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Abstract 

Objective To create an automated machine learning model using sacroiliac joint MRI imaging for early sacroiliac 
arthritis detection, aiming to enhance diagnostic accuracy.

Methods We conducted a retrospective analysis involving 71 patients with early sacroiliac arthritis and 85 patients 
with normal sacroiliac joint MRI scans. Transverse T1WI and T2WI sequences were collected and subjected to radiom‑
ics analysis by two physicians. Patients were randomly divided into training and test groups at a 7:3 ratio. Initially, we 
extracted the region of interest on the sacroiliac joint surface using ITK‑SNAP 3.6.0 software and extracted radiomic 
features. We retained features with an Intraclass Correlation Coefficient > 0.80, followed by filtering using max‑rele‑
vance and min‑redundancy (mRMR) and LASSO algorithms to establish an automatic identification model for sacroil‑
iac joint surface injury. Receiver operating characteristic (ROC) curves were plotted, and the area under the ROC curve 
(AUC) was calculated. Model performance was assessed by accuracy, sensitivity, and specificity.

Results We evaluated model performance, achieving an AUC of 0.943 for the SVM‑T1WI training group, with accu‑
racy, sensitivity, and specificity values of 0.878, 0.836, and 0.943, respectively. The SVM‑T1WI test group exhibited 
an AUC of 0.875, with corresponding accuracy, sensitivity, and specificity values of 0.909, 0.929, and 0.875, respec‑
tively. For the SVM‑T2WI training group, the AUC was 0.975, with accuracy, sensitivity, and specificity values of 0.933, 
0.889, and 0.750. The SVM‑T2WI test group produced an AUC of 0.902, with accuracy, sensitivity, and specificity values 
of 0.864, 0.889, and 0.800. In the SVM‑bimodal training group, we achieved an AUC of 0.974, with accuracy, sensitivity, 
and specificity values of 0.921, 0.889, and 0.971, respectively. The SVM‑bimodal test group exhibited an AUC of 0.964, 
with accuracy, sensitivity, and specificity values of 0.955, 1.000, and 0.875, respectively.

Conclusion The radiomics‑based detection model demonstrates excellent automatic identification performance 
for early sacroiliitis.
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Introduction
Spondyloarthritis (SPA) is a group of diseases with com-
mon clinical manifestations, including inflammatory 
axial pain, arthritis and peripheral arthritis. Among 
them, spondyloarthritis includes Axial spondyloarthri-
tis (AX-SPA), Peripheral spondyloarthritis (PE-SPA) and 
extra-articular manifestations [1]. Ax-SPA is a gradual 
development of disease, the initial effects of sacroiliac 
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joints, late can spread to the spine, causing pain and dys-
function and quality of life [2, 3]. SPA pathogenesis is 
relatively hidden, and early diagnosis and early treatment 
are needed to minimize the loss function of patients with 
long-term, the hair of late complications [4–6]. Sacro-
iliitis is the hallmark of Ax-SPA [7–10]. Therefore, early 
diagnosis and accurate evaluation of sacroiliac arthritis 
is particularly important. Magnetic resonance imaging 
(MRI) is the most sensitive magnetic resonance imaging 
for assessing inflammatory and structural changes in Spa 
[11–13]. By evaluating the MRI features of can suggest 
the existence of the SPA and classification of subtypes, 
play a key role in early diagnosis and treatment deci-
sion [14]. Bone marrow edema (BME) of sacroiliac joint 
is considered as the most sensitive and main inflamma-
tory manifestation in Ax-SpA, and it is also an impor-
tant evidence to judge the activity of sacroiliac arthritis 
[15]. However, bone marrow edema is not unique to SPA 
[16, 17]. Patients with SPA do not always show active 
inflammation [18, 19]. In addition to active inflamma-
tory diseases, the European League against Rheumatism 
(EULAR) emphasizes the importance of structural dis-
eases [20]. Recently, the Assessment of Spondyloarthritis 
International Society (ASAS) updated the MRI criteria 
for active sacroiliitis, concluding that structural lesions 
occur at almost the same frequency as inflammatory 
lesions, and their reliability is comparable to subchondral 
bone marrow edema. As a result, attention has become 
focused on the importance of structural changes in sup-
porting the presence of active inflammation [21]. Stud-
ies have demonstrated that background analysis can 
improve the specificity of Ax-SpA diagnosis, particularly 
for structural lesions such as bone erosion [15, 22, 23]. 
The observation of structural lesions relies primarily on 
MRI sequences that take into account the detection of 
structural changes. Most observations can only be clearly 
shown on sequences susceptible to fat signal, especially 
T1WI spin echoes without fat suppression [11, 24]. For 
early sacroiliac joint structural lesions, mainly involve 
the sacroiliac articular surface, causing injury; Some 
active lesions may also involve articular surfaces, such as 
synovitis.

Radiomics is a promising approach to medicine to 
improve diagnosis, assess patient outcomes, and support 
treatment decisions [25]. In previous studies, radiomics 
has been applied to various fields, especially in oncol-
ogy research [26–29]. It includes acquiring high-quality 
and standardized imaging, manually or computerized 
definition and segmentation of regions of interest (ROI), 
extracting quantitative image biomarkers, and analyzing 
their relationship to clinical outcomes [26, 30, 31]. The 
introduction of radiomics into the evaluation of early sac-
roiliitis is important because it is a noninvasive medical 

imaging analysis tool that can characterize lesions in 
early sacroiliitis by identifying details that are difficult 
to perceive by the human eye, improving the accuracy 
of early diagnosis, and thus potentially improving early 
diagnosis and prognosis in patients.

Previous studies have rarely studied MRI radiomics on 
joint surface injury in early sacroiliitis, so the purpose 
and innovation of this study is mainly to use MRI radi-
omics to establish an automatic detection machine learn-
ing model for early sacroiliitis articular surface damage to 
improve the accuracy of early diagnosis of sacroiliitis.

Materials and methods
The flow diagram of patients’ selection is shown in Fig. 1. 
The details of the inclusion and exclusion criteria for the 
study cases are as follows.

Inclusion criteria

(1) All patients met the diagnostic criteria for spondy-
loarthropathy as revised by the ASAS expert group 
in 2019;

(2) Early diagnostic criteria for sacroiliitis: X-ray or CT 
examination of sacroiliac joint is mainly manifested 
as slight abnormal changes in the bone of the sacro-
iliac joint or no obvious abnormal changes, and no 
narrowing of the joint space;

(3) Patients diagnosed with non-sacroillitis and exhib-
iting normal findings on X-ray,CT and MRI scans 
of the sacroiliac joint.

Exclusion criteria

(1) History of malignant tumor, infection, trauma and 
implant;

(2) Complicated with rheumatoid disease, peripheral 
arthritis and psychiatric related diseases;

(3) Obvious abnormality in X-ray or CT examination 
of sacroiliac joint, obvious changes of joint gap, ero-
sion or sclerosis near joint area; complete ankylosis 
of joint, or joint fusion;

(4) No simultaneous X-ray or CT examination was 
performed;

(5) Incomplete MRI examination or suboptimal image 
quality.

Research subjects
We strictly followed the inclusion and exclusion cri-
teria we described and enrolled a total of 156 sam-
ples from 2003 patients in our hospital between 2013 
and 2023.1847 patients were excluded.These included 
131 patients with a history of malignancy, infection, 
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trauma and prosthesis implantation, 189 patients with 
rheumatoid disease, peripheral arthritis and rheuma-
toid disease; 498 patients without concurrent X-ray or 
CT examination; X-ray or CT examination, significant 
changes, erosion or near joint sclerosis; 49 patients 
with incomplete MRI or poor image quality;and 980 
patients with complete joint rigidity, or joint fusion. A 
total of 71 patients with early sacroiliitis confirmed by 
the Department of Rheumatology and Immunology in 
our hospital were retrospectively analyzed, including 39 
cases (54.95%) in men and 32 cases (45.05%) in women, 
aged 9–49 years and median age (29) years. Most 
patients have lower back pain or discomfort as the main 
symptoms, and some patients have peripheral facet 
joint pain. Each patient underwent MRI to analyze the 
articular surfaces of the left and right sacroiliac joints 
of T1WI and T2WI. There were 85 patients with nor-
mal sacroiliac joint MRI, 54 (63.53%) male, 31(36.47%) 
female, aged 15–45 years, and the median age (30) 
years. The articular surfaces of the left and right sacro-
iliac joints of T1WI and T2WI were analyzed. The hier-
archical sampling method was used to divide the cases 
into training group and test group according to 7:3, and 
the ten-fold cross-validation was used to ensure the 

authenticity of the training performance when training 
the model.

Scanning scheme
MR equipment adopts Philips Ingenia (3.0T). MR pre-
scan preparation and scan sequence, parameters Pre-
scan preparation: remove all external foreign bodies 
carried by the patient. The orthogonal coil of the abdo-
men was selected, and the center of localization was the 
intersection of the pubic symphysis and the connection 
of the anterior superior spines.

(1) Axis TSE T1WI: TR = 500ms, TE = 20ms, 
FOV37*47 layer thickness 3.5mm, layer spacing 
1.0mm;

(2) Axis TSE T2WI: TR = 4200ms, TE = 100ms, 
FOV37*47 layer thickness 3.5mm, layer spacing 
1.0mm.

Region of interest segmentation
In this study, we used ITK-SNAP 3.6.0 software to com-
plete segmentation of all regions of interest (ROIs). First, 
a radiologist (Reader A) with 10 years of experience in 
bone and joint MRI diagnosis independently performed 

Fig. 1 The flow diagram of patients’ selection
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manual segmentation of the sacroiliac articular sur-
faces of all sacroiliac joint MRI images T1WI and T2WI, 
without knowing anything about the final diagnosis (see 
Fig. 2). Based on references from radiomics studies that 
previously required segmentation [32, 33], one month 
later, Reader A regimented all articular surfaces to assess 
consistency between two segmentations by the same 
observer. In addition, a senior radiologist (Reader B) with 
15 years of experience in bone and joint MRI diagno-
sis also independently performed the redefinition of all 
articular surfaces, again without knowing anything about 
the final diagnosis, to assess the consistency between 
observers. We use within- and between-group correla-
tion coefficients (ICCs) to determine the consistency of 
feature extraction, where any ICC greater than 0.80 is 
considered to indicate good agreement.

Image feature extraction, selection and modeling
In our study, we employed the radiology module within 
the AK software (Artificial Intelligence Toolkit, GE 
Healthcare) to extract features from the volume of 
interest found in T1WI and T2WI images. A set of 
1789-dimensional image features was extracted from 
each sequence. These features can be categorized as fol-
lows: first-order statistics, shape-based features, features 
based on gray-level co-occurrence matrix (GLCM), 
gray-level size zone matrix (GLSZM)-based features, 
gray-level run length matrix (GLRLM)-based features, 
and gray-level dependence matrix (GLDM)-based fea-
tures. Detailed descriptions of these imaging features can 
be found on the PyRadiomics documentation website 
(http:// pyrad iomics. readt hedocs. io).

To mitigate potential confounding factors, we standard-
ized the extracted features and removed unit limitations. 

For image features exhibiting high reproducibility 
(ICC > 0.80 within and between observers), we employed 
the maximum correlation and minimum redundancy 
(mRMR) algorithm for feature selection. This algorithm 
ranks features based on their correlation redundancy 
index and selects the top features that exhibit the highest 
correlation with the target.

In the training set, we utilized both the mRMR method 
and the least absolute shrinkage and selection operator 
(LASSO) feature selection methods to identify the most 
informative detection features. Initially, we employed 
multivariate sorting and the mRMR method to rank fea-
tures based on heuristic scoring criteria, subsequently 
selecting the features with the highest correlation to the 
target as per the correlation redundancy index. Subse-
quently, LASSO regression was performed using tenfold 
cross-validation on the training set to select an optimized 
subset of features, constructing image features and cal-
culating their corresponding coefficients. Image features 
were derived by incorporating selected texture features 
and weighting them according to their respective coeffi-
cients. Finally, the LASSO method was applied to select 
the best subset of features for constructing the final 
model. The role of the LASSO algorithm encompasses 
determining regularization parameters and the number 
of features to be selected.

Based on the chosen radiomic features, we established 
automatic detection models for early sacroiliac arthri-
tis using the support vector machine (SVM) logistic 
regression (LR) and LightGBM for both T1WI、T2WI 
sequences and bimodal (T1WI and T2WI) separately. 
The performance of these three best testing models 
(SVM-T1WI, SVM-T1WI and SVM-bimodal) was statis-
tically compared using Delong’s test.

Fig. 2 Schematic diagram of joint surface segmentation. a, c are MRI drawings of sacroiliac joints in normal patients, a is the original diagram 
of T1WI and the schematic diagram of articular surface segmentation, c diagram is the original diagram and articular surface segmentation diagram 
of T2WI; b, d are MRI drawings of sacroiliac joint structural injury, b is the original diagram of T1WI and the schematic diagram of articular surface 
segmentation, and d diagram is the original diagram and articular surface segmentation diagram of T2WI

http://pyradiomics.readthedocs.io
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Statistical analysis
We used SPSS 24.0 software and R software (ver-
sion 3.5.0; www.R- proje ct. org) for statistical analysis. 
To evaluate the performance of the model, we utilized 
receiver operating characteristic (ROC) curve, area 
under the curve (AUC), and sensitivity, specificity, and 
accuracy. These metrics help us assess the performance 
of the model at different thresholds. The Delong test is 
a statistical test method used to compare the differences 
between the ROC curves of different models. With the 
Delong test, we can determine whether there is a sig-
nificant difference between these models. To compare 
the performance of the three sets of models, we use the 
Delong test.

Results
Construction of radiomics features
Among the various radiation characteristics, we retained 
a set of 956-dimensional intra-observer and inter-
observer features with ICC values exceeding 0.80 within 
the T1WI cohort. Similarly, in the T2WI cohort, we 
preserved 988-dimensional intra-observer and inter-
observer features with ICC values greater than 0.80. Sub-
sequently, we employed the mRMR method to preserve a 
concise set of 20-dimensional features.

For optimal feature selection, we utilized LASSO 
regression, and the chosen features are detailed in Fig. 3. 
The LASSO coefficient selection process includes the 
regularization parameter λ, and we recorded the fitting 
coefficients of LASSO while determining the number of 
selected features, as depicted in Fig.  3. Once the num-
ber of features was established, we selected the most 
predictive feature subset and calculated the correspond-
ing coefficients. Figure  3a represents the feature extrac-
tion from T1WI, resulting in the extraction of 8 optimal 
features, while Fig.  3b illustrates the extraction of 11 
optimal features from T2WI. Based on the training data-
set, we selected the most significant features from both 
T1WI and T2WI and established radiation features using 
machine learning algorithms. In the 3578-dimensional 
bimodal feature space, we retained 1944-dimensional fea-
tures with ICC values exceeding 0.80 within and between 
groups. After applying mRMR to preserve 20-dimensional 
features, we further refined the selection by retaining the 
top 10 features with the most substantial contributions 
through LASSO regression, as depicted in Fig.  3c. The 
feature map was sorted based on feature importance, with 
the abscissa representing the coefficient. A larger coef-
ficient indicates a more significant contribution rate for 
the respective feature. Detailed ICC information for the 
extracted features is provided in Table 1.

Performance evaluation of radiomics models
According to the selected radiomics features, SVM with 
Bayesian optimization was used to establish the multi-
parameter MRI model for early detection of early sac-
roiliac arthritis. Bayesian optimization is a probabilistic 
model-based approach that helps in identifying the opti-
mal hyperparameters more efficiently than traditional 
grid search methods [34]. At the same time, to validate 
our SVM model, we also trained two other models, logis-
tic regression (LR) and LightGBM for comparison. The 
ROC curve was drawn according to the performance 
of the MRI radiology model, has shown and compared 
them in Fig. 4. AUC, Accuracy, Sensitivity, and Specific-
ity are shown in Table 2. The comparison chart of deci-
sion curves for the SVM models of three modalities 
is shown in Fig.  5. We evaluated model performance, 
achieving an AUC of 0.943 for the SVM-T1WI training 
group, with accuracy, sensitivity, and specificity values 
of 0.878, 0.836, and 0.943, respectively. The SVM-T1WI 
test group exhibited an AUC of 0.875, with correspond-
ing accuracy, sensitivity, and specificity values of 0.909, 
0.929, and 0.875, respectively. For the SVM-T2WI train-
ing group, the AUC was 0.975, with accuracy, sensitiv-
ity, and specificity values of 0.933, 0.889, and 0.750. The 
SVM-T2WI test group produced an AUC of 0.902, with 
accuracy, sensitivity, and specificity values of 0.864, 
0.889, and 0.800. In the SVM-bimodal training group, 
we achieved an AUC of 0.974, with accuracy, sensitivity, 
and specificity values of 0.921, 0.889, and 0.971, respec-
tively. The SVM-bimodal test group exhibited an AUC of 
0.964, with accuracy, sensitivity, and specificity values of 
0.955, 1.000, and 0.875, respectively. The detailed perfor-
mance indicators of LR and LightGBM models are shown 
in Table  2, which will not be repeated here. The results 
indicate that the SVM-bimodal model achieved the best 
training and testing performance. The SVM ROC curves 
of three testing groups of models (T1WI model, T2WI 
model and bimodal model) were examined by Delong 
test. The results showed that the test P value of the ROC 
curves of SVM-T1WI and SVM-T2WI was 0.0511, it is 
suggested that the detection performance of SVM-T1WI 
is superior to that of SVM-T2WI but not statistically 
significant, and the test P value of ROC curve of SVM-
bimodal and SVM-T2WI is 0.0252, suggesting that the 
detection performance of SVM-bimodal is superior to 
that of SVM-T2WI alone. The test P value of ROC curve 
between SVM-bimodal and SVM-T1WI was 0.0124, indi-
cating that the detection performance of the bimodal 
models was better than SVM-T1WI, and there was a sig-
nificant difference (Table 3).

http://www.R-project.org
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Discussion
Ax-SPA is a progressively developing disease that usually 
begins in the sacroiliac joint and later affects the spine. It 
can lead to pain, dysfunction, and reduced quality of life, 
and may progress to severe disability [2, 35]. Sacroiliitis is 
a unique feature of the earliest and most typically affected 
joint in most patients with Ax-SPA [7, 9, 36]. The last 
update of the ASAS MRI Working Group recommended 
that if the presence of bone marrow edema is insufficient 

to meet the criteria for a "highly suggestive SPA," then 
the decision may be influenced by concomitant structural 
lesions, particularly erosions [21, 36–38]. It has also been 
suggested that structural lesions such as erosions or the 
presence of fatty lesions must be considered for the diag-
nosis of sacroiliitis, which will support the diagnosis of 
Ax-SpA [39]. This also suggests the importance of struc-
tural lesions in the diagnosis of sacroiliitis.

Fig. 3 The LASSO fitting coefficient trajectories of T1WI, T2WI and bimodal model are shown in (a), (b) and (c), and the names of selected features 
and specific LASSO coefficients are also shown
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However, imaging changes in early sacroiliitis often 
rely on the experience of the radiologist and require 
more time and manpower. In contrast, radiomics is a tool 
based on objective imaging that allows for a more reliable 
quantitative assessment of lesion characteristics, inde-
pendent of reader experience and clinical information. By 
transforming digital images into mineable data [31], we 
believe that modeling the complex relationships between 
medical images and diagnostics is suitable by extract-
ing high-throughput texture features from images. The 
detection and accurate diagnosis of joint surface injury 
by active lesions and structural lesions of early sacroiliitis 
can be used as a combination of MRI to diagnose intra-
articular changes in sacroiliitis, which increases the par-
ticularity and accuracy of Ax-SPA diagnosis.

To the best of our knowledge, our model is somewhat 
innovative, and most current imaging studies of sacro-
iliac arthritis focus on assessment and quantification 
of bone marrow oedema; it is rarely used in sacroiliac 
joint to cause injury to articular surface, especially in 
structural lesions. In this study, we developed an objec-
tive and effective imaging-based method to extract a 
large number of sacroiliac joint features from MRI, 
T1WI and T2WI sequence images for early sacroiliac 
arthritis. In this study, the extraction of meaningful tex-
ture features belongs to the second-order statistical 

texture parameters. It mainly includes GLCM, GLRLM, 
GLSZM, GLDM.Based on Fig.  3, we can conclude that 
GLDM-SDLGLE, GlCM-Sum Average, GLRLM-SRL-
GLE features have higher weights in the T1WI model, 
while Glszm-LALGLE feature has a higher weight in the 
T2WI model. GLDM-SDLGLE measures the joint dis-
tribution of low gray-level values and short run lengths, 
reflecting the difference and distribution of gray levels 
between adjacent pixels in the image. This feature was 
considered to be closely related to changes in articu-
lar surface microstructure. GlCM-Sum Average meas-
ures the relationship between occurrence times and has 
lower intensity values and higher intensity value pairs. It 
reflects the distribution of gray levels between adjacent 
pixels in the image and was considered to be significant 
in distinguishing changes in articular surface cartilage 
microstructure. GLRLM-SRLGLE measures the joint dis-
tribution of low gray-level values and short run lengths, 
reflecting the quantity and distribution of low gray-level 
pixels in short regions of the image. If low intensities of 
images indicate fine texture,it can be concluded that the 
SRLGLE value is high [40]. Glszm-LALGLE measures the 
ratio of the joint distribution of large size areas with low 
gray levels in the image. This feature was considered to 
be significant in identifying synovial lesions.Using three 
kind of machine learning models to construct the model 

Table 1 ICC values for the best features

Group Radiomics features Intra-group correlation 
coefficient ICCs

Inter-
groupcorrelation 
coefficient ICCs

T1WI T1_exponential_gldm_SmallDependenceLowGrayLevelEmphasis 0.964 0.982

T1_waveletLLH_gldm_SmallDependenceLowGrayLevelEmphasis 0.923 0.911

T1_logarithm_gldm_DependenceEntropy 0.901 0.915

T1_original_shape_Maximum2DDiameterSlice 0.856 0.874

T1_exponential_glcm_SumAverage 0.861 0.873

T1_exponential_gldm_DependenceEntropy 0.852 0.861

T1_waveletLHH_glrlm_ShortRunLowGrayLevelEmphasis 0.894 0.889

T1_waveletLHL_glrlm_LongRunLowGrayLevelEmphasis 0.876 0.851

T2WI T2_waveletHHL_glszm_SizeZoneNonUniformityNormalized 0.916 0.907

T2_waveletHLL_glszm_LargeAreaLowGrayLevelEmphasis 0.878 0.915

T2_exponential_gldm_DependenceNonUniformityNormalized 0.956 0.971

T2_exponential_firstorder_Minimum 0.890 0.907

T2_waveletHHL_glszm_ZoneEntropy 0.856 0.889

T2_exponential_firstorder_10Percentile 0.905 0.894

T2_waveletHLH_glcm_Imc2 0.945 0.967

T2_exponential_glszm_HighGrayLevelZoneEmphasis 0.935 0.928

T2_waveletHHL_ngtdm_Busyness 0.917 0.872

T2_gradient_glcm_Correlation 0.982 0.973

T2_logsigma30mm3D_glcm_Imc2 0.992 0.997
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of the selected radiomics features, a high-performance 
automatic identification model of early sacroiliac arthritis 
was obtained, SVM-T1WI model achieved AUC 0.875, 
accuracy 0.909, while SVM-T2WI model achieved AUC 
0.902, accuracy 0.864, SVM-bimodal showed AUC 0.964, 
accuracy 0.955 in testing set. In KEPP et al.’s study, tex-
ture analysis based on radiomics was superior to qualita-
tive evaluation in distinguishing sacroiliac arthritis from 
degenerative changes. The diagnostic AUC of multiple 
imaging sequences combined by radiologists is 0.72, the 

AUC of fsT1wCE is 0.87, the AUC of T1w sequence is 
0.49, and the AUC of the combined fsT1wCE multiple 
sequence combination is 0.91 [41]. As shown in Table 4, 
in this study, the SVM-bimodal model with conven-
tional MRI sequence achieved better AUC results in the 
testing set compared to KEPP et  al.’s radiomics-based 
texture analysis model special MRI sequences, thus fur-
ther improving the efficiency of assisting in the diag-
nosis of sacroiliitis and our model uses conventional 
MRI sequences, which have better clinical applicability. 

Fig. 4 a Comparison of ROC in the training group of three models (LR, SVM, LightGBM) based on T1WI; b Comparison of ROC in the test group 
of three models (LR, SVM, LightGBM) based on T1WI; c Comparison of ROC in the training group of three models (LR, SVM, LightGBM) based 
on T2WI; d Comparison of ROC in the test group based on three T2WI models (LR, SVM, LightGBM); e Comparison of ROC in the training group 
based on three bimodal models (LR, SVM, LightGBM); f Comparison of ROC in the test group based on three bimodal models (LR, SVM, LightGBM); 
g Comparison of ROC in the training group of three models based on SVM (T1WI, T2WI, bimodal); h Comparison of ROC in the test group of three 
models based on SVM (T1WI, T2WI, bimodal)
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Luis et  al. reported the accuracy, sensitivity, and speci-
ficity of MRI diagnosis for sacroiliitis without DWI as 
0.683, 0.690, and 0.676, respectively. For the combined 
MRI diagnosis with DWI, the accuracy, sensitivity, and 
specificity were reported as 0.746, 0.690, and 0.794 [42], 
respectively. The SVM model obtained in this study 
showed higher accuracy, sensitivity, and specificity in 
diagnosing sacroiliitis compared to Luis et  al.’s MRI-
based and combined DWI diagnosis.

Based on the results of the study, we believe that there 
are differences in the characteristics of structural lesions 
of the early sacroiliac joint, such as articular surface ero-
sion, lipogenesis, and fat back filling of the eroded part. 
The T1WI sequence uses T1 relaxation with a shorter 
repetition time and echo time; It mainly shows the 

morphological structure of articular cartilage and sub-
chondral area, which is more sensitive to articular sur-
face erosion, and is manifested as a bright signal adjacent 
to normal bone marrow, and the local signal loss under 
the articular surface occurs in the T1WI non-lipid com-
pression sequence, and the T2WI sequence is more sub-
tle, which is also part of the reason why the specificity of 
the T2WI model is lower than that of the T1WI model. 
Inflammation of erosive erosive sites of the joint surface 
is a newly defined lesion and a well-known feature of 
SPA on MRI. As the inflammation subsides, the appear-
ance of erosive lesions on the T2WI and T1WI sequences 
also changes, and the more subtle changes can be well 
recognized by the computer; Local highlighting signals 
require consideration of local lipometaplastic changes. 

Fig. 4 continued
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Table 2 AUC, accuracy, sensitivity and specificity of T1WI, T2WI and bimodal (T1 + T2) models

Model Group AUC 95% CI Accuracy Sensitivity Specificity

LR‑T1WI Training 0.884 0.817–0.951 0.800 0.800 0.800

Testing 0.848 0.669–1.000 0.818 0.786 0.875

SVM‑T1WI Training 0.943 0.893–0.993 0.878 0.836 0.943

Testing 0.875 0.678–1.000 0.909 0.929 0.875

LightGBM ‑T1WI Training 0.910 0.853–0.967 0.811 0.745 0.914

Testing 0.790 0.547–1.000 0.818 0.857 0.750

LR‑T2WI Training 0.874 0.799–0.950 0.820 0.833 0.800

Testing 0.902 0.763–1.000 0.864 0.857 0.875

SVM‑T2WI Training 0.975 0.948–1.000 0.933 0.889 0.750

Testing 0.902 0.762–1.000 0.864 0.889 0.800

LightGBM ‑T2WI Training 0.929 0.878–0.979 0.888 0.944 0.800

Testing 0.911 0.780–1.000 0.864 0.786 1.000

LR‑bimodal Training 0.926 0.876–0.976 0.831 0.759 0.943

Testing 0.902 0.750–1.000 0.909 0.929 0.875

SVM‑bimodal Training 0.974 0.946–1.000 0.921 0.889 0.971

Testing 0.964 0.888–1.000 0.955 1.000 0.875

LightGBM—bimodal Training 0.926 0.870–0.981 0.876 0.870 0.886

Testing 0.821 0.624–1.000 0.773 0.714 0.875

Fig. 5 Decision Curve of the models
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The synovial lesions of early sacroiliitis, synovitis, and 
local synovial defects, are more sensitive in the T2WI 
sequence than the T1WI sequence, which is one of the 
factors why the T1WI combined with T2WI model is 
better than the single model. The details captured by the 
computer in this study can reflect the damage caused to 
the articular surfaces of the sacroiliac joint by sacroiliac 
arthritis in the early stages, causing structural changes. In 
this sense, this study focuses on the MRI radiomics fea-
tures of articular surface injury in early sacroiliitis, and 
by detecting the presence of articular surface lesions, the 
diagnostic accuracy of early sacroiliitis can be improved 
to support clinical decision-making.

While the findings in this article provide promising 
insights, there are a few limitations. The first is the size 
of the retrospective dataset, and the validation dataset 
is biased due to the small sampling size. Secondly, the 
manual segmentation process is also a limitation, as it is 
a very time-consuming task for radiologists, and as radi-
omics research progresses, we will increase the number 
of study samples and optimize the operating process to 
achieve further improvements based on this study.

Conclusion
This study demonstrates the feasibility of develop-
ing an automated detection model for early sacroili-
itis through the application of radiomics methodology. 
The performance of the bimodal sacroiliac joint MRI 

radiomics model surpasses that of any single-mode 
model, showcasing robust feature analysis capabilities 
and exceptional detection performance. We anticipate 
that in future research endeavors, radiomics meth-
ods will offer enhanced support to radiologists and 
rheumatologists, facilitating more efficient diagnostic 
processes.
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