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Abstract 

Background  With potential of deep learning in musculoskeletal image interpretation being explored, this paper 
focuses on the common site of rotator cuff tears, the supraspinatus. It aims to propose and validate a deep learning 
model to automatically extract the supraspinatus, verifying its superiority through comparison with several classical 
image segmentation models.

Method  Imaging data were retrospectively collected from 60 patients who underwent inpatient treatment for rota-
tor cuff tears at a hospital between March 2021 and May 2023. A dataset of the supraspinatus from MRI was con-
structed after collecting, filtering, and manually annotating at the pixel level. This paper proposes a novel A-DAsppU-
net network that can automatically extract the supraspinatus after training and optimization. The analysis of model 
performance is based on three evaluation metrics: precision, intersection over union, and Dice coefficient.

Results  The experimental results demonstrate that the precision, intersection over union, and Dice coefficients 
of the proposed model are 99.20%, 83.38%, and 90.94%, respectively. Furthermore, the proposed model exhibited 
significant advantages over the compared models.

Conclusion  The designed model in this paper accurately extracts the supraspinatus from MRI, and the extraction 
results are complete and continuous with clear boundaries. The feasibility of using deep learning methods for mus-
culoskeletal extraction and assisting in clinical decision-making was verified. This research holds practical significance 
and application value in the field of utilizing artificial intelligence for assisting medical decision-making.
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Background
The rotator cuff is composed of the subscapularis, 
supraspinatus, infraspinatus, and teres minor tendons. 
This structure connects the scapula to the humeral head 
and maintains dynamic stability of the glenohumeral 
joint through a concave compression mechanism. It is 
also an essential component in maintaining the equi-
librium of couples in the shoulder joint [1]. Rotator cuff 
tears (RCTs) can cause pain and limitation of shoulder 
motion, with the supraspinatus tendon being the most 
commonly affected site. A recent study found that RCTs 
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account for approximately 50%–85% of shoulder disor-
ders treated by clinicians, and the morbidity increases 
with age [2].

The rotator cuff tendinopathy has been classically sum-
marized as extrinsic, intrinsic, or a combination of both. 
Intrinsic mechanisms, such as the mechanical properties, 
age-related degeneration, and vascularity of the rotator 
cuff, along with extrinsic mechanisms such as internal 
and external impingement caused by alterations in scapu-
lar and glenohumeral kinematics, appear to be significant 
contributors to RCTs [3]. Tears most commonly occur in 
and around the critical zone of the supraspinatus tendon, 
which lies in the region between the bony insertion of 
the tendon and the nearest musculotendinous junction 
[4]. This anatomic factor combined with multiple inter-
nal and external mechanisms contributes to this result, 
such as the morphology of supraspinatus [5], subacro-
mial impingement [6], and the presence of “critical zone” 
[7, 8]. The high incidence of supraspinatus tear gives its 
segmentation a higher priority and considerable clinical 
significance for the diagnosis of RCTs.

In clinical practice, shoulder magnetic resonance imag-
ing (MRI) plays a crucial role in diagnosing RCTs, assess-
ing the extent of tears, and formulating surgical plans. 
MRI offers advantages such as non-invasiveness, non-
ionizing, anatomical reproducibility, and excellent tissue 
contrast, making it a common modality for the clinical 
diagnosis of RCTs and preoperative preparation [9].

Currently, computer-aided diagnosis (CAD) techniques 
have been widely applied in medical image analysis, sig-
nificantly enhancing diagnostic accuracy and efficiency. 
With the advent of the artificial intelligence (AI) revolu-
tion, AI-enabled health care has become a hot research 
field. Targeting the issues of low efficiency in the inter-
pretation of massive MRI images and subjective dif-
ferences in human interpretation, this paper proposes 
deep learning (DL) methods and builds an innovative 
DL model based on existing research findings. It was 
developed to automatically segment and extract regions 
of interest, aiming to alleviate the workload of clinical 
doctors.

The supraspinatus is the most common site of RCTs, 
and its tears along with atrophy can reflect the severity 
of damage. Therefore, the supraspinatus is chosen as the 
segmentation target, and an improved DL model that 
can accurately extract the supraspinatus in the coronal 
plane was proposed in this paper. Compared to the more 
extensively studied sagittal plane, the coronal plane is a 
vertical plane perpendicular to the body. It is commonly 
used to observe the anterior–posterior thickness and 
morphology of the supraspinatus muscle in the shoulder. 
The coronal plane is particularly useful in assessing tears 
or changes in the anterior–posterior thickness of the 

supraspinatus muscle. Therefore, compared to segmenta-
tion based on the sagittal plane, extracting the supraspi-
natus muscle based on the coronal plane can improve the 
efficiency of diagnosing and treating RCTs. It has a sig-
nificant impact on clinical decision-making and the for-
mulation of surgical plans. This innovation holds certain 
practical significance in the field of intelligent recognition 
and interpretation of medical images.

Methods
Shoulder MRI has relatively simple semantics and fixed 
structures. Both high-level and low-level semantic infor-
mation are equally important, and there is a high demand 
for timeliness in medical diagnosis. Therefore, image seg-
mentation algorithms are commonly used in research to 
improve segmentation results and accuracy while reduc-
ing manual intervention and segmentation time. Con-
sidering these characteristics, this paper chooses the 
LinkNet [10] model as the base framework. LinkNet has 
demonstrated good performance in achieving accurate 
segmentation results. It utilizes a combination of encoder 
and decoder structure to capture local and global context 
information, which is crucial for accurately segment-
ing the supraspinatus muscle and distinguishing it from 
surrounding tissues. LinkNet strikes a balance between 
accuracy and efficiency based on a lightweight network 
structure. It computes efficiently while still maintaining 
competitive segmentation performance. This is especially 
valuable in clinical settings for real-time or near real-
time MRI image analysis. The LinkNet shows robust-
ness in handling image quality and noise variations. The 
model’s structure helps mitigate the impact of noise and 
artifacts, resulting in more reliable segmentation results, 
showing. This robustness is essential for accurate seg-
mentation of the supraspinatus muscle. And LinkNet 
can be pre-trained on large datasets, such as medical 
image repositories, to enhance model generalization and 
improve segmentation performance. Considering these 
factors, the LinkNet model is a suitable choice for accu-
rate and efficient supraspinatus muscle segmentation in 
MRI images. However, the MRI images of the supraspi-
natus encompass intricate details and local features, 
accurate segmentation is challenging, and the selection 
and improvement of any segmentation model depends 
on the specific requirements of the task. This paper con-
structs an attention-dense atrous spatial pyramid pooling 
UNet (A-DAsppUnet) network for the segmentation of 
the supraspinatus in shoulder MRI. As shown in Fig.  1, 
the proposed model involves an encoder ResNet34 [11], a 
channel attention module, and dense atrous spatial pyra-
mid pooling (DenseASPP), which connects the encoder 
and decoder network. The encoder can extract deep 
semantic feature information, while the channel attention 
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incorporates skip connections to enhance feature repre-
sentation during encoding and decoding. Drawing from 
the structural experience of the D-LinkNet model [12], 
DenseASPP is beneficial to capture multi-context infor-
mation, intensive feature extraction, and parameter shar-
ing and improves the accuracy of semantic segmentation. 
It is widely used in object segmentation [13] and scene 
semantic recognition [14, 15]. The aforementioned struc-
tures were integrated into the model and had been inno-
vatively applied to muscle tissue segmentation in medical 
MRI images. The proposed model demonstrates the abil-
ity to resist noise and image quality interference, enabling 
efficient and accurate segmentation of the supraspinatus 
and surrounding tissues.

As shown in the diagram, the selected sequences were 
downloaded and exported as TIFF files and saved across 
three RGB image channels, which were adjusted to 8-bit 
512 × 512 × 3-pixel portable network graphics (PNG) 
files using Photoshop to match the standardized net-
work input. Compared with the original grayscale image, 
which only contains brightness information, RGB image 
helps to separate the supraspinatus muscle from the sur-
rounding tissue. Due to the inclusion of three informa-
tion channels, RGB images facilitate the differentiation 
of certain muscle diseases or conditions that may result 
in color variations in muscle tissue. Moreover, the rich-
ness of contextual information in RGB images enhances 
their visualization effect, making them more intuitive and 
suitable for specific algorithms. The ResNet34 model uti-
lizes multiple down-sampling steps to extract the desired 
target features. At the end of the encoding process, the 
image dimensions are reduced to a size of 16 × 16 with 
512 channels. Subsequently, the feature map is passed 

into the DenseASPP module. This step is beneficial for 
expanding the receptive field without compromising the 
resolution of the feature map. Additionally, it ensures 
the preservation of abundant spatial information. In the 
decoding stage, the feature map size is restored through 
transposed convolution for up-sampling. The model uti-
lizes skip connections and channel attention modules to 
fuse and complement the feature information, enhanc-
ing both the integrity of the feature information and 
the exchange of channel features. This approach signifi-
cantly improves the network’s capability to extract target 
regions in complex MRI images, ensuring high accuracy 
and robustness in feature extraction.

Channel attention module
In medical image segmentation, extracting structural fea-
tures of target regions is often challenging. Additionally, 
the performance and stability of medical image segmen-
tation models are often compromised due to the lack of 
high-quality manually labeled datasets and class imbal-
ance among the samples. Attention mechanisms have 
demonstrated their effectiveness in enhancing a model’s 
ability to focus on important features [16]. In this paper, 
a channel attention mechanism is introduced to adjust 
the importance of each channel in the feature maps after 
encoding and down-sampling. This mechanism dynami-
cally adjusts the network’s attention to different features, 
thereby effectively enhancing feature extraction and uti-
lization. It helps alleviate class imbalance issues, reduce 
noise, and eliminate redundant information. As a result, 
it improves the robustness of the model and enhances 
segmentation accuracy [17]. Figure 2 illustrates the struc-
ture of the channel attention module.

Fig. 1  Improved model architecture diagram based on LinkNet
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Dense atrous spatial pyramid pooling
In the middle part of the model, the DenseASPP 
structure based on the dense convolutional network 
(DenseNet) [19] model is used to connect the encoding 
and decoding networks. Figure  3 shows the structure 
of DenseASPP, it utilizes multiple branches of different 
void convolution kernels to extract multi-scale features 
from the input data. In medical image segmentation 
research, accurate segmentation of the target region is 
a crucial performance metric. The DenseASPP module 
expands the receptive field and adapts to multi-scale 
input images by utilizing dilated convolutions and pyr-
amid pooling within a dense block structure. In Fig. 3, 
d represents the dilation rate of dilated convolutions. 
This module enhances the semantic expressive power 
of features and exhibits outstanding performance in 
image segmentation tasks.

Experiment and analysis
Experimental data and comparative models
Experimental data
This paper was approved by the Ethics Committee of 
Jiangsu Province Hospital with Integration of Chinese 
and Western Medicine, and the approval number is 2023-
LWKYZ-033. Personal informed consent was waived for 
this retrospective study. It retrospectively collected data 
from 60 patients who underwent inpatient treatment for 
RCTs at the hospital between March 2021 and May 2023. 
Patients with other shoulder conditions, such as frac-
tures, dislocations, and calcific tendinitis, were excluded 
from the study.

Examinations were acquired with a 1.5  T MR scan-
ner (General Electric, SIGNA CREATOR). Conven-
tional two-dimensional MR images were obtained 
from the proton density (PD) fat-suppressed sequence 

Fig. 2  Channel attention diagram [18]

Fig. 3  DenseASPP structure diagram [15]



Page 5 of 11Wang et al. Journal of Orthopaedic Surgery and Research           (2024) 19:60 	

in the oblique coronal plane. The acquisition param-
eters are as follows: TR = 2278 + ms, TE = 12.6–84.2  ms, 
FOV = 20 cm, NEX = 2, bandwidth = 31.25 Hz/pixel, slice 
thickness = 4 mm, and spacing: 0.5 mm.

Due to the physiological differences between individu-
als and the diverse location of tears, the author selected 
images capable of displaying the supraspinatus clearly 
from acquired images, about 3–5 images per sequence. 
After the selection process, a total of 200 MRI images 
were chosen for further analysis. The 60 subjects were 
randomly divided into a training set, a validation set, 
and a test set, ensuring that images from the same sub-
ject in the training dataset were not used in the valida-
tion or evaluation processes in this paper. To fully train 
the model in this paper, the experimental data were 
expanded threefold using data augmentation techniques, 
including image rotation, horizontal flipping, and verti-
cal flipping. These techniques aim to enhance the robust-
ness and generalization capability of the model, thereby 
improving the accuracy of target extraction during model 
training.

The images were in RGB format with a size of 512 × 512 
pixels. The supraspinatus was manually annotated by 
tracing its contour on the images. The proximal end of 

the annotation started at the scapular spine, while the 
distal end ended at the greater tuberosity of the humerus. 
The superior boundary was defined by the acromion, 
shoulder joint capsule, and trapezius, while the inferior 
boundary was determined by the scapular spine, the 
upper aspect of the humeral head, and the supraglenoid 
tubercle. These annotations output corresponding labels 
for the supraspinatus tendon. The data were annotated 
by three graduate students and physicians specialized in 
musculoskeletal imaging. The annotations underwent 
verification by experienced physicians to ensure accuracy 
and reliability. The original images and extended data are 
shown in Fig. 4.

Comparative models
To assess the feasibility and high accuracy of the pro-
posed model for segmenting the supraspinatus ten-
don in MRI images, several classic image segmentation 
algorithms, including fully convolution network (FCN), 
UNet, semantic segmentation network (SegNet), and 
DenseNet, were selected for comparative experiments on 
the dataset employed in this paper. These models were 
chosen to evaluate the accuracy and performance of the 
proposed method against established approaches.

Fig. 4  The original data and data expansion. a Original images and labels. b Rotate the image and label. c Flip horizontal images and labels
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Experimental environment and evaluation metrics
Experimental environment
The experiments were conducted using the Python 3.7 
programming language and the PyTorch 1.8.1 deep learn-
ing framework. All experiments were performed on a 
computer equipped with an AMD Ryzen 7 3700X CPU 
and an NVIDIA GeForce RTX 2700 graphics card with 
8  GB of VRAM. For model training, the binary cross-
entropy loss function (BCELoss) was used, along with the 
Adam optimizer to update the network parameters. The 
batch size was set to 2, and the learning rate was set to 
0.0001. The models were trained for 30 epochs.

Evaluation metrics
Image segmentation is evaluated using metrics such as 
precision (Pre), F1 score, and intersection over union 
(IoU). However, in medical image segmentation, the Dice 
coefficient is often used to assess model performance. 
Therefore, this paper uses Pre, the Dice coefficient, and 
IoU as the evaluation metrics to measure model perfor-
mance and the accuracy of supraspinatus tendon seg-
mentation. The formulas for these evaluation metrics are 
as follows:

In the equations, TP represents the number of pix-
els correctly predicted as supraspinatus tendon, FP rep-
resents the number of pixels incorrectly predicted as 
supraspinatus tendon, TN represents the number of 
pixels correctly predicted as background, and FN rep-
resents the number of pixels incorrectly predicted as 
background.

Experimental results and analysis
To ensure fair and objective analysis of the experimen-
tal results, all experiments in this paper were conducted 
using the same dataset and experimental environment. 
Table 1 displays the quantitative statistical results of the 
five models on the experiment’s test set for supraspinatus 
tendon extraction. The evaluation of model performance 
is conducted using three assessment metrics: Pre, IoU, 
and Dice coefficient.

According to the table, the mentioned models are 
capable of extracting the supraspinatus tendon to some 
extent, with differences in terms of completeness, 

(1)Precision =
TP

TP+ FP
× 100%

(2)IoU =
TP

TP+ FP+ FN
× 100%

(3)Dice =
2TP

(TP+ FP)+ (TP+ FN)
× 100%

continuity, and accuracy of the extraction. The proposed 
method in this paper achieved Pre, IoU, and Dice coef-
ficients of 99.20%, 83.38%, and 90.94%, respectively. The 
comparison clearly indicates that this method has a sig-
nificant advantage and performs in terms of extract-
ing the supraspinatus tendon. Compared to the four 
comparative models, the proposed method exhibited 
improvements in the evaluation metrics. The “Pre” met-
ric showed an enhancement of approximately 0.4%–1%, 
the “IoU” metric witnessed an improvement of 7.5%–
18.3%, and the "Dice coefficient" experienced an increase 
of approximately 4.7%–12.1%. These improvements were 
significant across all indicators. Among the comparative 
models, DenseNet performed the best, followed by UNet 
and SegNet, while FCN had the worst effect and had a 
large gap with the proposed algorithm in IoU and Dice 
indicators in this paper.

Based on the data in the table and the equation above, 
it can be observed that the improvement in the Pre met-
ric is not significant. The reason is that the target pixel 
constitutes a relatively small proportion of the total num-
ber of pixels, and reducing false-positive pixels does not 
lead to a significant increase in accuracy. According to 
the IoU indicator and its calculation formula, a higher 
IoU value signifies a larger proportion of accurately clas-
sified supraspinatus pixels relative to the total number 
of correctly classified pixels, with fewer incorrectly pre-
dicted pixels. In the supraspinatus segmentation task, the 
significant improvement in the IoU measure indicates 
that the proposed model achieves the highest accuracy 
in supraspinatus segmentation. In addition, with a Dice 
coefficient of 90.94%, it can be inferred that the perfor-
mance of the model proposed in this paper is superior.

To fully validate the above conclusions, this paper 
conducted a visual analysis of the supraspinatus seg-
mentation results. Figure 5 illustrates a visual compar-
ison between the results obtained using the proposed 
method and those obtained using the comparative 
model on the test set images. Four representative 
images are provided in the figure for comparison. As 
shown in the figure, the segmentation results obtained 
using the proposed method exhibit the best 

Table 1  Extraction result statistics

Bold values indicate the performance of the proposed method over the 
comparison method

Model Pre (%) IoU (%) Dice (%)

FCN 98.28 65.07 78.84

SegNet 98.53 70.59 82.76

UNet 98.74 73.61 84.80

DenseNet 98.79 75.86 86.27

A-DAsppUnet 99.20 83.38 90.94



Page 7 of 11Wang et al. Journal of Orthopaedic Surgery and Research           (2024) 19:60 	

performance in terms of completeness and capturing 
fine details. Specifically, the extracted supraspinatus is 
delineated clearly from structures such as the humeral 
tuberosity, scapular spine, and inferior glenohumeral 
capsule. The segmentation results exhibit well-pre-
served details, and there is a high level of accuracy in 
aligning the upper and lower boundaries of the seg-
mented region with the ground truth labels. In con-
trast, in the results obtained using the comparative 
model, the boundaries of the supraspinatus extrac-
tion are blurred near the side of the scapular spine in 
images (1) and (3). Image (1) shows poor overall seg-
mentation performance, with a significant portion 
of supraspinatus pixels left unsegmented. Image (3) 
exhibits numerous erroneous segmentations. On the 
other hand, in images (2) and (4), the proposed method 
accurately delineated the edges of the supraspinatus, 
particularly at the tendon junction with the humeral 
head and the superior border of the deltoid muscle.

In the comparison model, DenseNet performs well in 
extracting the target and achieves reasonably accurate 
segmentation. However, it fails to capture fine details, 
especially in capturing the blurry boundaries with the 
deltoid muscle, resulting in insufficient accuracy. The 
UNet model lacks completeness in target extraction. 
For example, in image (1), there is information miss-
ing in the proximal part of the supraspinatus, and the 

extracted region is smaller than the actual boundaries 
defined by the labels. For the SegNet and FCN models, 
their segmentation results exhibit more false positives 
and false negatives, as shown in images (1) and (3).

Robustness analysis through ablation experiments
To thoroughly validate the effectiveness of the pro-
posed innovative model, it conducted ablation experi-
ments to investigate the impact of the deep encoding 
network, channel attention, and dense spatial pyra-
mid pooling modules on the performance of the pro-
posed model. The experimental setup is described as 
follows:

LinkNet18 was selected as the baseline model in this 
paper. Scheme  1: ResNet34 is selected as the model 
encoder network. Scheme 2: Add the channel attention 

Fig. 5  Visualization of extraction results. a Images. b Labels. c A-DAsppUnet. d DenseNet. e UNet. f SegNet. g FCN

Table 2  Ablation experimental model

Model ResNet34 Channel 
attention

DenseASPP

Baseline

Scheme 1 √

Scheme 2 √ √

Scheme 3 √ √

A-DAsppUnet √ √ √
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mechanism at the jump junction of the Scheme  1 
model. Scheme  3: DenseASPP in the middle of the 
Scheme  1 model to connect the encoder and decoder 
networks. The models of the ablation experiment are 
shown in Table 2.

The ablation experiments were carried out in the same 
environment as the experimental dataset. The extraction 
results of the supraspinatus from the images of the test 
set by each ablation model are shown in Table 3.

Figure 6 shows the extraction results of the supraspina-
tus in the test set images of each ablation model. Accord-
ing to the comprehensive table and Fig.  6, the Pre, IoU, 
and Dice indexes of Scheme 1 increased by 2.68%, 2.25%, 
and 1.47%, respectively, and the extraction integrity of the 
supraspinatus was improved by the model. For example, 

the extraction results of images (2) and (3) are complete, 
continuous, and clear. In Scheme  2, the channel atten-
tion mechanism is added on the basis of Scheme 1, and 
the IoU and Dice coefficients are increased by 0.94% and 
0.61%, respectively. The channel attention mechanism 
enhances the fusion of important features in the jump 
connection, thereby improving the accuracy of supraspi-
natus edge extraction.

In Scheme  3, the DenseASPP module is used as the 
middle part of connection coding–decoding, and the 
model performance indexes Pre, IoU, and Dice are 
increased by 1.21%, 4.45%, and 2.88%, respectively. The 
DenseASPP module extends the receptive field of the 
down-sampled feature maps obtained from the encoder 
without reducing their resolution. It preserves rich fea-
ture information and effectively helps the model recog-
nize and extract target regions after up-sampling in the 
decoder. This module achieved the best results in terms 
of the integrity, accuracy, and clarity of supraspinatus 
edge extraction.

Discussion
With the advancement of medical imaging technology, 
the quantity and complexity of medical imaging data 
are continuously increasing. In most cases, even with 
access to shoulder MRI, nonorthopedic surgeons may 
find it challenging to identify and diagnose RCTs. In this 

Table 3  Extraction results of ablation experiments

Bold values indicate the performance of the proposed method over the 
comparison method

Model Pre (%) IoU (%) Dice (%)

Baseline 89.03 73.66 84.83

Scheme 1 91.71 75.91 86.3

Scheme 2 89.01 76.85 86.91

Scheme 3 90.24 78.11 87.71

A-DAsppUnet 92.77 83.38 90.94

Fig. 6  Visualization of ablation model extraction results. a Images. b Labels. c A-DAsppUnet. d Baseline. e Scheme 1. f Scheme 2. g Scheme 3
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case, the application of CAD techniques provides sup-
port for ensuring high efficiency and accuracy in clinical 
diagnosis.

Ledley et al. [20] pioneered the field of CAD by build-
ing a mathematical model for lung cancer diagnosis. 
With the emergence of artificial intelligence, CAD has 
evolved into a DL approach, which has shown great 
potential and widespread application in image processing 
and computer vision. DL models have revolutionized the 
field of medical image analysis by leveraging their ability 
to extract complex patterns and features from images. 
Through training on extensive datasets, these models can 
learn to identify subtle abnormalities, assist in disease 
diagnosis, and provide valuable insights for clinical work.

DL methods have made significant contributions to 
medical imaging research, with representative works 
including brain tumor segmentation [21], lung nod-
ule detection [22], and case image segmentation [23]. 
In the field of musculoskeletal imaging, accurate imag-
ing diagnosis is crucial, which has spurred the vigorous 
development of DL techniques. Research in this domain 
encompasses various areas, such as knee cartilage injury 
[24], meniscus and ligament tears [25, 26], spinal canal 
stenosis [27], bone age detection, and osteoporosis diag-
nosis [28], all of which have achieved fruitful results. In 
this context, the focus is on shoulder MRI, where the 
mature technologies primarily concentrate on the seg-
mentation of bony tissues. However, the extraction of 
imaging features related to musculoskeletal tissue, as 
well as research on their role in assisting diagnosis, is still 
under development. Research on robust and accurate 
algorithms for the segmentation and analysis of these soft 
tissues in shoulder MRI holds great potential for improv-
ing diagnostic accuracy and facilitating treatment plan-
ning in orthopedics.

Indeed, DL research based on shoulder MRI has made 
significant progress. Kim et  al. [29] developed a FCN 
model for the segmentation of the supraspinatus and 
supraspinatus fossa in the sagittal plane of MRI, which 
visualizes the degree of supraspinatus atrophy and fatty 
infiltration. Medina et  al. [30] utilized an improved 
UNet convolutional neural network (CNN) architec-
ture to accurately segment the supraspinatus, infraspi-
natus, and subscapularis in sagittal plane MRI. Ro et al. 
[31] employed a CNN-based approach to segment the 
supraspinatus and supraspinatus fossa. They analyzed 
the occupation rate of the supraspinatus and utilized an 
improved Otsu thresholding technique to quantify the 
extent of fatty infiltration in the supraspinatus. These 
studies, focusing on sagittal plane of shoulder MRI, ena-
ble physicians to accurately assess the degree of supraspi-
natus atrophy and fatty infiltration and predict the 
effectiveness of rotator cuff repair surgery.

However, RCTs are primarily categorized as tendinop-
athy. Only knowing the atrophy and fatty infiltration of 
the supraspinatus has limited clinical significance. There-
fore, the current trend is to study the tendons themselves. 
Yao et al. [32] employed a three-stage pipeline consisting 
of ResNet, UNet, and CNN to perform screening, seg-
mentation, and binary classification (tear or no tear) of 
supraspinatus images. Hess et  al. [33] utilized nnUNet 
to segment both the bony structures (humerus and scap-
ula) and the rotator cuff on a shoulder MR T1-weighted 
sequence. Lin et al. [34] used four parallel 3D ResNet50 
convolutional neural network architectures to detect and 
classify RCTs based on tear types.

This paper focuses on the supraspinatus and con-
structs an A-DAsppUnet model, attempting to segment 
the supraspinatus in the same MRI sequence. Compared 
with the results of other segmentation models, the pro-
posed model has better segmentation accuracy and per-
formance. It validated the feasibility of using DL methods 
for segmenting the rotator cuff, and the results provide a 
reference for clinical treatment and surgical planning in 
this paper.

However, it is important to acknowledge the limi-
tations of the study. Although the data volume was 
increased through data augmentation, the experimental 
data in this study are still not abundant, the prediction 
results may have minor errors in displaying subtle tears. 
The training set images only outline the contour of the 
supraspinatus, so the model prediction results cannot 
reflect internal injuries and tendon quality. Full-thickness 
tears mean continuous interruptions of the rotator cuff, 
leading to significant errors in the segmentation of the 
tendon stump. Additionally, the boundaries between the 
supraspinatus and adjacent muscles, such as the trape-
zius, appear unsatisfactory due to the similarity in pixel 
grayscale values on MRI. Furthermore, it excluded cases 
affected by other shoulder diseases, limiting the clini-
cal utility of this model. Addressing the aforementioned 
issue and expanding the dataset to encompass a broader 
range of cases would enhance the model’s generalization 
capability.

Conclusion
In this study, it aimed to investigate the effectiveness of 
DL models for the extraction of the supraspinatus from 
shoulder MRI. An improved DL network model was 
designed, and extensive experiments were carried out on 
self-constructed supraspinatus dataset.

The experimental results demonstrated that the pro-
posed improved DL model has excellent performance in 
extracting the supraspinatus the coronal plane of shoul-
der MRI. The model achieved a high segmentation accu-
racy with Dice coefficient, precision, and IoU of 0.91, 
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0.99, and 0.83, respectively. These results indicate that 
the DL method is capable of accurately segmenting the 
supraspinatus in shoulder MRI.

Furthermore, the analysis revealed several advan-
tages of the model. The proposed model demonstrates 
robustness to variations in the position and shape 
of the supraspinatus. It exhibits resistance to noise 
interference and achieves high-quality and complete 
extraction. Compared to traditional image processing 
techniques, the model outperforms them and shows 
greater potential in clinical research and applications.

DL-based image segmentation has several advantages 
compared to the detection and classification of RCTs. 
Image segmentation offers more detailed information 
and supports quantitative analysis. It accurately deline-
ates structures or abnormalities at the pixel level, ena-
bling precise localization and providing rich anatomical 
and pathological details. Therefore, DL-based image 
segmentation is better suited for handling complex sce-
narios and personalized medical interventions.

In summary, the research demonstrates the effec-
tiveness of DL models in extracting the supraspinatus 
from the coronal plane of shoulder MRI. This validates 
the experimental value and practical significance of DL 
methods in assisting medical decision-making. Future 
studies can make breakthroughs by continuously 
exploring attention mechanisms and multi-scale struc-
tures, such as dilated convolutions, and utilizing high-
quality data from multiple centers, fully harnessing the 
potential of DL methods in musculoskeletal imaging.
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