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Abstract
Objective  Lumbar spine and pelvic fractures(LPF) are combined with peripheral ligament injuries(PLI), frequently. It 
has been reported that the site of fracture injury is usually paralleled by the secretion of inflammatory proteins. This 
study aimed to investigate the causal relationship between 91 circulating inflammatory proteins and LPF and PLI by 
using a Two-sample Mendelian randomization (MR) analysis.

Methods  Single nucleotide polymorphisms (SNPs) associated with 91 circulating inflammatory proteins, as 
exposures were selected from a large genome-wide association study (GWAS). The genetic variant data for LPF and 
PLI as outcomes from the FinnGen consortium. The inverse-variance-weighted (IVW) method was utilized as the 
main analysis for exposures and outcomes. In addition, the final results were reinforced by the methods of MR Egger, 
weighted median, simple mode, and weighted mode. The sensitivity analyses were used to validate the robustness 
of results and ensure the absence of heterogeneity and horizontal pleiotropy. MR-Steiger was used to assess whether 
the causal direction was correct to avoid reverse causality.

Results  This study has shown that Beta-nerve growth factor(Beta-NGF) and Interferon gamma(IFN-gamma) are 
both involved in the occurrence of LPF and PLI, and they are reducing the risk of occurrence(OR:0.800, 95%CI: 
0.650–0.983; OR:0.723, 95%CI:0.568–0.920 and OR:0.812, 95%CI:0.703–0.937; OR:0.828, 95%CI:0.700–0.980). Similarly, 
Axin-1 and Sulfotransferase 1A1 (SULT-1A1) were causally associated with LPF(OR:0.687, 95%CI:0.501–0.942 and 
OR:1.178,95%CI:1.010–1.373). Furthermore, Interleukin-4(IL-4), Macrophage inflammatory protein 1a(MIP-1a), and 
STAM binding protein(STAM-BP) were causally associated with PLI(OR:1.236, 95% CI: 1.058–1.443; OR:1.107, 95% CI: 
1.008–1.214 and OR:0.759, 95% CI: 0.617–0.933). The influence of heterogeneity and horizontal pleiotropy were further 
excluded by sensitivity analysis.

Conclusion  This study provides new insights into the relationship between circulating inflammatory proteins and 
LPF and PLI, and may provide new clues for predicting this risk.
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Introduction
Lumbar spine and pelvic fractures(LPF) are frequently 
observed in high-energy injuries, such as falls from 
heights, traffic accidents, and military combat [1, 2]. 
However, with the change in modern lifestyle, low-
energy injury is increasingly common. In addition to 
the common loss of bone mineral density and patho-
logical fracture, the mechanism also includes changes in 
the axial load of the spine [3–5]. In the anatomy of the 
lumbar spine and pelvis, the iliolumbar ligament begins 
at the inferior border of the transverse process of the 4th 
lumbar vertebra and the tip of the transverse process of 
the 5th lumbar vertebra and ends at the inner lip of the 
iliac crest [6]. Normally, the iliolumbar ligaments are in 
a role to share the load and reduce the pressure on the 
lumbar spine [7]. However, injury to the iliolumbar liga-
ments could lead to altered load distribution in the lum-
bar spine, excessive stress, disc degeneration, pelvic tilt, 
and increased risk of fracture of associated structures [8–
10]. It is a potential source of increased socio-economic 
burden.

Inflammation is the host’s physiological response to 
infection or injury. However, aberrant inflammatory 
responses lead to tissue damage. They are central to the 
pathogenesis of a variety of diseases, including sepsis, 
autoimmunity, and atherothrombosis [11]. At present, 
there are more studies have shown that inflammation 
proteins are one of the promoted healing of fracture ini-
tiation factors, such as bone morphogenetic proteins, 
platelet-derived growth factor, and transforming growth 
factor [12, 13]. Although current studies have demon-
strated that inflammatory proteins are involved in frac-
ture healing. Whether inflammatory proteins are related 
to fracture risk is also a question that we need to think 
about, even in terms of genetic inheritance.

Mendelian randomization (MR) is a method of causal 
inference based on genetic variation. The basic prin-
ciple is to use the effect of randomly assigned genotypes 
on phenotype to infer the effect of biological factors on 
disease [14]. This approach reduces the influence of con-
founding factors, unrelated to lifestyle, disease process, 
or environmental factors [15]. In recent years, MR has 
been widely used to verify causality between different 
exposures and outcomes [16, 17]. Therefore, data min-
ing was performed in the latest genome-wide association 
study(GWAS) database and investigated the causal rela-
tionship between 91 circulating inflammatory proteins 
and LPF and PLI by using a Two-sample MR analysis. 
Meanwhile, the role of iliolumbar ligaments in lumbar 
spine and pelvic biomechanics is explored.

Methods
Study design
This study aimed to investigate the causal relationship 
between 91 circulating inflammatory proteins and LPF 
and PLI by using a Two-sample MR analysis. In MR 
analysis, three core assumptions must be met in order 
to obtain valid results, as shown in Fig. 1. Specifically, to 
be used as instrumental variables(IVs) for a risk factor, a 
genetic variant must satisfy (1) a reliable association with 
the risk factor under study (relevance assumption); (2) 
no association with any known or unknown confound-
ers (independence assumption); (3) affecting the out-
come only through risk factors and not through any other 
direct causal pathway (exclusion restriction assumption) 
[18].

Data sources
The datasets used in this study were all from publicly 
available GWAS data summaries.

About the LPF and PLI of the database from FinnGen 
consortium (R9) [19], including 8812 cases and 425,678 
controls from European descent. The 91 circulating 
inflammatory proteins were from a meta-analysis of 11 
cohorts with a total of 14,824 participants of European 
ancestry, and the original publication provides a detailed 
description of the methods used to measure inflamma-
tory proteins [11]. Full per-protein GWAS summary sta-
tistics are available for download at https://www.phpc.
cam.ac.uk/ceu/proteins and the EBI GWAS Catalog 
(accession numbers GCST90274758 to GCST90274848). 
Population selection between exposure and outcome 
groups will not overlap. All original studies obtained 
ethical approval and informed consent. Details of the 
included GWASs are summarized in Supplementary 
Table S1.

Genetic instrumental variables selection
Based on the three core assumptions of MR analysis, it 
is critical to ensure that the single nucleotide polymor-
phisms (SNPs) selected as IVs are strongly correlated 
with exposures. Thus, we did the following steps. Firstly, 
the SNPs of outcomes and 91 circulating inflammatory 
proteins were identified by the significance threshold of 
p < 5 × 10 − 8. For some inflammatory proteins, however, 
the determination of the number of SNPs is limited under 
that condition. To obtain more positive SNPs, we lowered 
the threshold (5 × 10 − 6) [20]. Secondly, the SNPs were 
clumped to remove linkage disequilibrium(kb = 10,000, 
r2 = 0.001) [21]. In the harmonizing process, SNPs 
were excluded if they were non-concordant or palin-
dromic with intermediate allele frequencies. Finally, we 
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calculated the strength of each SNP by the F-statistic, and 
SNPs with an F-statistic > 10 were considered strongly 
correlated [22].

Mendelian randomization and sensitive analysis
The method of Inverse variance-weighted(IVW) showed 
the highest statistical efficacy and validity, provided that 
there was no pleiotropy in the IVs [23]. Therefore, IVW 
was used as the main research method in this study 
[24]. In addition, the final results were reinforced by the 
methods of MR Egger, weighted median, simple mode, 
and weighted mode [25, 26] (Fig. 2). Meanwhile, to meet 

the robustness of the results, Cochran’s Q test was used 
to evaluate the heterogeneity of SNPs in IVW and MR 
Egger [27]. The horizontal pleiotropy was assessed by 
MR-Egger intercept [25], and Leave-one-out analyses 
were performed to assess whether causal effects were 
driven by a single potentially influential SNP [28]. MR-
Presso was used to detect pleiotropic residuals and out-
liers. MR-Steiger was used to assess whether the causal 
direction was correct, TURE if the exposure was likely 
to have caused the outcome, or FALSE if the exposure 

Fig. 1  A: Assumption 1(relevance assumption), Assumption 2(independence assumption), and Assumption 3(exclusion restriction assumption); B: The 
study design of two-sample MR analysis
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was unlikely to have caused the outcome [29]. All sta-
tistical analyses were performed in TwoSampleMR in R 
software.

Results
Influence of 91 circulating inflammatory proteins on LPF
According to the IVW results, elevated levels of Axin-1, 
Beta-NGF, and IFN-gamma were found to be associated 
with a reduced risk of LPF(OR:0.687, 95%CI:0.501–0.942, 
P = 0.020; OR:0.800, 95%CI: 0.650–0.983, P = 0.034 and 
OR:0.723, 95%CI:0.568–0.920, P = 0.008). Conversely, 
heightened levels of SULT-1A1 may be linked to an 
increased risk of LPF(OR:1.178,95%CI:1.010–1.373, 
P = 0.036). As shown in Table 1; Fig. 3A-B.

Influence of 91 circulating inflammatory proteins on PLI
According to the IVW results, elevated levels of Beta-
NGF, IFN-gamma and STAM-BP were found to 
be associated with a reduced risk of PLI(OR:0.812, 
95%CI:0.703–0.937, P = 0.005; OR:0.828, 95%CI:0.700–
0.980, P = 0.028 and OR:0.759, 95% CI: 0.617–0.933, 
P = 0.009). Conversely, heightened levels of IL-4 and MIP-
1a may be linked to an increased risk of PLI(OR:1.236, 
95% CI: 1.058–1.443, P = 0.007 and OR:1.107, 95% CI: 
1.008–1.214, P = 0.033). These findings are presented in 
Table 1; Fig. 3A-B.

Sensitive analysis
Moreover, as shown in Table 2; Fig. 3A-B, no heterogene-
ity of SNPs was observed in IVW and MR-Egger analyses 

based on Cochran’s Q test. MR-Egger intercept showed 
no evidence of horizontal pleiotropy in this study. No 
outliers were detected using the MR-Presso methodol-
ogy. Furthermore, there were no SNPs with a large effect 
size biased the estimation through the Leave-one-out 
test(Supplemental Fig. 1). The forest plots illustrated the 
causal effects of individual SNP for 91 circulating inflam-
matory proteins on LPF and PLI risk (Supplemental 
Fig.  2). Additionally, scatter and funnel plots ruled out 
the possibility of potential outliers and horizontal plei-
otropy (Fig. 4 and Supplemental Fig. 3). The results from 
the MR-Steiger analysis confirmed the directionality as 
true without any evidence of reverse causality. The influ-
ence of heterogeneity and horizontal pleiotropy were fur-
ther excluded by sensitivity analysis and the results are 
reliable.

Discussion
At present, studies have shown that there is a relationship 
between LPF and PLI with inflammatory proteins [12, 
30, 31]. However, due to the limitations of the study, the 
exact causal relationship is still uncertain at the genetic 
level. In this exploratory study, a two-sample MR analysis 
was used to comprehensively assess the potential causal 
relationship of 91 circulating inflammatory proteins with 
LPF and PLI. It aims to provide more reliable evidence 
for clinical decision-making.

This study has shown that Beta-NGF and IFN-gamma 
are both involved in the occurrence of LPF and PLI, and 
there was a negative association. Similarly, the level of 

Fig. 2  A: Circle diagram of 91 circulating inflammatory proteins on LPF; B: Circle diagram of 91 circulating inflammatory proteins on PLI. LPF: Lumbar 
spine and pelvic fractures; PLI: peripheral ligament injuries
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Fig. 3  A: Forest plots of circulating inflammatory proteins on LPF and PLI; B: Forest plot of MR Results for causal association of circulating inflammatory 
proteins with LPF and PLI. LPF: Lumbar spine and pelvic fractures; PLI: peripheral ligament injuries
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Axin-1 was negatively correlated with the risk of LPF. The 
level of SULT-1A1 is positively correlated with the risk 
of LPI. Furthermore, high levels of IL-4 and MIP-1a are 
positively associated with the risk of PLI and there was a 
negative correlation between STAM-BP levels.

The inflammatory hypothesis of aging proposes that 
aging is an accumulation of damage, in part due to 
chronic activation of inflammatory processes. The results 
showed that subjects with the highest number of inflam-
matory markers had the highest risk of fracture [32]. 
Similarly, Cauley et al. measured interleukin-6(IL-6), 
C-reactive protein (CRP), tumor necrosis factor-alpha 
(TNFα), soluble receptors of IL-6, TNF (TNFαSR1 and 
TNFαSR2), and interleukin-10(IL-10) levels in humans 
suggest that inflammation may play an important role 
in the etiology of fractures in elderly men [33]. In addi-
tion, Panuccio et al. suggested that TNF-α was signifi-
cantly associated with the incidence of fractures [34]. 
Meanwhile, a recent study reported an association 
between IL-6 and hip fracture [30, 31]. Similarly, IL-10, 
interleukin-8(IL-8), IL-6, interleukin-1RA (IL-1RA), and 
monocyte chemoattractant protein-1 (MCP-1) have been 
shown to be associated with fracture [35]. Although these 
studies have elucidated that inflammatory proteins may 
be involved in fractures, exact causality remains challeng-
ing due to confounding variables, which may lead to bias.

Osteoblast differentiation is positively regulated by 
classical Wnt signaling at different stages, but high levels 
of β-catenin inhibit osteoclast differentiation, and Axin-1 
is the main coordinator of the β-catenin destruction 
complex. Paulien et al. found that homozygous truncat-
ing variants in Axin-1 cause sclerosing bone disease of 
hip dysplasia due to loss of its C-terminal DIX domain 
[36]. IFN-gamma is a cytokine produced by immune cells 
and mesenchymal stem cells in the bone microenviron-
ment [37]. In animal model experiments, bone histomor-
phometry in mice with low levels of IFN-gamma showed 
a pattern of low bone turnover, reduced bone formation, 
significantly reduced osteoblast and osteoclast numbers, 
and decreased circulating levels of bone formation and 
resorption markers [38]. The beta-nerve growth factor 
can stimulate cell division, growth, and differentiation. 
In articular cartilage, they regulate the development and 
homeostasis of articular cartilage by regulating the local 
microenvironment [39]. Additionally, the formation and 
healing of bone tissue are considered to be related to 
the development and maintenance of the nervous sys-
tem. Mature bone tissue is dominated by abundant nerve 
fibers. Lack of nerve fiber innervation, bone growth 
retardation, and pain reduction. Beta-nerve growth fac-
tor induces the development of nerve fibers into bone tis-
sue [40]. In this study, high levels of Axin-1, Beta-NGF, 
and IFN-gamma were observed to be associated with a 
decreased risk of LPF. This is consistent with the results Ta
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of our study. SULT-1A1, a member of the sulfotransfer-
ase family, is located in the cytoplasm of cells and has the 
characteristics of a superfamily. It is significantly upreg-
ulated in inflammation, fibrosis, and cancer [41, 42]. 
SULT-1A1 was causally associated with LPF in this study, 
which may provide a new perspective on the relationship 
between fractures and inflammation proteins. However, 
further studies are needed to fully understand the spe-
cific mechanisms of inflammatory protein and fracture 
risk described above and to provide more evidence for 
potential therapeutic strategies.

Bone tissue forms a stable whole with surrounding 
muscles and ligaments. Ligament injury is accompanied 
by biomechanical changes, which will increase the risk of 
fracture. In this study, the functional and biomechanical 
mechanisms of the iliolumbar ligaments in the lumbar-
pelvic region are closely related to stability, support, pos-
tural control, and motor control, which are important 
for maintaining the normal structure and function of the 
lumbar spine [43]. Likewise, this applies to other liga-
ments in the lumbar spine and pelvic region. Lower lum-
bar burst fractures (L3-L5) account for a small proportion 
of all spinal fractures. The iliolumbar ligament and the 
position below the pelvic rim are the two stabilizing fac-
tors in this type of fracture and are unique compared to 
burst fractures at the thoracolumbar junction [44]. The 
bony integrity of the pelvis is supported by a variety of 
ligaments, such as the posterior sacroiliac, anterior, 

iliolumbar, sacrospinous, and sacrotuberous ligaments, 
which play a crucial role in pelvic stabilization [45, 46]. 
Therefore, this study also explored the causal relationship 
between inflammatory proteins and PLI by two-sample 
MR analysis. Studies have shown that Beta-NGF and 
IFN-gamma are both involved in the occurrence of LPF 
and PLI. This also indirectly proves the causal relation-
ship between inflammatory proteins and fractures, while 
providing clinical support for the theory of lumbar spine 
and pelvic systems.

Conclusion
In this study, we employed MR Analysis to provide new 
insights into the relationship between circulating inflam-
matory proteins and LPF and PLI. That may provide new 
clues for predicting this risk. However, further studies are 
needed to fully understand the exact biological mecha-
nisms involved.

Limitation
The bias introduced by confounding and reverse causality 
was addressed by MR Analysis in this study. MR Analy-
sis, compared with traditional observational studies, 
provides stronger evidence for evaluating the causal rela-
tionship between 91 circulating inflammatory proteins 
and LPF and PLI. Meanwhile, it provides a new research 
perspective. However, it is important to acknowledge that 
this study has certain limitations. Firstly, only European 

Fig. 4  A-D: Axin-1, BNGF, IFN-gamma and SULT-1A1 of lumbar-pelvic fractures with scatter plots respectively; E-I: BNGF, IFN-gamma, IL-4, MIP-1a and 
STAM-BP of ligament injuries with scatter plots test respectively
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ancestry was included in the study, and further investi-
gation is needed to determine the generalizability of the 
results to other populations. Secondly, the sample size 
of the GWAS database in this study was limited, which 
may have limited the statistical power of the MR analy-
sis. Finally, While we used powerful tools to estimate the 
association between exposure and outcome, what has to 
be acknowledged is the slight sample overlap between 
exposures and outcomes.
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