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Abstract 

Objective To compare the diagnostic power among various machine learning algorithms utilizing multi-sequence 
magnetic resonance imaging (MRI) radiomics in detecting anterior cruciate ligament (ACL) tears. Additionally, this 
research aimed to create and validate the optimal diagnostic model.

Methods In this retrospective analysis, 526 patients were included, comprising 178 individuals with ACL tears 
and 348 with a normal ACL. Radiomics features were derived from multi-sequence MRI scans, encompassing 
T1-weighted imaging and proton density (PD)-weighted imaging. The process of selecting the most reliable radiom-
ics features involved using interclass correlation coefficient (ICC) testing, t tests, and the least absolute shrinkage 
and selection operator (LASSO) technique. After the feature selection process, five machine learning classifiers were 
created. These classifiers comprised logistic regression (LR), support vector machine (SVM), K-nearest neighbors (KNN), 
light gradient boosting machine (LightGBM), and multilayer perceptron (MLP). A thorough performance evaluation 
was carried out, utilizing diverse metrics like the area under the receiver operating characteristic curve (ROC), specific-
ity, accuracy, sensitivity positive predictive value, and negative predictive value. The classifier exhibiting the best per-
formance was chosen. Subsequently, three models were developed: the PD model, the T1 model, and the combined 
model, all based on the optimal classifier. The diagnostic performance of these models was assessed by employing 
AUC values, calibration curves, and decision curve analysis.

Results Out of 2032 features, 48 features were selected. The SVM-based multi-sequence radiomics outperformed all 
others, achieving AUC values of 0.973 and 0.927, sensitivities of 0.933 and 0.857, and specificities of 0.930 and 0.829, 
in the training and validation cohorts, respectively.

Conclusion The multi-sequence MRI radiomics model, which is based on machine learning, exhibits exceptional per-
formance in diagnosing ACL tears. It provides valuable insights crucial for the diagnosis and treatment of knee joint 
injuries, serving as an accurate and objective supplementary diagnostic tool for clinical practitioners.
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Introduction
The anterior cruciate ligament (ACL) is vital for main-
taining knee joint stability through the prevention of 
anterior tibial translation, and preservation of normal 
knee function [1, 2]. Injuries or severe laxity in the ACL 
can cause knee joint instability, leading to prominent 
symptoms and complications, including knee osteoar-
thritis, as well as meniscal and cartilage injuries [3–5]. 
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Hence, timely and accurate diagnosis, along with early 
intervention, becomes crucial to restore knee stabil-
ity and function [6]. While arthroscopic examination 
is considered the gold standard for diagnosing ACL 
injuries, it is invasive and involves surgical risks [7, 8]. 
Conversely, magnetic resonance imaging (MRI) is con-
sidered an ideal approach for diagnosing ACL injuries, 
presenting benefits like high contrast, high resolution, 
non-invasiveness, and multi-planar imaging. MRI not 
only offers a clear view of the normal ACL morphol-
ogy but also provides detailed information on the loca-
tion and extent of the tear, and other knee joint injuries 
linked to ACL damage [9, 10]. Nevertheless, diagnos-
ing ACL injuries through MRI often depends on visual 
assessment by radiologists, a procedure that consumes 
considerable time and heavily relies on the expertise 
of the physician in charge. Furthermore, even among 
experienced radiologists, both inter-observer and intra-
observer consistency in interpreting knee MRI scans 
remains moderately reliable at best [11].

Researchers have started integrating radiomics with 
machine learning techniques to improve the accuracy 
and efficiency of ACL injury diagnosis. Radiomics serves 
as a high-throughput, automated analytical method for 
clinical imaging data, providing significant assistance in 
disease diagnosis and prognosis [12–14]. The combina-
tion of radiomics and machine learning techniques has 
shown significant potential in the accurate diagnosis and 
classification of musculoskeletal disorders. This synergis-
tic effect has enhanced diagnostic efficiency in various 
tasks, including detecting and characterizing acute joint 
injuries, chronic pathologies, spinal fractures, degenera-
tive diseases, and tumors [15].

Many studies have explored radiomics-based ACL 
injury diagnosis [16–19]. Nevertheless, most of these 
focus on extracting features from a single MRI sequence, 
which will ignore some important radiomics features. 
Several studies have demonstrated that models con-
structed using multi-sequence MRI exhibit a signifi-
cant performance advantage over their single-sequence 
counterparts [20–22]. Therefore, we suggest using 
multi-sequence MRI, as it may contain more valuable 
information. Furthermore, these studies emphasize deep 
learning applications, affording limited regard to the 
potential of traditional machine learning algorithms. 
Recently, different machine learning classifiers have 
been compared to determine an optimal machine learn-
ing method [23, 24]. Hence, we compared five machine 
learning algorithms to select the most performant one for 
model building.

This research aimed to integrate multi-sequence MRI 
radiomics with machine learning algorithms to extract 
more valuable radiomics features. The goal was to 

substantially enhance the diagnostic performance and 
accuracy in ACL tear diagnosis.

Materials and methods
Patients
Data obtained from knee arthroscopy procedures con-
ducted at the hospital between January 2019 and May 
2023 were acquired for this research. Patient records 
of individuals who underwent knee MRI scans were 
accessed from the Picture Archiving and Communication 
System (PACS) at the First Affiliated Hospital of Wannan 
Medical College, Anhui, China. Knee arthroscopy find-
ings served as the diagnostic reference standard to con-
firm ACL condition for all patients. The study followed 
the inclusion and exclusion criteria, as well as the patient 
recruitment procedure, outlined in Fig.  1. Approval for 
this retrospective research was granted by the institu-
tional review board, and the need for written informed 
consent was waived.

MRI acquisition
For all patients, imaging examinations were conducted 
using a Siemens Avanto 1.5-T magnetic resonance scan-
ner. The magnetic resonance parameters for image acqui-
sition were configured as follows: T1WI-sag:a field of 
view measuring 16 cm, an echo time of 11 ms, a repeti-
tion time of 400 ms, a slice thickness of 4.0 mm, and a flip 
angle of 90°; PDWI-sag:a field of view measuring 16 cm, 
an echo time of 48  ms, a repetition time of 3000  ms, a 
slice thickness of 4.0 mm, and a flip angle of 150°. In each 
case, sagittal T1-weighted images (T1WIs) and proton 
density (PD)-weighted images (PDWIs) with fat suppres-
sion were downloaded from the PACS.

Image segmentation and extraction of radiomics features
Normalization can reduce the differences caused by dif-
ferent imaging parameters; while, Gaussian filtering can 
be used to denoise the image [25, 26]. We employed 
these two methods for image preprocessing to ensure 
the accuracy of the image data. In this study, manual 
and independent segmentation of sagittal T1WI and 
PDWI three-dimensional (3D) region of interest (ROI) 
was carried out by two radiologists utilizing the ITK-
SNAP application (3.8.0; http:// www. itksn ap. org) [27]. 
These 3D-ROIs encompassed the entire intercondylar 
fossa region. Subsequently, the PyRadiomics software 
package, utilizing Python 3.6, was employed to extract 
high-throughput radiomics features from the volume 
of interest of each patient. The extracted radiomics fea-
tures encompassed shape, first-order, second-order, and 
higher-order features, with 1016 image-based radiom-
ics features for each sequence in total. Shape features 
reflect the shape and size of the lesion, such as volume, 

http://www.itksnap.org
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density, maximum diameter, and surface area. First-order 
features are also known as histogram features, providing 
the simplest information level based on the distribution 
of individual pixel/voxel values within the lesion, with-
out emphasizing their spatial relationship. Second-order 
features are known as gray-level co-occurrence matrix 
(GLCM) features, containing more texture information 
by considering the intensity relationship between adja-
cent pixel/voxel pairs. High-order features go further by 
emphasizing the correlation between multiple pixels/
voxels, providing complex patterns and texture informa-
tion. Gray-level size length matrix, neighboring gray-
level dependence matrix, gray-level difference matrix, 
gray-level size zone matrix, and gray-level distance zone 
matrix are some examples of high-order features [12]. 
Interclass correlation coefficients (ICCs) were com-
puted and features with ICC values < 0.75 were excluded 
to guarantee the stability and accuracy of the radiomics 
features. The workflow of the proposed approach in this 
research is depicted in Fig. 2.

Features selection
Radiomics features extracted from T1WIs and PDWIs 
were standardized utilizing the z-score technique. Sub-
sequently, a t test was applied to evaluate the entire 
array of radiomics features, retaining only those with 
P-values < 0.05. Further analysis involved the computa-
tion of Spearman correlation coefficients to assess the 

relationships between features. In instances where any 
two correlation coefficients exceeded 0.9, only one fea-
ture was retained. Subsequently, using an 8:2 ratio, all 
samples were randomly classified into training and vali-
dation sets. A greedy recursive feature elimination strat-
egy was implemented, eliminating the feature with the 
highest redundancy in the current set at each step. The 
least absolute shrinkage and selection operator (LASSO) 
regression model, coupled with tenfold cross-validation, 
was utilized in the training set for feature selection [28]. 
Features with non-zero coefficients were subsequently 
chosen and employed to train the classifier.

Selection of machine learning classifier
A comparative analysis of five machine learning clas-
sifiers, namely logistic regression (LR), support vec-
tor machines (SVM), K-nearest neighbors (KNN), light 
gradient boosting machine (LightGBM), and multilayer 
perceptron (MLP), was carried out to identify the opti-
mal classifier for the task. During the modeling process, 
each classifier was carefully optimized and tuned with 
the aim of maximizing diagnostic performance. For the 
LR algorithm, the optimal hyperparameters were C = 1, 
max_iter = 100, and penalty = L2. For the SVM algorithm, 
the optimal hyperparameters were C = 1 and kernel = rbf. 
For the KNN algorithm, the optimal hyperparameters 
were n_neighbours = 4 and weights = ’uniform’. For the 
LightGBM algorithm, the optimal hyperparameters were 

Fig. 1 Flowchart detailing the patient recruitment process
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boosting_type = ’gbdt’ and learning_rate = 0.001. And for 
the MLP algorithm, the optimal hyperparameters were 
activation = ’relu’ and max_iter = 100. In the training set, 
the diagnostic performance of various classifiers was 
assessed by evaluating the area under the curve (AUC), 
accuracy, sensitivity, specificity, positive and negative 
predictive values, recall, and F1 score. Calibration curves 
were constructed to determine the consistency across 
the predicted and actual outcomes. Furthermore, a com-
prehensive evaluation of the clinical applicability of the 
models was conducted utilizing decision curve analysis 
(DCA). Using these findings, the classifier with the most 
favorable overall performance was chosen.

Construction of the machine learning model
Following the selection of the most suitable classifier, 
it was then utilized to construct three models: the T1 
model, the PD model, and the combined model. Each 
model underwent individual performance assessment, 
which included evaluating sensitivity, specificity, accu-
racy, and the area under the receiver operating character-
istic (ROC) curve. These evaluation metrics allowed for 
a comparative analysis of the classification abilities and 
predictive accuracy of the different models. Ultimately, 

the model that demonstrated the most exceptional per-
formance in the training set was chosen as the final 
model.

Statistical analysis
All statistical analyses, normalization, feature selec-
tion, and model building were performed using Python 
3.7.0, NumPy, Matplotlib, Scikit-learn, and Pyradiom-
ics software packages [29–31]. The measurement data 
were tested for normality, and those that conformed to 
a normal distribution were expressed as (mean ± stand-
ard deviation), and the independent samples t test was 
used for comparison between two groups; for measure-
ment data that did not conform to a normal distribution, 
Mann–Whitney U test was used for comparison between 
two groups. Statistical significance was established at 
P < 0.05 (two-sided).

Results
Patient characteristics
In this research, 526 patients who underwent knee 
arthroscopy were included. Among them, 178 were diag-
nosed with ACL tears; while, 348 patients had intact 
ACLs. A total of 278 and 248 patients were males and 

Fig. 2 Radiomics workflow diagram
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females, respectively. The average age of the baseline was 
43.37 ± 14.60  years. The 526 patients included 262 left 
knees and 264 right knees. Using an 8:2 ratio, the indi-
viduals were classified randomly into training (N = 419) 
and validation (N = 107) sets.

Radiomics feature extraction and selection
Initially, 2032 radiomic features were extracted, out of 
which 1942 features with ICC values > 0.75 were retained. 
Subsequent t tests identified 542 features with a signifi-
cance level of P < 0.05. Figure  3 illustrates the distribu-
tion of these radiomic features and their corresponding P 
values. Spearman correlation coefficients were calculated 
among these features to address the issue of high inter-
correlation between features. This led to retaining a sin-
gle feature from each pair with a correlation coefficient 
exceeding 0.9. Consequently, 209 features were ultimately 
retained.

Using the LASSO classifier, 48 optimal radiomic fea-
tures (26 from T1WI and 22 from PDWI) were selected. 
Figure  4 have illustrated the outcomes of the tenfold 
cross-validation regression, displaying the final selec-
tion of radiomic features along with their corresponding 
coefficients. Among the features, first-order features and 
shape features with higher correlation coefficients are 
considered the most significant ones. First-order features 
are obtained through statistical analysis of image pixel 
values or grayscale levels, which describes the distribu-
tion and frequency of pixels in the image. For example, 
the MRI images after ACL tear showed changes in signal 
intensity, leading to differences in first-order features. On 
the other hand, shape features were used to describe the 
lesion’s area, volume, perimeter, irregularity, and density. 

The tears of ACL, its discontinuity and shape changes 
would results in higher correlation coefficients for shape 
features. Features and corresponding coefficients were 
put in the Additional file 1: Supplementary Table S1.

Comparison of various machine learning classifiers
A comparative evaluation of the diagnostic performance 
of five machine learning classifiers was conducted, with 
each classifier trained using its respective optimal hyper-
parameters on the training set. Figure  5 displays the 
ROC, calibration, and DCA curves for all classifiers; 
while, Table  1 presents the AUC, accuracy, sensitivity, 
specificity, positive and negative predictive values, recall, 
and F1 score for each machine learning classifier.

The respective AUC values for LR, SVM, KNN, Light-
GBM, and MLP were 0.920, 0.973, 0.920, 0.982, and 0.970. 
LightGBM exhibited the highest AUC of 0.982 (95% con-
fidence interval [CI]: 0.972–0.992). However, SVM dem-
onstrated superior performance across various metrics, 
encompassing accuracy (93.3%), sensitivity (93.0%), spec-
ificity (93.5%), positive predictive value (88.0%), and neg-
ative predictive value (96.3%), alongside an AUC of 0.973 
(95% CI: 0.954–0.991). Moreover, the calibration curve 
for SVM implied strong agreement between model pre-
dictions and observed outcomes (Fig. 5B). Furthermore, 
the DCA indicated that the net benefit derived from the 
SVM classifier exceeded that of the other four classifiers 
(Fig. 5C). The y-axis represents net benefit, and the x-axis 
represents threshold probability. Across the entire range 
of threshold probabilities, SVM demonstrates higher 
overall net benefit in both full intervention (black diago-
nal line) and no intervention (dashed line).

Fig. 3 Proportion, distribution, and P value of different radiomics features
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Fig. 4 A Feature reduction and selection using least absolute shrinkage and selection operator (LASSO) based on the minimum log (λ) with tenfold 
cross-validation. B Lambda values correlated with the number of features. C Feature weights following feature selection using the LASSO algorithm
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Fig. 5 Performance evaluation of various classifiers A Receiver operating characteristics curves. B Calibration curves. C Decision curves
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Consequently, after a thorough performance evaluation 
of the training set, SVM emerged as the optimal classifier.

Model selection
Three models were developed utilizing the SVM classifier 
to assess the influence of different feature sets. A quanti-
tative comparison of the diagnostic performance of these 
models was then conducted utilizing the test set, with the 
results detailed in Table  2. Additionally, Fig.  6 presents 
the corresponding ROC curves, calibration curves, and 
DCA curves.

The respective AUC values for the T1 model and PD 
model were 0.968 and 0.950. However, the combined 
model demonstrated a superior AUC in comparison 
with the T1 and PD models. Specifically, in the training 

set, the combined model achieved an AUC of 0.973 (95% 
CI: 0.954–0.991), with accuracy, sensitivity, specificity, 
positive and negative predictive values recorded at 93.3%, 
93.0%, 93.5%, 88.0%, and 96.3%, respectively. Further-
more, in the validation set, the combined model yielded 
the highest AUC of 0.927, along with accuracy, sensitiv-
ity, specificity, and positive and negative predictive val-
ues recorded at 93.3%, 93.0%, 93.5%, 88.0%, and 96.3%, 
respectively.

The ROC curves of the three models within the training 
set are depicted in Fig. 6A, highlighting the superior AUC 
of the combined model in comparison with the other 
two models. This superiority is further supported by the 
calibration curve (Fig.  6B), emphasizing the alignment 
of predictions from the combined model with observed 

Table 1 Performance metrics of different classifiers in the training set

The bold values are the optimal values of each quantitative indicator

Classifier AUC Accuracy Sensitivity Specificity PPV NPV Recall F1 score

LR 0.920 0.885 0.831 0.913 0.831 0.913 0.831 0.831

SVM 0.973 0.933 0.930 0.935 0.880 0.963 0.930 0.904
KNN 0.920 0.857 0.782 0.895 0.793 0.889 0.782 0.787

LightGBM 0.982 0.928 0.930 0.928 0.868 0.962 0.930 0.898

MLP 0.970 0.919 0.908 0.924 0.860 0.952 0.908 0.884

Table 2 Performance metrics of various models in both the training and validation sets

Model Cohort AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Combined Train 0.973(0.954–0.991) 0.933 0.930 0.935 0.880 0.963

Validation 0.927(0.878–0.976) 0.857 0.829 0.871 0.763 0.910

T1 Train 0.968(0.953–0.984) 0.919 0.902 0.928 0.866 0.949

Validation 0.878(0.804–0.951) 0.848 0.800 0.871 0.757 0.897

PD Train 0.950(0.927–0.973) 0.886 0.909 0.874 0.788 0.949

Validation 0.904(0.847–0.962) 0.829 0.857 0.814 0.698 0.919

Fig. 6 Performance evaluation of different models A Receiver operating characteristics curves. B Calibration curves. C Decision curves
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values, signifying a higher level of consistency than the 
other models. Furthermore, the DCA results (Fig.  6C) 
indicated that the combined model provided a greater 
net benefit compared to the other models. These collec-
tive findings indicate that the diagnostic performance of 
the combined model surpassed that of the T1 and PD 
models. Consequently, the combined model, based on 
SVM, was chosen as the final and optimal model.

Model validation
Validation was performed using a validation dataset for 
further assessment of the clinical usage of the hybrid 
model. Figure  7 presents the ROC curves, calibration 
curves, and DCA curves of the hybrid model based on 
SVM. The respective AUC values for the training and val-
idation sets were 0.973 (95% CI 0.954–0.991) and 0.927 
(95% CI 0.878–0.976). The calibration curves verified 
the excellent fitting performance of the hybrid model in 
both the training and validation sets. Moreover, the DCA 
curves indicated that the hybrid model displayed favora-
ble clinical utility in both of these sets.

Discussion
The longer the delay between ACL rupture and recon-
struction, the greater the risk of meniscal and/or chon-
dral injuries may be [32, 33]. Early intervention plays a 
crucial role in minimizing the damage to meniscal and 
chondral tissue following an ACL injury. This not only 
reduces pain but also contributes to faster rehabilitation, 
improves quality of life, and enables patients to return to 
normal life and sports activities as soon as possible [34]. 
This study utilized manually annotated multi-sequence 
knee joint MRI ROIs and skillfully extracted specific 
radiomic features. Robust features were selected; while, 
redundant ones were excluded using LASSO regression. 
After this, 48 features were finally kept. Among them, 
there are 23 first-order features, which are the simplest 
representations of information in the image. They are 

computed from the grayscale histogram of the image and 
are used to describe the distribution and frequency of 
pixels with specific grayscale intensities within the ROI. 
After ACL tear, the signal intensity of ACL decreases in 
the sagittal slice of T1WI; while, it increases in the sagit-
tal slice of PDWI. As the signal changes, the pixels within 
the ROI also change accordingly, making first-order fea-
tures crucial. Furthermore, GLCM features can provide 
more information than the image histogram and contain 
information about the spatial relationship between pixels 
pairs with similar or specific intensities [35]. Therefore, 
we selected 10 GLCM features with non-zero coeffi-
cients. In addition, we also screened out 11 high-order 
features and 4 shape features. High-order features pro-
vide richer information by emphasizing correlations 
between multiple pixels/voxels, providing complex pat-
terns and texture information. After ACL tears, its shape 
changes, and it appears as swelling and thickening of the 
ligament on MRI. The diagnostic performance of an MRI 
radiomic model was compared across five machine learn-
ing algorithms in the context of ACL tear diagnosis.

After a comprehensive examination of various machine 
learning methods, the SVM-based radiomic model 
exhibited superior diagnostic performance. This model 
achieved an AUC of 0.973 (95% CI 0.954–0.991) and 
demonstrated exceptional accuracy at 93.3%, along with 
high sensitivity (93.0%), specificity (93.5%), positive 
predictive value (88.0%), and negative predictive value 
(96.3%).

Previous research predominantly employed deep learn-
ing algorithms for diagnosing ACL tears, In 2018, the first 
relevant study was published, deep convolutional neural 
network (DCNN) to fully automate the detection of ACL 
tears. This DCNN achieved a sensitivity of 76%, specific-
ity of 97%, and an AUC of 0.97 for ACL tear detection 
[16]. Another study applied deep learning architecture to 
ACL lesion detection and achieved a sensitivity of 96% 
and specificity of 96%, and AUC of 0.98 [17]. Germann 

Fig. 7 Model validation results A The receiver operating characteristic curves for the training and validation sets. B Calibration curves for these two 
sets. C Decision curves for these two sets
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et  al. developed a deep learning model for ACL tear 
detection, which showed a sensitivity of 0.99, specific-
ity of 0.94, and an AUC of 0.97 [18]. These studies dem-
onstrating the potential of radiomics and deep learning 
in the realm of ACL tears diagnosis. However, although 
deep learning techniques are considered cutting-edge for 
image classification, carry inherent complexity that often 
renders the interpretation of decision outcomes challeng-
ing, thus posing issues related to interpretability [36]. In 
contrast, machine learning models are generally more 
interpretable, and the decision process of the model can 
be explained using feature weights and other methods 
[37].

Hence, in this research, the performance of five 
machine learning algorithms (LR, SVM, KNN, Light-
GBM, and MLP) was compared. These algorithms were 
meticulously assessed using various metrics, including 
AUC, accuracy, sensitivity, specificity, positive and nega-
tive predictive values, recall, and F1 score. Eventually, 
SVM was chosen as the optimal algorithm. SVM operates 
by identifying the optimal hyperplane within the data 
space to effectively segregate samples belonging to dif-
ferent classes [38, 39]. Previous studies, such as the one 
conducted by Chen et al. [40], also reported the efficacy 
of SVM classifiers in diagnosing ACL tears. However, 
his study solely compared the performance of the ran-
dom forest (RF) and SVM classifiers. Different machine 
learning methods yield diverse classification outcomes. 
Consequently, this comprehensive analysis of multiple 
machine learning algorithms aimed to identify the most 
valuable and stable algorithm in ACL tear diagnosis.

Until now, previous research in this domain has pre-
dominantly relied on a single sequence for radiomic 
data extraction, resulting in a constrained scope of fea-
ture extraction [19, 41, 42]. The amalgamation of multi-
ple sequences presents an opportunity to encompass a 
more extensive range of information, thereby facilitating 
a more comprehensive description of the characteristics 
inherent to the ROIs [43]. Liu et al. also demonstrated in 
their study that using multiple-sequence MRI can extract 
more radiomic features, thereby improving the sensitiv-
ity and specificity of the model [17]. Therefore, this study 
compared the performance of single-sequence and multi-
sequence models. Interestingly, the findings reaffirmed 
the superiority of the multi-sequence model, highlighting 
the presence of complementary information among dif-
ferent MRI sequences. This underscores the potential for 
a more precise diagnosis of ACL tears through the use of 
multiple MRI sequences, offering a more comprehensive 
description of radiomic features.

The findings of this study underscore the capacity of 
machine learning algorithms based on multiple-sequence 
MRI to accurately identify ACL tears. Diagnosing ACL 

tears might not be a challenge for expert musculoskeletal 
radiologists and sports medicine physicians. However, 
this study carries significant utility for non-specialist 
radiologists and non-sports medicine physicians. Par-
ticularly in rural areas where access to specialized radi-
ology experts or professional radiological interpretation 
might be constrained, this study offers a valuable refer-
ence for their “second opinion”.

Our model can assist doctors in making more accurate 
and timely diagnoses, enabling prompt intervention and 
effective management. This not only reduces pain and 
further damage but also helps improve patients’ quality 
of life, accelerates the recovery process, and assists them 
in returning to normal life and sports activities as soon as 
possible.

Nevertheless, it is imperative to acknowledge certain 
limitations of this research. First, it represents a retro-
spective investigation founded on relatively small sam-
ple size, underscoring the need for larger datasets to 
enhance the reliability and clinical applicability of radi-
omics research. Second, this study only extracted radi-
omic information from the sagittal plane, although there 
might have been radiomic features potentially extractable 
from axial and coronal plane MRI scans. Thus, future 
research endeavors should further explore the feasibil-
ity of harnessing images from different planes to extract 
comprehensive radiomic information to enhance diag-
nostic performance and accuracy. Thirdly, this study is a 
single-center retrospective study without external vali-
dation, which may potentially impact the reliability and 
generalizability of the model. We will strive to obtain 
external validation datasets in future research to address 
this issue.

Conclusion
This study showcased exceptional diagnostic perfor-
mance by utilizing multi-sequence MRI to extract radi-
omic features and constructing a model for identifying 
ACL tears using the SVM classifier. This research offers 
valuable insights for diagnosing and treating knee joint 
injuries, providing clinical physicians with an objective 
and accurate auxiliary diagnostic tool.
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