM plot of the high- and low-gene significance score groups in the GSE21257 dataset. 
B The characteristics of patients in the high- and low-gene significance score groups in the GSE21257 dataset: upper panel: the x-axis refers 
to samples with increasing gene significance scores, and the y-axis refers to the gene significance scores; middle panel: the x-axis refers to samples 
with increasing gene significance scores, and the y-axis refers to patient survival times; lower panel: heatmap for the expression of TRIM8 and UHRF2 
in samples ranked by gene significance scores. C The 2-, 3-, and 5-year calibration analysis of the model in GSE21257. D Time-dependent ROC curve 
analysis of the model in GSE21257. E 3-year DCA in GSE21257

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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higher expression in the high-score group (Fig.  5A, D). 
Although the average expression of UHRF2 in the train-
ing set and that of TRIM8 in the validation set were 
higher in the high-score group, the differences were not 
statistically significant (Fig.  5B, C). The PPI networks 
(Fig.  5E-F) showed that TRIM8 mainly interacted with 
SMAD9, MAP3K7, TP53, BBOX1, TRAT1, TRIM23, 
SOCS1, PIAS3, TRIM24, and TRIM32, while UHRF2 
mainly interacted with ZBTB38, ZNF131, UBE2I, 
UBE2D3, UBE2D2, SUMO1, PCNA, HDAC1, TRDMT1, 
and DNMT1. The orange nodes in Fig. 5E-F are proteins 
involved in the Ub/UBL processes.

Identification of DEGs between the high‑ and low‑gene 
significance score groups and functional analysis
There were 917 DEGs between the high and low gene 
significance score groups (adjusted P value < 0.05 and 
|log2fold change|> 1) (Supplementary file 4). The colored 
dots in the volcano plot (Fig. 6A) are genes with adjusted 
P values < 0.05 and |log2fold change|> 1. The processes 
clustered by GO clustering were mainly associated with 
muscle and extracellular matrix organization. The top 3 
clustered biological processes (BP) of the DEGs ranked 
by generatio were extracellular matrix organization, 
extracellular structure organization, and muscle tissue 
development. The top 3 cellular components (CC) were 
collagen-containing extracellular matrix, synaptic mem-
brane, and contractile fiber, and the top 3 molecular 
functions (MF) were extracellular matrix structural con-
stituent, glycosaminoglycan binding, and heparin binding 
(Fig.  6B). Moreover, pathways clustered by KEGG were 
mainly associated with signal transduction (Fig. 6C). The 
top 5 pathways of the DEGs clustered by KEGG enrich-
ment were the PI3K-Akt signaling pathway, calcium 
signaling pathway, MAPK signaling pathway, protein 
digestion and absorption, and focal adhesion. The top 
DEGs, ranked by the absolute value of logFC, which were 
involved in the top GO and KEGG processes are shown 
in Fig.  7A-B. GSEA revealed that the IL-17 signaling 
pathway, necroptosis, proteoglycans in cancer, and rheu-
matoid arthritis were the top 4 enriched pathways, among 
which proteoglycans in cancer were downregulated 
and the other three were upregulated in the high-score 
group (Fig. 7C). The PPI network of proteins encoded by 
the DEGs is shown in Fig. 7D. CAV3, NRXN1, ACTC1, 

ACAN, MYOG, MYOD1, TNNT3, CACNA1E, KCND2 
and KCNA2 were the most connected proteins in the 
network. Most of them also participate in the processes 
clustered by GO and KEGG analyses.

qRT‑PCR and Western blotting analysis of the expression 
profiles of the hub genes in cell lines
qRT-PCR indicated that the mRNA expression of TRIM8 
and UHRF2 in the 143B and MG63 cell lines was sig-
nificantly higher than that in osteoblasts (P value < 0.05) 
(Fig. 8A-B). Western blotting analysis further confirmed 
that the protein expression of TRIM8 and UHRF2 in the 
143B and MG63 cell lines was notably higher than that in 
osteoblasts (Fig. 8C-E). Our results in cell lines were con-
sistent with the in silico results above.

Immunohistochemical staining for TRIM8 and UHRF2
Immunohistochemical staining for TRIM8 (Fig.  9A-E) 
and UHRF2 (Fig. 9F-J) indicated that these proteins were 
highly expressed in osteosarcoma tissues.

Discussion
To date, progress in improving long-term survival in 
elderly patients with metastatic osteosarcoma has been 
disappointing. Accumulating evidence shows that Ub/
UBL-related genes play important roles in the survival of 
patients with osteosarcoma [19–22].

In this study, TRIM8 and UHRF2 were identified as the 
Ub/UBL-related genes that were most strongly associated 
with survival by Cox and LASSO regression analyses, and 
the gene significance scores were calculated according to 
these genes. Since the coefficient values of TRIM8 and 
UHRF2 were positive, a higher expression of TRIM8 and 
UHRF2 would lead to a higher significance score for the 
patient. In addition to the gene significance score, metas-
tasis and monocytic lineage infiltration at the tumor site 
were also identified as prognostic indicators by univari-
ate and multivariate Cox regression analyses. KM analy-
sis and the scatterplot both showed that patients in the 
high-gene significance score group tended to exhibit a 
poorer prognosis in both the training and validation sets, 
indicating the robust discriminatory capacity of the gene 
significance score. In the training set, patient prognosis 
varied significantly based on high and low expression lev-
els of TRIM8 and UHRF2, with KM analysis yielding a P 

(See figure on next page.)
Fig. 5  Expression profiles of TRIM8 and UHRF2 in the normal and tumor groups and PPI network analysis of TRIM8 and UHRF2. Expression of TRIM8 
(A) and UHRF2 (B) in the normal, low- and high-gene significance score groups in the training set: the x-axis refers to the group, and the y-axis refers 
to the RNA expression. Expression of TRIM8 (C) and UHRF2 (D) in the low- and high-gene significance score groups in the validation set: the x-axis 
refers to the group, and the y-axis refers to the RNA expression. PPI network analyses of TRIM8 (E) and UHRF2 (F): orange nodes refer to the Ub/
UBL-related proteins. (Significance level: no significance (ns), P ≥ 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001, ****, P < 0.0001.)
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Fig. 5  (See legend on previous page.)
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value of less than 0.01 for both. Notably, the KM curve 
of the risk score mirrors that of TRIM8, primarily due to 
the high predictive efficacy of TRIM8 within this dataset 
and the limited sample size of the training set. Although 
the C-index and calibration analysis performed slightly 
less effectively in the validation set than in the training 
set, they still exhibited a commendable level of predic-
tive accuracy (C-index > 0.7). Moreover, it is important 
to note that a reduction in model accuracy in the valida-
tion set compared to the training set is a common and 
expected occurrence. The time-dependent ROC analy-
sis suggested the high sensitivity and specificity of the 
model in both the training and validation sets, especially 
for 3- and 5- year predictions (AUC ≥ 0.8). The DCA also 
indicated that patients in both the training and valida-
tion sets could obtain greater net benefits from the model 
than other strategies. In summary, our model was suc-
cessfully validated in an independent cohort, suggesting 

good prediction accuracy and discriminatory capacity of 
the model.

Differential expression of the two genes in the nor-
mal, high- and low-gene significance score groups indi-
cated that TRIM8 and UHRF2 were highly expressed in 
osteosarcoma patients and that the higher the expression 
was, the worse the prognosis. Moreover, the differential 
expression of TRIM8 and UHRF2 in the normal and oste-
osarcoma groups was also successfully validated in cell 
lines by qRT-PCR and Western blotting and in human 
tissues by immunohistochemistry. The RNA and protein 
expression patterns of TRIM8 and UHRF2 in the three 
cell lines were generally consistent, although some minor 
discrepancies were observed. These differences could be 
attributed to posttranscriptional RNA and posttransla-
tional protein modifications. PPI network analysis indi-
cated that TRIM8 could interact with proteins, such as 
p53, SMAD9, and PIAS3, which are involved in the p53 

Fig. 6  Identify DEGs between the high- and low-gene significance score groups and gene enrichment analysis. A Volcano plot of the DEGs 
between the high- and low-gene significance score groups. B Dot plot for GO clustering of the DEGs. C Dot plot for KEGG clustering of the DEGs
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signaling pathway, TGF-beta signaling pathway, and JAK-
STAT signaling pathway. While UHRF2 could not only 
interact with other Ub/UBL-related proteins that regu-
late Ub/UBL protein modification, it could also interact 
with PCNA, DNMT1, HDAC1, and TRDMT1, which 
participate in DNA replication, cell cycle progression, 
microRNAs in cancer, etc. (Fig. 5F).

According to the KEGG analysis, the DEGs were found 
to be involved mainly in the PI3K-Akt signaling path-
way, calcium signaling pathway, MAPK signaling path-
way, etc. Substantial evidence has indicated that the 
PI3K-Akt signaling pathway is frequently hyperactivated 
in osteosarcoma and contributes to tumorigenesis, pro-
liferation, invasion, cell cycle progression, inhibition of 

apoptosis, angiogenesis, metastasis and chemoresistance 
[37–41]. The calcium signaling pathway was reported 
to affect cell viability in osteosarcoma cell lines [42, 43]. 
Finally, although the role of the MAPK signaling path-
way in osteosarcoma is not fully understood and has even 
been shown to be contradictory in different studies, it is 
known that it can affect the angiogenesis, proliferation, 
migration and metastasis of osteosarcoma [44–47].

In addition, according to GSEA, the IL-17 signaling 
pathway, necroptosis pathway, and proteoglycans in can-
cer were the most highly enriched pathways, which might 
also be involved in the different prognoses between the 
high- and low-score groups. It has been reported that 
upregulation of the IL-17 signaling pathway is associated 

Fig. 7  Functional analysis of the DEGs. A Chord plot for the 7 top clustered BPs. B Chord plot for the 7 top clustered KEGG pathways. C The four top 
enriched pathways according to GSEA. D PPI network analysis of the DEGs
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with metastasis and poor prognosis in patients with oste-
osarcoma [48–50]. Necroptosis often occurs inside over-
grown tumors, which can result in inflammatory cells 
infiltrating into the tumor site and forming a favorable 
microenvironment for tumor metastasis [51–53]. How-
ever, the detailed role of necroptosis in the development 
and progression of osteosarcoma remains unclear [54]. 
In this study, necroptosis was observed to be associated 
with poor outcomes in patients with osteosarcoma. There 
is also evidence suggesting that proteoglycans play a role 
in regulating osteosarcoma cell proliferation, migration, 
and ECM structure [55–57], which is consistent with 
our GO clustering results. The overall effect of differ-
ent kinds of proteoglycans in osteosarcoma in this study 
was that low expression of proteoglycans was associated 
with poor prognosis. PPI network analysis suggested that 
most of the hub proteins encoded by the DEGs were vital 
enzymes in the signaling pathways clustered by KEGG 
clustering.

In general, we found that TRIM8 and UHRF2 might 
affect the prognosis of osteosarcoma patients by influ-
encing or cooperating with the p53 signaling pathway, 

TGF-beta signaling pathway, cell cycle, PI3K-Akt signal-
ing pathway, IL-17 signaling pathway, necroptosis path-
way, etc.

TRIM8 encodes a member of the tripartite motif 
(TRIM) protein family. Because the protein has a 
RING-finger domain, it was suspected to be an E3 
ubiquitin-protein ligase according to the NCBI Refer-
ence Sequences (RefSeq). There is also evidence that 
TRIM8 is involved in the ubiquitination process. Qi 
Li, et al. [58] reported that TRIM8 can target TAK1 for 
K63-linked polyubiquitination. Wang L et  al. [59] dis-
covered direct mutual regulation between TRIM21 and 
TRIM8 via Lys48 (K48)-linked ubiquitination in lung 
and renal cancer cells. Bo Kyung A. Seong, et  al. [60] 
reported that TRIM8 is an E3 ligase, that can regulate 
EWS/FLI protein degradation. In addition, the func-
tion of TRIM8 is not limited to ubiquitination; it can 
also act as an oncogene or tumor suppressor in multi-
ple cancers. TRIM8 is involved in three pivotal cellular 
signaling pathways, namely, the p53 tumor suppressor, 
NF-κB and JAK-STAT pathways, which can affect cell 
proliferation, the cell cycle, DNA repair, autophagy, 

Fig. 8  The mRNA and protein expression of TRIM8 and UHRF2 in cell lines. The mRNA expression of TRIM8 (A) and UHRF2 (B) relative to that of 
β-actin in osteosarcoma and osteoblast cells by qRT-PCR (2−ΔΔCT method, mean ± standard error of the mean). C Western blotting analysis 
of TRIM8 and UHRF2 expression. The protein expression of TRIM8 (D) and UHRF2 (E) relative to that of β-actin in osteosarcoma and osteoblast cells 
was determined by Western blotting analysis (mean ± standard error of the mean)
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chemo-sensitivity, inflammation and immunity [61, 
62]. In this study, high TRIM8 expression was found to 
be associated with poor long-term prognosis in osteo-
sarcoma, and the same conclusion was reached by 
Dachang Liu et  al. [63]. Intriguingly, TRIM8 plays an 
opposite role in another bone sarcoma, namely, Ewing 
sarcoma, but the reason for this difference still needs 
further investigation [60].

UHRF2 encodes a ubiquitin-ligase that is capable of 
ubiquitinating PCNP (a PEST-containing nuclear pro-
tein), which is involved in cell cycle regulation, cell pro-
liferation, etc. (NCBI Reference Sequences (RefSeq)). 
UHRF2 has also been reported to affect certain pheno-
types of tumor cells through DNA demethylation, the 
ErbB3/Ras/Raf signaling pathway, and the Wnt/β-catenin 
signaling pathway [64–69]. Hu et al. [70] discovered that 

Fig. 9  Immunohistochemical staining for TRIM8 and UHRF2 in osteosarcoma and normal bone tissues. Immunohistochemical staining for TRIM8 
in normal bone (A, B) and osteosarcoma (C, D) tissues at 200 × and 400 × magnification, respectively. E Scatter plot of the positive rate of TRIM8. 
Immunohistochemical staining for UHRF2 in normal bone (F, G) and osteosarcoma (H, I) tissues at 200 × and 400 × magnification, respectively. J 
Scatter plot of the positive rate of UHRF2. Significance level: no significance (ns), p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001, ****, p < 0.0001)
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miR-196a could promote the proliferation and migra-
tion of esophageal cancer cells through the UHRF2/
TET2 axis. Zhang Y et al. [71] also reported that UHRF2 
enhances the malignancy of hepatocellular carcinoma via 
PARP1-mediated autophagy. In addition, studies have 
shown that UHRF2 has prognostic value in osteosarcoma 
[72–74]. In our study, high UHFR2 expression was also 
found to be associated with poor long-term prognosis.

Monocytic lineage infiltration and metastasis, which 
are important components of this model, have been 
reported to be associated with the prognosis of osteo-
sarcoma in many studies [75–79]. The immune cells that 
infiltrate osteosarcoma cells include mainly macrophages 
and T cells, which are closely related to tumor progres-
sion and metastasis [80–82]. In our study, monocytic lin-
eage infiltration, dominated by monocytes, macrophages 
and dendritic cells [36], was associated with the survival 
of patients with osteosarcoma, which was consistent with 
the findings of previous studies. In addition, drugs that 
target macrophage-associated genes and pathways are 
currently approved for clinical use and are considered 
promising treatments for reducing the tumor burden 
and extending the survival of osteosarcoma patients [8, 
83–85]. In addition, drugs that can block the metastasis 
of osteosarcoma are now also a focus of current research 
and are considered promising.

In summary, we identified two Ub/UBL genes (TRIM8 
and UHRF2) that were most strongly associated with the 
survival of osteosarcoma patients. A prognostic model 
was established based on the gene significance score, 
monocytic lineage infiltration and metastasis. The model 
was successfully validated in an independent external 
cohort, and it had good prediction accuracy and discrim-
inatory capacity, especially for 3- and 5-year prediction. 
TRIM8 and UHRF2 might affect the prognosis of osteo-
sarcoma patients by influencing or collaborating with 
several important pathways, such as the p53 signaling 
pathway, TGF-beta signaling pathway, and cell cycle.

Finally, several limitations of this study should be 
acknowledged. First, due to the low incidence rate of 
osteosarcoma, larger sample sizes are needed for survival 
analysis. The TCGA dataset only comprises 84 samples 
with osteosarcoma survival data. While pooling data 
from multiple sources could increase the sample size, dif-
ferences in sequencing or chip methods across different 
sources may introduce significant biases to the results. 
Second, our study primarily relied on bioinformatics 
analysis, with validation of the differential expression of 
TRIM8 and UHRF2 in osteosarcoma conducted at the 
tissue and cellular levels. However, the specific mecha-
nisms by which these indicators influence the prognosis 
of osteosarcoma patients remain unclear. In our future 

research, we will validate the signaling pathways of 
TRIM8 and UHRF2 that potentially influence the pheno-
type of osteosarcoma through gene interference.

Conclusions
TRIM8 and UHRF2 are potential prognostic genes for 
osteosarcoma. The gene significance score of these two 
genes, along with metastasis and monocytic lineage infil-
tration, can effectively predict the 3- and 5-year survival 
rates of patients with osteosarcoma.
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