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Abstract 

Background The capsule of the zygapophyseal joint plays an important role in motion segmental stability mainte-
nance. Iatrogenic capsule injury is a common phenomenon in posterior approach lumbar interbody fusion opera-
tions, but whether this procedure will cause a higher risk of adjacent segment degeneration acceleration biomechani-
cally has yet to be identified.

Methods Posterior lumbar interbody fusion (PLIF) with different grades of iatrogenic capsule injury was simulated 
in our calibrated and validated numerical model. By adjusting the cross-sectional area of the capsule, different grades 
of capsule injury were simulated. The stress distribution on the cranial motion segment was computed under differ-
ent loading conditions to judge the potential risk of adjacent segment degeneration acceleration.

Results Compared to the PLIF model with an intact capsule, a stepwise increase in the stress value on the cra-
nial motion segment can be observed with a step decrease in capsule cross-sectional areas. Moreover, compared 
to the difference between models with intact and slightly injured capsules, the difference in stress values was more 
evident between models with slight and severe iatrogenic capsule injury.

Conclusion Intraoperative capsule protection can reduce the potential risk of adjacent segment degeneration accel-
eration biomechanically, and iatrogenic capsule damage on the cranial motion segment should be reduced to opti-
mize patients’ long-term prognosis.

Keywords Zygapophyseal joint, Capsule, Motion segment, Biomechanical deterioration, Iatrogenic capsule injury, 
Posterior lumbar interbody fusion
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Introduction
Lumbar degenerative disease (LDD) is a common dis-
ease in elderly patients [1, 2]. With the increasing aging 
tendency in our country, the population base of the dis-
ease is step expanding [3, 4]. Degenerative changes in 
intervertebral disks (IVD) and zygapophyseal joints (ZJ) 
are the main pathological changes in LDD patients, and 
biomechanical deterioration initially triggers degenera-
tion of these structures [5, 6]. Posterior approach lumbar 
interbody fusion (PLIF) is an effective method for the 
treatment of LDD [7, 8]. Adjacent segment disease (ASD) 
is a common postoperative complication. Related clinical 
symptom recurrence and revision surgery are the main 
triggers for poor long-term prognosis and social–eco-
nomic burden [9, 10]. As a special kind of LDD, biome-
chanical deterioration caused by improper intraoperative 
procedures is also the initial trigger for ASD [9, 11]. In 
contrast, the optimization of surgical strategies may 
effectively reduce the risk of ASD by alleviating biome-
chanical deterioration [12, 13].

The lumbar spine is a complex structure consisting of 
various active and passive motion structures. The capsule 
of ZJ is an important structure for restricting the motion 
ranges in a special motion segment [14, 15]. Therefore, 
damage to the capsule may trigger segmental instability 
and resulting degeneration acceleration [16, 17]. To full 
exposure the pedicle screw insertion point, some sur-
geons completely destroy the dorsal side of the capsule 
[18, 19]. Based on above foundations, we hypothesize 
that iatrogenic capsule injury may trigger a higher risk of 
ASD, but this topic has yet to be identified in published 
studies. To verify this hypothesis, the biomechanical 
significance of capsule protection in the PLIF operation 
was validated by numerical mechanical simulations. To 
ensure the credibility of computed results, the model 
used in surgical simulations was calibrated and validated 
by comparing computed stress and motility character-
istics values and mechanical tested values in published 
studies. To our knowledge, this was the first study to 
identify this topic.

Material and methods
Construction of the intact model
Simulations of PLIF with different grades of iatrogenic 
capsule injury have been performed in our previously 
constructed, calibrated, and validated numerical model. 
The detailed model construction, calibration, and vali-
dation strategy have been well described in these studies 
[20, 21]. Overall, the main purpose of these procedures 
was to improve the computational reliability, which is 
reflected in various aspects [22, 23]. First, the irregu-
lar surface of the reconstructed model was completely 
replaced by regular surfaces in the current spinal model. 

By using this method, the incidence of computational 
error is significantly reduced [20, 21]. When construct-
ing bony structure models, the thickness of cortical shell 
was defined as 0.8 mm, and the only exception was bony 
endplates (BEPs). Concave angles and depth of BEPs have 
been defined according to imaging and anatomical stud-
ies [24–26]. Moreover, when it comes to the construc-
tion of non-bony component numerical models, IVD was 
consisted by annulus, nucleus, and cartilage endplates 
(CEP). The outline of the BEP covers entire cranial and 
caudal surfaces of IVD, while that of the CEP covers the 
nucleus and the inner half part of the annulus (Fig.  1) 
[27–29].

Material property definition and model calibration
Mechanical material properties of different components 
were defined separately [30–32]. The cortical and cancel-
lous bones were defined using the anisotropic law, while 
the remaining components were considered isotropic 
materials. Given that the stiffness of the ligaments was 
highly adjustable, a significant individual difference in 
this parameter existed, which was selected as the model 
calibration parameter. By adjusting the stiffness of liga-
ments under different loading conditions, the computed 
range of motion (ROM) is prone to the average ROM 
value from mechanical tests [33, 34]. Moreover, given 
that ligamentum structures suffer large deformations, the 
construction of solid element ligamentum models may 
trigger a high incidence of computational error. There-
fore, line bodies were selected to construct ligament 
models, including all ligaments and the capsule of the 
articular process.

Multi‑indicators model validation
Given that the motility characteristics were a main 
perspective of the biomechanical environment, this 
calibration strategy could optimize the computational 
stability. In addition, multi-indicator model valida-
tion was also performed in this model. Consistent 
with the model calibration process, computational 
results from the calibrated model were also compared 
to the mechanical test results. The ROM, disk com-
pression (DC) value, facet contact force (FCF), and 
intradiscal pressure (IDP) were compared between 
the computed and tested models [35–37]. When the 
difference between the computed and tested values 
was less than one standard deviation of the mechani-
cal test, we believe that the current model was well 
validated. Finally, studies show that the size of ele-
ments will affect the computational result. To elimi-
nate this confounding effect, mesh convergence tests 
were also performed in the validated model. The IDP 
value was selected as the reference of this test. When 
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the difference in IDP was smaller than 3% under dif-
ferent mesh sizes, we judged that the mesh conver-
gence test was accomplished [22, 23]. In summary, in 

our published studies, we perform above-mentioned 
procedures to optimize the computational reliability of 
current numerical models (Fig. 2).

Fig. 1 Schematic for PLIF simulations, loading conditions, different grades of capsule damage, and screw trajectories

Fig. 2 Multi-indicators model validation (consisted to our published studies)
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PLIF simulations with different grades of capsule 
iatrogenic injury
The simulation of the PLIF operation was performed 
by referring to the same type of studies and our clinical 
experience. Specifically, consistent with our published 
studies, the L4–L5 motion segment was selected in the 
PLIF simulation for the highest incidence of lumbar 
degenerative disease in this segment [6, 38, 39]. When 
simulating nerve structure decompression, the spinous 
process, the lower two-thirds of the laminae, the medial 
third of the inferior articular process of the L4 vertebral 
body, and the supraspinous and interspinous ligaments 
were excised [40, 41]. The posterior part of the annulus 
and all nuclei in the L4–L5 motion segment were excised 
to simulate discectomy, and the cartilage endplate of both 
the cranial and caudal sides of L4–L5 was also excised to 
simulate the endplate preparation process [8, 41].

To simulate the pedicle screw fixed interbody fusion 
operation, bilateral pedicle screws were inserted into the 
L4 and L5 vertebral bodies. When constructing pedicle 
screw models, the screw tulip and nut were simplified 
to a simple structure [42, 43]. By using this method, the 
contact between these two structures can be simplified 
to achieve simplification of the model and reduce the 
computational burden. Consistent with our published 
studies, the screw trajectory was parallel to the superior 
bony endplate in the corresponding vertebral body on 
the sagittal plane and parallel to the axis of the pedicle 
on the transverse plane [42, 43]. In addition, the elastic 
modulus of bony structures around the screw trajectory 
was adjusted. The range of adjusted bony structures con-
sisted of the volume of screw. To eliminate the confound-
ing effect caused by thread preservation, all threads were 
completely inserted into bony structures. When simulat-
ing cage insertion, a 26-mm cage filled with bone tissue 
was inserted into the interbody space from the right side 
of the interbody space. The material properties of bone 
tissue were defined according to our published stud-
ies [22, 30, 44]. Finally, as mentioned above, line bodies 
were selected to construct capsule models. Therefore, the 
cross-sectional area of the capsule was reduced to simu-
late different grades of intraoperative iatrogenic capsule 
injury. One-fourth and one-half cross-sectional area 
reduction of the L3–L4 capsule (the motion segment cra-
nial to the surgical segment) were performed to construct 
PLIF models with slight and severe capsule injury (Fig. 1).

Boundary and loading conditions
The boundary and loading conditions of ASD value com-
putation consisted of the computation of ROM in the 
model calibration process. By selecting this model com-
putation strategy, the computational reliability can be 

effectively ensured. Specifically, the inferior surfaces of 
the PLIF models were completely fixed under all degrees 
of freedom, and different directional moments, including 
8-Nm flexion, 6-Nm extension, left and right bending, 
and 4-Nm left and right directional axial rotation, were 
applied on the superior surface of L3 (Fig.  1) [22, 23]. 
The craniofacial coefficient between bone–screw inter-
faces and cage–bone interfaces was 0.2, and that between 
grafted bone and bony endplates was 0.46 [22, 23].

Results
To evaluate the potential risk of cranial motion segmen-
tal ASD, IDP, FCF, and the maximum stress on the annu-
lus were computed and recorded in this study. It is worth 
noting that under bending and rotation loading condi-
tions, only facet contact on the contralateral side can be 
recorded. In other words, only the right-side FCF can be 
recorded and vice versa. A similar variation tendency of 
the computational result can be observed under almost 
all loading conditions. Specifically, a higher stress value 
can be observed with a reduction in the capsule cross-
sectional area. In this process, a slight biomechanical 
deterioration can be recorded in the model with slight 
capsule injury, and obvious stress concentration can also 
be recorded in the model with one-half capsule cross-
sectional area reduction. More significantly, compared 
to the difference between models with slight intact cap-
sule and capsule injury, the difference between models 
with slight and severe capsule injury is more obvious. 
The most obvious biomechanical change can be observed 
under the extension loading condition. Compared to the 
model with an intact capsule, the IDP value in the model 
with severe capsule injury increased by more than 50%, 
the maximum annulus equivalent stress increased by 
40%, and the value of FCF even increased by 60% (Figs. 3 
and 4, Tables 1, 2, and 3).

Discussion
Posterior approach lumbar interbody fusion is a common 
surgical strategy to treat LDD patients [19, 45]. The inci-
dence of facet joint injury and the damage of ZJ capsule 
were nearly one-half in the pedicle insertion process [46, 
47]. In which, intraoperative iatrogenic capsule injury 
is common to expose the bone structure around entry 
point of the pedicle screw. Considering that the capsule 
is an important structure of segmental stability mainte-
nance, and segmental instability is a main reason for seg-
mental degeneration acceleration, this procedure may 
trigger a higher risk of ASD in the cranial motion seg-
ment biomechanically after the lumbar interbody fusion 
operation. To verify this hypothesis, PLIF models with 
different grades of capsule injury were constructed based 
on a well-validated model constructed in our published 
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studies, and stress values related to ASD were computed 
and recorded in this study.

The results show that capsule injury will lead to the 
deterioration of the stress value of the correspond-
ing motion segment and trigger a higher risk of ASD 

biomechanically. More importantly, only a slight bio-
mechanical deterioration can be observed in the model 
with slight capsule injury (Figs. 3 and 4, Tables 1, 2, and 
3). Based on the current computational results, although 
it may be impractical to completely avoid intraoperative 

Fig. 3 Computational results and variation tendency caused by capsule damage

Fig. 4 Nephograms of annulus distribution under flexion and extension loading conditions
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capsule injury (capsules may obscure the entry point of 
the pedicle, especially in patients with articular process 
hypertrophy), reducing the extent of capsule injury is still 
recommended to alleviate cranial segmental biomechani-
cal deterioration and corresponding risk of ASD. Moreo-
ver, given that the most dramatic stress concentration 
can be recorded under the extension loading condition, 
this study also proves that the biomechanical significance 
of the capsule, and even of ZJ, is most significant under 
this loading condition. This conclusion was consistent 
with the same type of studies [48, 49].

The following aspects should be clarified from the 
methodological perspective. First, only stress values on 
the cranial motion segment were recorded in this study. 

This is because the incidence of cranial ASD was sig-
nificantly higher than that of caudal ASD [9, 50]: Sur-
gical segmental high stiffness is the main reason for 
ASD biomechanically. Compared to the caudal side, 
given that the pedicle screw was more prone to the cra-
nial position, more obvious stress concentration can be 
observed on the cranial side after the PLIF operation 
[12, 50, 51]. More significantly, from the clinical per-
spective, intraoperative injury of the caudal side cap-
sule is not necessary. Therefore, these factors should 
not be investigated in this study (Table 4).

IDP, annulus maximum stress, and FCF were com-
puted and recorded to represent potential risk of ASD. 
Stress concentration on the annulus and higher IDP 
values was proved to be risk factors for annulus tears 
[52, 53]. In the lumbar spine, annulus tear is the main 
phonological phenotype for IVD degeneration and 
LDD progression [6, 15]. Considering higher annulus 
stress and IDP values can be observed in models with 
iatrogenic capsule injury, we can deduce that this pro-
cedure may trigger higher risk of IVD degeneration and 
resulting ASD. In addition, FCF has also been com-
puted to judge ASD risk. This is because the pathologi-
cal process of ASD is not limited to degeneration of the 
intevertebral disk, acceleration degeneration of ZJ, and 
corresponding spinal canal stenosis, which is also an 
important pathological type of ASD [54, 55], especially 
for elderly patients (an epidemiological study reported 
that spinal canal stenosis, rather than lumbar disk her-
niation, is the main reason for lumbar surgery in elderly 
patients) [41, 55, 56]. In a word, by comprehensively 
computing IDP, annulus stress, and FCF, the current 
numerical models can good represent potential risk of 
ASD biomechanically.

Besides, pure moments, rather than moments with 
compressive load, were applied on current models 
for following reasons. Firstly, there are large indi-
vidual differences in the amount of compressive load, 
and which was significantly influenced by weight of 
patients [32, 44]. In contrast, moment is a relatively 

Table 1 Computed intradiscal pressure in different models (KPa)

Intact capsule Slight capsule 
injury

Severe 
capsule 
injury

Flexion 74 76.66 82.77

Extension 44.15 50.47 66.39

Left bending 90.45 91.37 93.05

Right bending 91.05 92.01 93.71

Left rotation 49.55 50.45 52.76

Right rotation 49.2 50.12 51.67

Table 2 Computed annulus maximum stress in different models 
(MPa)

Intact capsule Slight capsule 
injury

Severe 
capsule 
injury

Flexion 0.943 0.972 1.046

Extension 0.646 0.727 0.927

Left bending 1.024 1.034 1.053

Right bending 1.022 1.033 1.052

Left rotation 0.398 0.405 0.423

Right rotation 0.403 0.411 0.416

Table 3 Computed left FCF in different models (MPa)

Intact capsule Slight capsule 
injury

Severe 
capsule 
injury

Flexion

Extension 0.648 0.819 1.094

Left bending

Right bending 1.118 1.184 1.301

Left rotation

Right rotation 1.755 1.809 1.968

Table 4 Computed right FCF in different models (MPa)

Intact capsule Slight capsule 
injury

Severe 
capsule 
injury

Flexion

Extension 0.688 0.833 1.111

Left bending 1.301 1.371 1.5

Right bending

Left rotation 1.656 1.674 1.781

Right rotation
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constant indicator of lumbar motion [31, 39]. More 
significantly, calibration and validation process of the 
current numerical model was accomplished under pure 
moments [20, 21]. The computational credibility of the 
current study can be ensured by computing mechani-
cal parameters under the loading condition with model 
calibration and validation.

Meanwhile, endplate damage was also an important 
reason for intervertebral disk degeneration, but stress 
distribution on the endplate was not recorded in his 
study. Acute trauma is the main reason for endplate 
damage and the resulting acceleration of IVD degen-
eration. However, the loading conditions selected in 
this study were to simulate those in patients’ daily lives 
[6, 15]. Therefore, endplate damage will not occur in 
this injury type. Finally, only one-half cross-sectional 
area reduction was selected when simulating severe 
capsule injury. When performing posterior approach 
lumbar surgery, the capsule on the ventral side can-
not be injured; therefore, in the severe capsule injury 
model, one-half of the capsule cross-sectional area was 
reduced to simulate complete injury of the dorsal side 
capsule. In summary, the basic mechanism of ASD and 
the real situation of intraoperative situations were the 
main references for the currently selected model con-
struction strategy.

Admittedly, the following limitations still existed 
in this study. First, capsule suffered large deformation 
under current loading conditions, solid element with 
large deformation values suffers high incidence of com-
putational error [22, 31]. Therefore, line bodies, rather 
than solid elements, were selected for capsule model 
construction to ensure analysis convergence [33, 57]. 
Limited by this model construction strategy, the biome-
chanical significance of the capsule in different special 
regions cannot be identified in current models. We will 
try to perform numerical simulations by using different 
analysis modules, such as the dynamics computational 
module, to further verify the current computational 
results. In addition, our previous surgical records did 
not record the grade of capsule injury in detail and 
were limited by the ethical principle of clinical prac-
tice. Thus, the current biomechanical research conclu-
sion cannot be validated by prospective clinical studies. 
The lack of clinical evidence is an important limitation 
of this study. Although these limitations existed, given 
that a consistent and obvious variation tendency can 
be observed in current models under different loading 
conditions, we still believe that the current research 
conclusion is reliable and should be revalidated in our 
future studies with further optimized models.
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