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Recent research advances in pain 
mechanisms in McCune–Albright syndrome 
thinking about the pain mechanism of FD/MAS
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Abstract 

Background The lack of effective understanding of the pain mechanism of McCune–Albright syndrome (MAS) 
has made the treatment of pain in this disease a difficult clinical challenge, and new therapeutic targets are urgently 
needed to address this dilemma.

Objective This paper summarizes the novel mechanisms, targets, and treatments that may produce pain in MAS 
and fibrous dysplasia (polyfibrous dysplasia, or FD).

Methods We conducted a systematic search in the PubMed database, Web of Science, China Knowledge Network 
(CNKI) with the following keywords: “McCune–Albright syndrome (MAS); polyfibrous dysplasia (FD); bone pain; bone 
remodeling; G protein coupled receptors; GDNF family receptors; purinergic receptors and glycogen synthase kinase”, 
as well as other keywords were systematically searched. Papers published between January 2018 and May 2023 
were selected for finding. Initial screening was performed by reading the titles and abstracts, and available literature 
was screened against the inclusion and exclusion criteria.

Results In this review, we systematically analyzed the cutting-edge advances in this disease, synthesized the findings, 
and discussed the differences. With regard to the complete mechanistic understanding of the pain condition in FD/
MAS, in particular, we collated new findings on new pathways, neurotrophic factor receptors, purinergic recep-
tors, interferon-stimulating factors, potassium channels, protein kinases, and corresponding hormonal modulation 
and their respective strengths and weaknesses.

Conclusion This paper focuses on basic research to explore FD/MAS pain mechanisms. New nonneuronal 
and molecular mechanisms, mechanically loaded responsive neurons, and new targets for potential clinical inter-
ventions are future research directions, and a large number of animal experiments, tissue engineering techniques, 
and clinical trials are still needed to verify the effectiveness of the targets in the future.

Keywords McCune–Albright syndrome, Bone remodeling, G protein-coupled receptors, GDNF family receptors, 
Purinergic receptors, Glycogen synthase kinase

Introduction
McCune–Albright syndrome (MAS) is a genetic disorder 
with multiple systemic involvement, and it most often 
occurs in women. It is characterized by atypical symp-
toms, multiple fibrous dysplasia, cutaneous café au lait, 
and multiple endocrine disorders that can involve vari-
ous organs and tissues, including the gonads, thyroid, 
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pituitary, and adrenal glands. The disease has a preva-
lence of 1 in 100, 000 to 1 in a million and exists in both 
mono- and poly-osteogenic forms. The disease is char-
acterized by the formation of cranial skeletal dysplasia 
or mesial-extremity skeletal lesions with intertwining 
fibrous tissue with normal bone, as well as the accumu-
lation of nonmineralized bone and increased osteoclast 
activity. Somatic mutations resulting from activating 
mutations in the gene (GNAS1) encoding the α-subunit 
of the guanine nucleotide-binding protein (Gsα) during 
early embryonic life are the main cause of the disease. 
Because of the mosaic distribution of mutations, it results 
in a low rate of positive genetic tests leading to adenylate 
cyclase stimulation and cyclic AMP production [1], as 
well as the proliferation of bone progenitor cells and the 
lesion of poly-fibrous dysplasia (FD).

The disease has been reviewed by Tseng [2] and Jiang 
[3]; however, they only focused on the statement of exist-
ing symptoms and the summary of diagnostic methods, 
the most serious pain mechanism of this disease has not 
been discussed. The focus of this article was to review 
the pain mechanisms of FD/MAS in axial limb skel-
etal lesions. This disease can lead to bone pain, spinal 
deformities, and fractures; moreover, corrective surgery, 
although commonly used in FD/MAS, does not provide 
sustained pain relief. Currently, surgical procedures and 
existing drugs that alter bone turnover pathways also 
have obvious drawbacks, and the incomplete correlation 
between disease lesion load and patient-reported pain 
intensity adds to the complexity of FD/MAS pain man-
agement [4]. Due to the lack of effective international 
understanding of the pain mechanisms in this disease, 
the pain treatment of FD/MAS remains a difficult prob-
lem to overcome in clinical practice. Therefore, this paper 
reviews recent research on pain mechanisms in FD/MAS, 
such as mechanosensitive channels, redox, acidosis, spe-
cific hormone-regulated abnormal bone remodeling, 
signaling pathways regulating pain, interferon-stimulated 
factors, and key receptors; in addition, it describes new 
approaches to treat pain in MAS to explore new thera-
peutic targets for pain in this disease, as well as tissue 
engineering approaches.

Materials and methods
We performed a database search on PubMed, Web of 
Science, China Knowledge Network (CNKI) and selected 
papers that were published between January 2018 and 
May 2023 in the English language. PubMed was last 
accessed on May 30th, 2023. The following keywords 
and terms were used: (1) McCune–Albright syndrome 
(MAS); (2) poly-fibrous displasia (FD); (3) bone pain; (4) 
bone remodeling; (5) G protein coupled receptors; (6) 

GDNF family receptors; (7) purinergic receptors; and (8) 
glycogen synthase kinase. The following string was used:

(((((((("Fibrous Dysplasia, Polyostotic" [Mesh] or Dys-
plasia, Polyostotic Fibrous or Dysplasias, Polyostotic 
Fibrous or Fibrous Dysplasias, Polyostotic or Polyostotic 
Fibrous Dysplasias or Polyostotic Fibrous Dysplasia or 
Albright Syndrome or Syndrome, Albright or McCune–
Albright Syndrome or McCune Albright Syndrome or 
Syndrome, McCune–Albright or Albright’s Disease or 
Fibrous Dysplasia with Pigmentary Skin Changes and 
Precocious Puberty or Albright’s Syndrome with Preco-
cious Puberty or Albright-Mccune-Sternberg Syndrome 
or Albright-Sternberg Syndrome or Albright’s Syndrome 
or Syndrome, Albright’s or Albright’s Disease of Bone) 
OR ("Bone Remodeling" [Mesh] or Remodeling, Bone 
or Bone Turnover or Bone Turnovers or Turnover, Bone 
or Turnovers, Bone and pain)) OR ("Receptors, G-Pro-
tein-Coupled" [Mesh] or Receptors, G Protein Coupled 
or G-Protein-Coupled Receptors or G Protein Coupled 
Receptors or G-Protein-Coupled Receptor or Recep-
tor, G-Protein-Coupled or G Protein Coupled Receptor 
and pain)) OR ("Glial Cell Line-Derived Neurotrophic 
Factor Receptors" [Mesh] or Glial Cell Line Derived 
Neurotrophic Factor Receptors or GDNF Receptors or 
GFRA4 Receptor or GDNF Family Receptor Alpha 4 or 
Glial Derived Neurotrophic Factor Receptor 4 or GDNF 
Family Receptor 4 or GFRA3 Receptor or GDNF Family 
Receptor Alpha 3 or Glial Derived Neurotrophic Fac-
tor Receptor 3 or GDNF Family Receptor 3 or GFRA1 
Receptor or GDNF Family Receptor 1 or GDNF Family 
Receptor Alpha 1 or Glial Derived Neurotrophic Fac-
tor Receptor 1 or GFRA2 Receptor or GDNF Family 
Receptor Alpha 2 or Glial Derived Neurotrophic Factor 
Receptor 2 or GDNF Family Receptor 2 and pain)) OR 
("Receptors, Purinergic" [Mesh] or Purine Receptor or 
Receptor, Purine or Purinoceptors or Purine Receptors 
or Purinergic Receptors or Purinoceptor or Purinergic 
Receptor or Receptor, Purinergic or Receptors, Purine or 
Methyladenine Receptors or Receptors, Methyladenine 
and pain)) OR ("Glycogen Synthase Kinases" [Mesh] or 
Kinases, Glycogen Synthase or Glycogen Synthase Kinase 
or Kinase, Glycogen Synthase or Synthase Kinase, Gly-
cogen and pain)) OR ("Bites and Stings" [Mesh] or Stings 
and Bites or Stings or Sting or Bites or Bite and pain)) 
OR ("P2RX7 protein, human" [Supplementary Concept] 
and bone pain)) OR ("Cyclic GMP-Dependent Protein 
Kinases" [Mesh] and pain).

In addition, a manual search was performed of the 
cited references in the included studies. The reviewers 
(YW and TJ) retrieved the data and independently ana-
lyzed each selected study; instances of disagreement were 
resolved by the senior investigator (TJ).
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A total of 1, 778 papers were identified with no 
duplicates; additionally, as a first step, 110 papers 
were excluded for other reasons, and 122 papers were 
excluded due to duplication (PRISMA flow diagram 
reported in Fig.  2). A total of 712 articles that did not 
meet the requirements by reading the abstracts and titles 
were excluded. However, there were 78 unresearched lit-
erature reports, which resulted in 988 papers for further 
evaluation. According to the selection criteria, out of the 
988 qualified research results that were evaluated by Pub-
Med, 15 articles were ultimately included in this analysis.

Results
Mechanisms by which abnormal bone remodeling affects 
FD/MAS pain
Mechanically sensitive channel Piezo family
FD/MAS is a genetic skeletal disorder that is character-
ized by abnormal bone remodeling, and studies have 
found that bone remodeling and inflammatory processes 
are thought to produce bone pain in FD/MAS [5]. The 
Piezo family includes Piezo1 and Piezo2 subtypes, and 
the most relevant stressor regulating Piezo1 is mechani-
cal force, which is a key factor in bone remodeling. 
Piezo1 ion channel mediatesosteoblasts’ mechanical 
force sensitivity and its important role is load-depend-
ent bone formation, suggesting a new mechanism for 
mechanical force sensing in bone tissue. When sensory 
nerve fibers swell in response to mechanical stress, they 
cause the activation of mechanosensitive ion channels, 
which are recruited in osteoblasts and chondrocytes, 
thereby regulating osteogenesis and cartilage degrada-
tion in joints and promoting the process of bone remod-
eling [6]. Piezo1 is detected in osteoblasts (which are the 
most abundant bone cells), and Piezo1-Akt channels are 
key players in tissue remodeling, wherein they mainly act 
on osteoblasts. Among these signaling effects, Piezo1-
Akt signaling and the inhibition of sclerostin (which is 
an important regulator of bone formation), as well as its 
downregulation, affect osteoblast function in FD/MAS 
patients, and the activation of the Piezo1-Akt pathway 
in osteoblasts is needed for mechanical stretch-induced 
downregulation of sclerostin (Sost) expression. There-
fore, Piezo1 was identified as a major skeletal mecha-
nosensor regulating skeletal homeostasis, which raises 
the possibility for new selective therapeutic approaches 
for FD/MAS [7, 8].

FD/MAS generates intraosseous pressure in the bone 
microenvironment, whereby it sensitizes primary affer-
ent nerves through the activation of mechanoreceptors 
and osteocyte mechanotransduction. Piezo2 has been 
found to be critical for transferring pain and touch sen-
sation, as well as proprioception, in the nervous system, 
and irreversible in  vivo Piezo2 microdamage may be an 

important contributor to FD/MAS pain [9]. It has been 
suggested that primary Piezo2 injury is the primary pain 
pathway in FD/MAS because of the loss of unbalanced 
subthreshold calcium currents and N-methyl-D-aspar-
tate (NMDA) activation, as well as due to the dysregula-
tion of the primary pain pathway in the dorsal horn of 
the spinal cord (due to NMDA activation) and the loss 
of l-type calcium currents, thus resulting in the loss of 
activation of wide dynamic range neurons. Animal stud-
ies have demonstrated that loss-of-function mutations in 
Piezo2 lead to loss of pain perception, whereas irrevers-
ible Piezo2 microdamage can continuously activate the 
transcriptional pathway [10].

Additional studies have suggested that Piezo2 plays a 
role in synchronizing supraspinal neural networks [11], 
and the loss of excitatory function of Piezo2 may theoret-
ically lead to impaired spinal synchrony and loss of spinal 
function in the central pattern generator (CPG). Patho-
genic variants of Cav1.3, which encode the CACNA1D 
gene, may play a role in the pain mechanisms of FD/MAS 
and have a specific relationship with dysregulation of 
pain pathways in the dorsal horn of the spinal cord [12]. 
Table 1 summarizes studies on the mechanisms by which 
the Piezo family affects pain through abnormal bone 
remodeling.

Role of redox homeostasis in abnormal bone remodeling 
pain
Oxidative stress (OS) is a potential injury resulting 
from the disruption of the balance of strong oxidants 
and antioxidants, which plays an important role in the 
physiopathological and aging processes of many tissues. 
Its broad role is in bone tissue, where reactive oxygen 
species (ROS) are involved in bone remodeling via the 
RANKL pathway, thus physiologically promoting osteo-
clast differentiation [14]. The redox state should be kept 
in a precise balance to maintain proper bone remod-
eling; however, due to increased osteoclast activity, FD/
MAS predisposes to ROS accumulation and cellular 
stress; additionally, ROS promote osteoblast apopto-
sis and indirectly elicit osteoclast formation, and exces-
sive mechanical forces not only affect bone mass and 
its microarchitecture but also promote inflammatory 
responses through redox affecting NF-κB factors. Thus, 
redox dysregulation affecting bone remodeling plays an 
important role in the pathogenesis of FD/MAS pain [14]. 
Epithelial sodium channels (ENaCs) are major contribu-
tors to intracellular sodium homeostasis. Specifically, 
αENaC subunits are present in skeletal cells, including 
articular chondrocytes and osteoblasts, and are thought 
to be involved in mechanotransduction, sodium trans-
port, and extracellular sodium sensing. It was found that 
there is a correlation between bone sodium content and 
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FD/MAS, as well as the fact that ENaC is sensitive not 
only to extracellular sodium and mechanical forces but 
also to oxidative stress. Moreover, it has been shown that 
ENaC is upregulated through ROS production and that a 
similar correlation between ENaC function or expression 
and ROS production in osteoblasts may provide a new 
research direction for FD/MAS [15].

The role of acidosis in the pain mechanism of FD/mas bone 
remodeling
Acid‑sensing ion channel (ASIC)
Acid-sensing ion channels (ASICs) are a group of proton-
gated cation-permeable channels, and reduced osteoblas-
togenesis was observed under acidic conditions when 
osteoblasts were cultured in medium with elevated pH, 
whereas ASIC2, ASIC3, and ASIC4 were progressively 
upregulated. The authors suggested that decreased pH 
activates acid-sensing ion channels and that acidic pH 
leads to impaired osteoblastogenesis, which represents a 
pH-dependent pattern that may support a role for ASIC 
in the painful mechanism of FD/MAS bone remodeling 
[16].

Transient receptor potential (TRP) family channels
Transient receptor potential (TRP) channels, which are 
a class of cation channels, are widely expressed cation 
channels that play an important role in mediating cal-
cium homeostasis and are considered to be potential 
regulators of inflammatory pain. Skeletal disorders with 
increased bone resorption by osteoclasts are usually asso-
ciated with pain, and they secrete large amounts of pro-
tons during bone resorption, thus resulting in an acidic 
local environment. Acidosis is a typical noxious stimu-
lus that innervates injured skeletal nerves and can excite 
injurious sensory neurons by opening acid-sensing ion 
channels (ASIC) and transient receptor potential chan-
nels [17]. The transient receptor potential channel sub-
family V (TRPV) channels TRPV1, TRPA1, and TRPV4, 
as well as the transient receptor potential cation channel 
subfamily M (TRPM7) channels, have been reported to 
be present in bone; however, only TRPV1 and TRPA1 
respond to pH changes [18]. However, in a mildly aci-
dotic environment, OC formation is also increased when 
the specific agonist 4-alpha PDD activates TRPV4, thus 
indirectly causing acidosis and increasing FD/MAS pain 
risk [19].

Altogether, TRPV4, TRPV1, and TRPV2 are involved 
in acidosis, as well as in promoting osteoclast forma-
tion and impairing bone formation by enhancing cal-
cium ion excretion and osteoclast resorption. TRPA1 is 
distributed in a large number of cell types and is usually 
associated with TRPV1, which is sensitive to external 
stimuli (especially in nerve tissue). Tissue stiffness in FD/

MAS patients activates TRPV4 and increases M1 mac-
rophage infiltration, and TRPV1 has a prominent role 
with TRPV4 in external stimuli and inflammatory envi-
ronmental episodes; thus, this ion channel is considered 
a potential therapeutic target for FD/MAS pain. TRPM7 
is a TRP channel involved in bone metabolism, as well as 
a cation channel that is covalently linked to the structural 
domain of protein kinase; additionally, it has been found 
that TRPM7 acts as a cation channel in bone. TRPM7 has 
also been found to play a key role in bone metabolism as 
a cation channel.

In the development of FD/MAS, formaldehyde can 
be secreted by disease-involved tissues. In pain models, 
formaldehyde was found to upregulate TRPV1 expres-
sion and contribute to pain behavior. These facts sug-
gest that the targeting of formaldehyde production may 
be a potential therapeutic approach for FD/MAS pain. A 
summary of studies on the mechanisms by which tran-
sient receptor potential channels (TRPs) influence abnor-
mal bone remodeling is detailed in Table 2.

Summary of hormones associated with painful abnormal 
bone remodeling
Current research suggests that abnormal bone growth in 
FD/MAS leads to structural and functional alterations in 
nerve fibers and increased sensitivity to pain. The over-
production of hormones acting on nociceptive nerves 
can also lead to pain.

Role of parathyroid hormone in abnormal bone remodeling
Parathyroid hormone (PTH) regulates the body’s calcium 
homeostasis. In vitro and in vivo studies have shown that 
PTH directly activates survival signaling in osteoblasts, 
thus leading to an increase in the number of osteoblasts 
through a delay in osteoblast apoptosis, which corre-
spondingly affects abnormal bone remodeling [27]. In a 
rat model of PD (Parkinson’s disease), PTH was found to 
have anti-inflammatory and inhibitory effects on bone 
loss. Cortisol inhibits parathyroid hormone and stimu-
lates the proliferation and differentiation of progenitor 
cells into osteoclasts. Administration of cortisol may 
attenuate bone remodeling in patients with MAS by 
inhibiting bone formation [28]. Therefore, cortisol may 
improve MAS pain as a therapy, but not optimally.

Oxytocin regulates bone formation
Oxytocin (OT) is produced by the hypothalamus, and 
osteoblasts expressing OT receptors can bind to it. It 
was found that OTs are involved in the bone remodeling 
process, which reduces bone resorption and leads to a 
relative increase in bone formation. The OT treatment 
process leads to increased intracellular calcium levels and 
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modulates the stimulation of osteoblast formation, thus 
regulating bone formation [29].

Insulin is involved in activating abnormal bone remodeling
Insulin has been reported to activate osteoblast differ-
entiation, reduce apoptosis of osteoblasts, and decrease 
osteoclast activity. Insulin-like growth factor-1 (IGF-1) 
can be activated by human growth hormone and can also 
be secreted by osteoblasts. IGF-1 is involved in abnormal 
bone remodeling during FD/MAS, and IGF-1 synthesis 
is regulated by parathyroid hormone (PTH) [30]. A low 
decrease in IGF-1 expression is thought to be needed 
for the onset of apoptosis and to promote osteoblast 
differentiation.

Sex hormones are involved in activating abnormal bone 
remodeling
Estrogen (ES) plays an important role in the regulation of 
skeletal maturation and bone remodeling. At the cellular 
level, ES inhibits osteoclast differentiation, and deficiency 
in ES leads to increased osteoclast formation, which 
reduces osteoclast number and decreases the number 
of active remodeling units [31]. Testosterone activates 
osteoblasts by activating steroid receptors (either directly 
or via aromatization to estradiol) to regulate FD/MAS 
abnormal bone remodeling [32].

Erythropoietin is involved in abnormal bone remodeling
Erythropoietin (EPO) can indirectly increase bone for-
mation by increasing the expression of vascular endothe-
lial growth factor (VEGF), and EPO usually indirectly 
activates osteoblast differentiation. These empirical find-
ings are important for understanding bone remodeling 
and may be useful in treating bone defect growth issues 
[33]. EPO can promote bone formation directly and indi-
rectly through VEGF.

Abnormal bone remodeling involving lipocalin
Lipocalin (AN) is a protein produced by adipose tissue, 
and studies have identified a potential role for AN as a 
positive bone mass regulator, angiogenesis stimulator, 
and osteoclast suppressor. Two AN receptors have been 
identified by the expression of osteoblasts, thus suggest-
ing a role for AN in bone metabolism. Additionally, it has 
a direct function in bone metabolism by promoting pro-
liferation and stimulating bone formation, as well as pos-
sessing the potential for bone regeneration [34]. AN and 
its agonists may be used to treat FD/MAS abnormal bone 
remodeling pain.

Nociceptive sensitization and the role of G 
protein‑coupled receptors (GPCRs) in FD/MAS pain
In FD/MAS, the articular cartilage is not innervated and 
does not become a direct source of pain, whereas the rest 
of the tissue has nociceptive receptors and sympathetic 
nerve fibers. Nociceptive receptors that are continu-
ously stimulated respond to harmless painful stimuli or 
respond strongly to harmful pain, which is a phenom-
enon known as nociceptive sensitization [35]. The spi-
nal dorsal horn is the first transit point for pain signals, 
which are transmitted to the dorsal horn of the spinal 
cord and subsequently to the upper brain centers, thus 
creating conscious pain. Numerous studies have shown 
that considerable amounts of pain are mediated by both 
central and peripheral sensitization. Peripheral sensi-
tization leads to abnormal hyperexcitability of primary 
sensory neurons, whereas central sensitization enhances 
injurious information from the dorsal horn of the spinal 
cord to the cerebral cortex, in regards to synaptic trans-
mission [36].

G protein-coupled receptors (GPCRs) can sometimes 
indirectly sensitize various voltage-gated ion channels 
(VGICs) that are expressed on sensory neurons, thereby 
further enhancing nociceptive signals to the spinal cord. 
Studies have demonstrated that ovarian cancer G pro-
tein-coupled receptor 1 (OGR1) family subtypes are 
differentially expressed in different inflammatory pain 
states and that they are involved in short- and long-term 
chronic inflammatory pain. Alkaline pH promotes min-
eralization and osteoblast potential, whereas acidosis 
correspondingly stimulates osteoclast resorption. OC 
sensitivity to protons involves the early expression of 
ovarian cancer G protein-coupled receptor 1 (OGR1), 
and studies have suggested that OGR1 is involved in 
osteoclast formation and that OGR1 may be a central 
acid sensor in bone, which is important for studying FD/
MAS-induced pain mechanisms [37].

Dual role of the NO/cGMP (cyclic guanosine 
monophosphate) signaling pathway
The main process of the NO/cGMP signaling pathway in 
cells involves NO activation of soluble guanylate cyclase, 
which leads to subsequent production of cGMP. The 
activation of NO/cGMP signaling in the spinal cord sig-
nificantly induces upregulation of downstream effectors, 
as well as reactive astrogliosis and microglia polariza-
tion involved in the chronic pain process. In dorsal root 
ganglion neurons, natriuretic peptides bind to granular 
guanylate cyclase to produce and further activate the 
cGMP/PKG pathway, thus contributing to the develop-
ment of FD/MAS pain. In addition, FD/MAS leads to 
the upregulation of multiple receptors that are involved 
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in the activation of the NO/cGMP signaling pathway in 
various types of pain, and the NO/cGMP signaling path-
way induces the expression of downstream effectors that 
exert analgesic effects in both neuropathic and inflamma-
tory pain [38].

Lactoferrin can exert its antinociceptive sensitiza-
tion effects by activating the NO-cGMP-ATP-sensitive 
K-channel signaling pathway, and this interaction is 
used in inflammatory and injurious pain treatment. The 
activation of NO/cGMP signaling was found to play an 
important role in the development of chronic pain, and 
this signaling pathway with dual roles is a promising tar-
get for FD/MAS pain treatment [39].

Effects of the ERK/CREB pathway on FD/MAS pain 
mechanisms
Extracellularly regulated protein kinases (ERKs) play 
important roles as cell signaling transducers in a variety 
of essential cellular functions, such as migration, differ-
entiation, growth, and survival, whereas cyclic phospho-
adenosine effector-binding proteins (CREBs) regulate 
the transcription of a variety of cellular genes, includ-
ing dopaminergic neurons. Moreover, the activation of 
CREBs can improve muscle performance. It has been 
shown that recombinant Sirtuin 6 (SIRT6) downregu-
lates Sox6 (which is a key blocker of slow fiber-specific 
genes) by increasing CREB transcription, which improves 
muscle performance; this effect represents another new 
direction in the study of FD/MAS pain mechanisms [40].

Oxidative stress and neuroinflammation
The BDNF-TrkB-ERK-CREB pathway is extensively 
involved in neurologically relevant processes, and the 
BDNF-TrkB-ERK-CREB pathway is closely associated 
with oxidative stress and neuroinflammatory processes. 
Ectopic ossification in FD/MAS patients can detect ele-
vated sensory innervation, and activated sensory fibers 
can release neuropeptide P and calcitonin gene-related 
peptide (CGRP) via the induction of neuroinflamma-
tion [41]. It has been demonstrated that increased pain 
and pain aversion in bone pain rats is accompanied by 
the upregulation of brain-derived neurotrophic fac-
tor (BDNF) expression, and the phosphorylation of the 
ERK/CREB pathway (pERK/pCREB) is upregulated in 
response to increased pain and pain aversion (or the 
exogenous injection of BDNF). The decreased expression 
level of pERK/pCREB after blocking BDNF-TrkB signal-
ing suggests that the ERK/CREB pathway is critical for 
BDNF-TrkB signaling-mediated pain and aversion pain, 
and this ERK/CREB pathway may induce pain in FD/
MAS by mediating oxidative stress and neuroinflamma-
tory processes [42].

miRNA‑mediated activation of the ERK/CREB pathway
During pain, the activation of the ERK/CREB pathway is 
often mediated by microRNAs. In chronic inflammatory 
rats, miR-211 can target the 3’-UTR of the ERK gene, 
which greatly increases the expression levels of ERK and 
CREB, thus promoting hypersensitivity and consequently 
pain [43]. MicroRNA-365 decreases the expression of 
β-arrestin2, ERK, and CREB proteins, and β-arrestin2 
negatively targets and inhibits ERK/CREB pathway acti-
vation to achieve better analgesic effects [44].

Modulation of FD/MAS pain by purinergic 
receptors (P2XRs)
Purinergic receptors (P2XRs) are ligand-gated cation 
channels that are mainly activated by extracellular ATP 
(eATP). Some P2XRs are found in osteoclast, and P2XR 
members regulate bone resorption, particularly through 
the proinflammatory microenvironment [45]. P2X3R was 
found to be distributed not only in the peripheral nerv-
ous system but also in the presynaptic portion of the spi-
nal cord and in the periaqueductal gray matter (PAG) of 
the midbrain. Tian Shuxin et al. showed that both periph-
eral and central P2X3Rs are involved in analgesia [46]. 
Moreover, Liu Min reported that the functional upregu-
lation of P2X3R is involved in the pathogenesis of pain, as 
well as the fact that P2X3 receptors are involved in injuri-
ous transmission and modulation in the peripheral and 
central nervous system and that P2X3R blocks mechani-
cally abnormal pain and nociceptive hyperalgesia, thus 
exerting a significant analgesic effect [47]. P2X7R is 
the most abundant form of receptor in osteoclasts, and 
P2X7R mechanotransduction mediates not only osteo-
clast proliferation but also bone resorption, pain, and 
reduced mechanical sensitivity. The author suggests that 
blockage of the P2X3 receptor is a new therapeutic target 
for FD/MAS pain [48]. A summary of studies on puriner-
gic receptors on pain mechanisms is detailed in Table 3.

Important player involving GDNF family receptors 
in FD/MAS pain
Glial cell-derived neurotrophic factor (GDNF) has 
been shown to sensitize injury receptors and induce 
chronic inflammatory pain and muscle pain. GFRα is a 
high-affinity receptor for GDNF, and the knockdown of 
GFRα1 by intrathecal injection of antisense oligodeoxy-
nucleotides, as well as mRNA encoding GFRα1, attenu-
ates both GDNF-induced nociceptive hyperalgesia and 
chronic muscle pain. GDNF-GFRα1-Ret-ERK signaling 
has been reported to activate Runx2-mediated P3X1R 
gene transcription, which contributes to the sensitization 
of DRG neurons and induces bone pain; additionally, this 
study may provide a potential target mechanism leading 
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to bone pain in FD/MAS patients. Inflammatory bone 
pain involves the activation of the GDNF-GFRα1 signal-
ing pathway and the sensitization of nonpeptidergic bone 
afferent neurons, and neuroinflammation occurring in 
FD/MAS patients can be induced by GDNF expression 
in activated astrocytes, microglia, and infiltrating mac-
rophages [51]. Studies have shown that bone afferent 
neurons of GFRα1 and GFRα2 are mostly nonpeptider-
gic; therefore, GDNF and neuroturin signaling through 
nonpeptidergic sensory neurons may be important for 
bone pain in FD/MAS. However, GDNF isolation does 
not prevent inflammation-induced pain behavior and 
may contribute to the maintenance of deep tissue pain 
[52]. Artemin, which is a member of the neurotrophic 
factor family derived from the glial cell lineage, is an 
important player in persistent pain, such as neuropathic 
cold pain and inflammatory bone pain [53]. It has been 
found that inflammatory bone pain in FD/MAS involves 
the activation of NGF-sensitive peptidergic neurons 
via the artemin/GFRα3 signaling pathway [54]. Moreo-
ver, the activation of the artemin/GFRα3 pathway can 
directly or indirectly activate TRP channel expression 
and activity and perpetuate pain; thus, it is known that 
artemin/GFRα3 plays an important role in FD/MAS pain 
[55]. Table 4 provides a detailed summary of the potential 
targeting mechanisms of the GDNF family of receptors 
for bone pain.

Interferon‑stimulating factor (STING): a new target 
for FD/MAS pain
STING is an intracellular DNA sensor with an impor-
tant role in chronic pain. DRG neurons are involved in 
interferon-stimulated factor (STING), which medi-
ates the stimulus of the innate immune response and 
regulates injury perception. Moreover, upon binding to 
DNA, cyclic GMP-AMP synthase (cGAS) undergoes a 
conformational change to an active state and generates 
a second messenger cyclic GMP-AMP (cGAMP) [57]. 
cGAMP acts as a second messenger to activate STING 
and drives STING translocation from the endoplasmic 
reticulum to perinuclear microsomes via the Golgi appa-
ratus [58]. Subsequently, activated STING recruits and 
phosphorylates TANK-binding kinase 1 (TBK1), which 
further activates interferon regulatory factor 1 (IRF1) 
and NF-κB factors. These factors enter into the nucleus 
to induce the expression of type I interferon (IFN-I) and 
proinflammatory factors, such as IL-6β, IL-7, and TNF-α 
[59]. Previous studies have demonstrated that the cGAS-
STING pathway is a potential mechanism for many 
inflammation-mediated pathophysiological processes 
[60]. Although there is growing evidence that STING is 
involved in the generation and maintenance of neuroin-
flammation and inflammatory bone pain, a recent study 

in an alternate nerve injury (SNI) model demonstrated 
that STING activation in DRG neurons drives bone pain 
through the TBK1/IKK/NF-κB proinflammatory factor 
signaling pathway; thus, STING may be a new therapeu-
tic FD/MAS pain target for the treatment of FD/MAS 
pain [61].

Potassium channel involvement in patients 
with FD/MAS
Patients with FD/MAS may evoke hypernormal activa-
tion of neuronal resonance and disturbances in neuro-
plasticity through enhanced responses to sensory input. 
These processes may involve imbalance at the neuronal 
level, thus leading to hyperexcitability and hypersensi-
tivity of neurons in the CNS, which results in sustained 
activation of injury receptors; these findings are consist-
ent with the development of central sensitization [62]. K 
channels are involved in fibromyalgia in FD/MAS, with 
channels including fast K + channels, potassium leak (KL) 
channels, KCHN2 voltage-gated potassium channels, 
and Kv channel autoantibodies. Additionally, it has been 
found that the water fraction of substance P (SP) is ele-
vated in the cerebrospinal fluid of FD/MAS patients [63]. 
Substance P is a mediator of pain, is involved in pain pro-
duction and transmission signaling, and can also exhibit 
anti-injury-sensing properties.

Potential new approaches to treat FD/MAS pain
Glycogen synthase kinase-3 (GSK-3) is a cytoplasmic ser-
ine/threonine protein kinase that is involved in a large 
number of key cellular processes, and kenpaullone (kp) 
is a glycogen synthase kinase-3 (GSK3)/cell cycle pro-
tein-dependent kinase (CDK) inhibitor [64]. In vitro and 
in vivo studies have found that kp acts as an analgesic in 
a preclinical mouse model of pathological pain and that 
its cellular mechanism of action in neurons is based on 
its GSK-3β inhibitory function, which enhances Kcc2/
KCC2 gene expression. In turn, Kcc2 upregulation is 
dependent on the nuclear translocation of the neuronal 
connexin δ-connexin (δ-cat). The enhancement of Kcc2 
gene expression by KAISO transcription factors and 
increased Kcc2 gene expression leads to increased KCC2 
transporter proteins in neurons. Furthermore, kP exhib-
its a robust analgesic response in mice, and the defect in 
KCC2 expression in SCDH is repaired by KP [65].

Abnormal bone remodeling activates the GSK-3β/
Drp1 pathway, thus leading to mitochondrial fission and 
dysfunction. fd/MAS can activate NLRP3 inflammatory 
vesicles, which then induce an injurious response. The 
intrathecal injection of the GSK-3β inhibitor TDZD-8 
decreased Drp1 activity, maintained mitochondrial 
function, reduced the NLRP3 inflammatory vesicle cas-
cade response, and ultimately attenuated FD/MAS pain 
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behavior, as shown in the mechanism in Fig.  1 below 
(Fig. 2).

Discussion
Randomized controlled trials are necessary for FD/MAS, 
especially given the significant placebo effect in clinical 
pain trials; however, they are difficult to perform, and this 
represents a gap in the field. Disease modifiers that have 
previously acted in some way can directly or indirectly 
affect osteoclast function. Pharmacological treatments 
using bisphosphonates, denosumab, and surgery also fail 
to provide sustained pain relief in FD/MAS patients and 
have significant side effects.

The development of novel mechanism-based therapies 
may clinically improve the treatment of FD/MAS pain; 
however, the fundamental improvement of the treatment 
of FD/MAS pain requires continued research efforts to 
develop new therapies with multimodal effects to target 
the underlying mechanisms of different pain conditions. 

The author believes that the neurochemical and elec-
trophysiological properties of DRG neurons, especially 
those new nonneuronal and molecular mechanisms, 
mechanically loaded responsive neurons, and new targets 
for potential clinical interventions, are future research 
directions. A large number of animal experiments, tissue 
engineering techniques, and clinical trials are still needed 
to verify the effectiveness of the targets in the future.

Conclusion
In this review, we have focused on collating the clini-
cal research advances in the last 5  years on the mecha-
nisms of FD/MAS pain and the studies that may serve 
as new pathways in terms of basic experiments. In terms 
of a complete mechanistic understanding of FD/MAS 
pain conditions, new research results on new signal-
ing pathways, neurotrophic factor receptors, puriner-
gic receptors, interferon-stimulating factors, potassium 
channels, protein kinases, and corresponding hormonal 

Fig. 1 The analgesic mechanism of kenpaulone and TDZD. Notes: ① NLRP3 inflammasome, which is a cellular structure composed of multiple 
proteins, is involved in immune and inflammatory responses; ② TDZD-8 is a non-ATP competitive GSK-3β inhibitor; ③ Kenpaulone (kp) 
is a glycogen synthase kinase 3 (GSK3); ④ cyclin dependent kinase (CDK) inhibitor. δ-catenin (δ-cat) is an intercellular junction protein, which 
is a member of the classical catenin family; ⑤ The KCC2 gene, which encodes a molecule known to help expel chloride ions from neurons; ⑥ 
Mitochondrial reactive oxygen species clusters (mtROS). The figure was drawn by first author Yong Wang using Biorender software 
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modulation are organized, and their respective advan-
tages and disadvantages are summarized separately to 
make the included articles more updated and complete 
and to summarize the therapeutic approaches that have 
been identified by the latest studies. The neuronal activity 
of FD/MAS patients is at a consistently high level, which 
leads to an increased sensitivity to painful stimuli. How-
ever, the treatment of pain due to FD/MAS also requires 
a comprehensive consideration of skeletal deformities. 
This article does not describe in detail the mechanical 
pain caused by skeletal deformities.
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