
Wang et al. 
Journal of Orthopaedic Surgery and Research            (2024) 19:8  
https://doi.org/10.1186/s13018-023-04490-1

RESEARCH ARTICLE

Development and external validation 
of a nomogram for predicting postoperative 
adverse events in elderly patients undergoing 
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Abstract 

Background  The burden of lumbar degenerative diseases (LDD) has increased substantially with the unprecedented 
aging population. Identifying elderly patients with high risk of postoperative adverse events (AEs) and establish‑
ing individualized perioperative management is critical to mitigate added costs and optimize cost-effectiveness 
to the healthcare system. We aimed to develop a predictive tool for AEs in elderly patients with transforaminal lumbar 
interbody fusion (TLIF), utilizing multivariate logistic regression, single classification and regression tree (hereafter, 
“classification tree”), and random forest machine learning algorithms.

Methods  This study was a retrospective review of a prospective Geriatric Lumbar Disease Database (age ≥ 65). Our 
outcome measure was postoperative AEs, including prolonged hospital stays, postoperative complications, read‑
mission, and reoperation within 90 days. Patients were grouped as either having at least one adverse event (AEs 
group) or not (No-AEs group). Three models for predicting postoperative AEs were developed using training dataset 
and internal validation using testing dataset. Finally, online tool was developed to assess its validity in the clinical set‑
ting (external validation).

Results  The development set included 1025 patients (mean [SD] age, 72.8 [5.6] years; 632 [61.7%] female), 
and the external validation set included 175 patients (73.2 [5.9] years; 97 [55.4%] female). The predictive ability of our 
three models was comparable, with no significant differences in AUC (0.73 vs. 0.72 vs. 0.70, respectively). The logis‑
tic regression model had a higher net benefit for clinical intervention than the other models. A nomogram based 
on logistic regression was developed, and the C-index of external validation for AEs was 0.69 (95% CI 0.65–0.76).

Conclusion  The predictive ability of our three models was comparable. Logistic regression model had a higher net 
benefit for clinical intervention than the other models. Our nomogram and online tool (https://​xuanw​umodel.​shiny​
apps.​io/​Model_​for_​AEs/) could inform physicians about elderly patients with a high risk of AEs within the 90 days 
after TLIF surgery.
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Introduction
According to the United Nations 2022 Revision of World 
Population Prospects, the proportion of people over 
65  years of age is expected to increase from approxi-
mately 9.7% in 2022 to 16.4% in 2050 [1]. The burden 
of lumbar degenerative diseases (LDD) has increased 
substantially with the unprecedented aging population. 
From 2004 to 2015, the volume of elective lumbar fusion 
procedures for LDD among those over age 65 in the 
USA increased by 138%, and the costs for elective lum-
bar fusion increased from $3.7 billion dollars in 2004 to 
$10.2 billion dollars in 2015 [2]. Transforaminal lumbar 
interbody fusion (TLIF) was first reported in the early 
1980s as a modification of posterior LIF and has become 
a commonly used surgical procedure for nerve decom-
pression and bone stabilization with excellent and reli-
able outcomes [3, 4]. Postoperative adverse events (AEs) 
following lumbar fusion surgery include complications, 
prolonged hospital stay, and readmission, which increase 
hospitalization-related expenditures and postoperative 
dissatisfaction [5, 6]. In previous studies, elderly patients 
(aged 65  years and older) had more extended hospital 
stays and about twice the complication rate of younger 
patients [7, 8]. Identifying elderly patients with high risk 
of AEs and establishing individualized perioperative 
management is critical to mitigate added costs and opti-
mize cost-effectiveness to the healthcare system.

Many independent variables are associated with post-
operative AEs following lumbar fusion surgery. Vari-
ables associated with increased length of stay (LOS) 
include increased age, morbid obesity, diabetes, opioid 
use, greater number of comorbid conditions, unemploy-
ment, drain use, and blood transfusion [9–11]. Older and 
non-married patients, those with obesity, positive smok-
ing history, longer procedure times, and emergent cases 
were significantly more likely to be readmitted for com-
plications or physical rehabilitation [9, 10, 12]. Variables 
associated with complications include cerebrovascular 
disease, electrolyte disorders, hemi/paraplegia, mass 
blood loss, and postoperative delayed ambulation [13–
16]. Predictive models are more likely to provide individ-
ualized expectations for postoperative outcomes during 
preoperative consultation than risk factor analysis alone. 
Furthermore, although postoperative AEs are more com-
mon in the elderly population, research regarding devel-
oping predictive models for AEs in elderly patients is 
lacking.

Multivariate logistic regression and machine learning 
algorithms are now applied widely across medical field 
to develop predictive models. Compared with models 
based on machine learning algorithms, logistic regression 
models have better stability and model interpretability, 
while machine learning algorithms have advantages in 

data processing and nonlinear and multivariate forecast-
ing [17]. Here, we sought to develop a predictive tool for 
postoperative AEs in elderly patients, utilizing multivari-
ate logistic regression, single classification and regression 
tree (hereafter, “classification tree”), and random forest 
machine learning algorithms.

Materials and methods
Patient population
This study was a retrospective review of a prospective 
Geriatric Lumbar Disease Database, which includes basic 
information (including demographic data, medical dis-
ease, laboratory test, and medication history), periopera-
tive data, and follow-up results of consecutive patients 
aged 65 years and older. The Institutional Review Board 
approved the study (IRB# 2018086). Due to the nature 
of this retrospective study, the informed consent from 
patients was waived. We reviewed data of patients who 
underwent elective fusion surgery for lumbar degenera-
tive disease between August 2018 and October 2022 and 
were followed up for more than three months postopera-
tively. Inclusion criteria were as follows: (i) aged 65 years 
and over; (ii) patients with elective TLIF surgery. Exclu-
sion criteria were as follows: patients with (i) irreversible 
loss of mobility before admission; (ii) revision surgery; 
(iii) preexisting spinal fracture, any spinal infection or 
any malignancy; (iv) incomplete data; and (v) surgery-
related complications including incidental durotomy, 
nerve injury or spinal cord injury.

Predictive variables
The demographic and clinical data included age, gender, 
weight, body mass index (BMI), payment type, medi-
cal disease (Charlson comorbidity index, cardiovascular 
disease, diabetes, medication history (glucocorticoid and 
anticoagulant), osteoporosis, current smoker or drinker, 
etc.), and laboratory tests (red blood cell count [RBC], 
hemoglobin, and coagulation function tests indicators). 
Surgery-related variables included the number of fused 
segments, estimated blood loss (EBL), operative time, and 
drainage volume on postoperative day 0 (POD0). Given 
the importance of early ambulation as a protective fac-
tor reported in previous studies, we also include delayed 
ambulation (bed rest for more than 48 h after surgery) as 
a predictive variable. For external validation, we reviewed 
a consecutive cohort of 175 elderly patients who under-
went lumbar fusion surgery in another hospital.

Outcome measure
Postoperative AEs included postoperative complications, 
prolonged LOS, readmission, and reoperation within 
90  days after surgery. We excluded patients with intra-
operative complications that were related to the surgical 
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technique of surgeons. Prolonged LOS was defined as post-
operative hospital stay greater than the 75th percentile. 
The indications for readmission included medical com-
plications, reoperation, physical rehabilitation, and other 
unplanned readmissions. The LOS was recorded routinely 
by hospital administrative staff who were unaware of the 
study and extracted from the hospital electronic patient 
record by a research nurse. Other AEs were recorded by 
another research nurse using predefined criteria for the 
presence or absence of complications and readmission 
according to the clinical record, medication record, and 
follow-up data. Data were taken from the clinical records 
made by usual care teams unaware of the study. Patients 
were grouped as either having at least one adverse event 
(AEs group) or not (No-AEs group).

Statistical analysis
All statistical analyses were conducted using R version 
4.2.2 (R Foundation for Statistical Computing), and signifi-
cance level was set at p < 0.05 for all tests. Continuous data 
were expressed as means ± standard deviation (SD) and 
were compared using the two-tailed Student’s t test or the 
Mann–Whitney U test. Median (quartile 1, quartile 3) was 
displayed for not normally distributed data. Categorical 
variables were expressed as frequencies with percentages 
and analyzed using Fisher’s exact and chi-square tests, as 
appropriate. Data from the Geriatric Lumbar Disease Data-
base were partitioned with an 80/20 split for training and 
test datasets. Logistic regression models were built using 
the function glm of the R package stats. Single classifica-
tion trees were produced with the rpart package and were 
pruned to a complexity parameter of 0.02. Random forest 
classifiers were created using the randomForest R package 
v4.2.3 [18].

Trained models are validated using the remaining 20% of 
available data. Operating characteristic curve (ROC) was 
accomplished using the proc and rocr packages. Area under 
the curve (AUC) was calculated by applying the model to 
the testing set. After selecting the most appropriate model, 
we compared the predicted with the observed probabilities 
and drew a calibration curve to assess model calibration. 
Then, we performed a decision curve analysis (DCA) to 
evaluate the clinical benefit of our model. The nomogram 
function of the RMS package of the R software was used to 
generate the nomogram. Finally, online tool based on our 
model was developed to assess its validity in the clinical 
setting (external validation).

Results
Patient characteristics in the development and validation 
dataset
The development set included 1025 patients (mean [SD] 
age, 72.8 [5.6] years; 632 [61.7%] female), and the external 

validation set included 175 patients (73.2 [5.9] years; 97 
[55.4%] female). The perioperative and follow-up data of 
participants in the development dataset (including the 
training and testing datasets) and validation dataset are 
shown in Table  1. There were no significant differences 
in demographic data among the three groups. More 
patients with peripheral vascular disease and osteopo-
rosis were in the validation dataset (p < 0.01). There were 
also significant differences among the groups in number 
of fused segments and intraoperative EBL (p < 0.001). The 
incidence of postoperative AEs was similar among the 
three groups (p = 0.264).

Univariate risk analysis for postoperative AEs
Univariate analyses revealed that age (p < 0.001), 
BMI (p = 0.015), hemoglobin (p = 0.03), osteoporosis 
(p = 0.003), INR (p = 0.025) number of fused segments 
(p < 0.001), lumbosacral fusion (p = 0.014), intraoperative 
EBL (p < 0.001), operative time (p < 0.001), delayed ambu-
lation (p < 0.001), drainage volume on POD0 (p < 0.001), 
and diabetes (p = 0.031) were significantly associated with 
postoperative AEs. All models were developed with the 
training dataset and evaluated with the testing and exter-
nal validation datasets (Table 2).

Logistic regression model
Multivariate analyses revealed that older age (odds ratio 
[OR] 1.84, p < 0.001), higher BMI (OR 1.28, p = 0.019), 
more intraoperative EBL (OR 1.22, p = 0.036), longer 
operative time (OR 1.92, p < 0.001), and delayed ambu-
lation (OR 1.88, p < 0.001) were independent risk factors 
for postoperative AEs in elderly patients undergoing lum-
bar fusion surgery (Table 3).

Single classification tree model
The single classification tree revealed that the num-
ber of fused segments ≥ 3, age ≥ 79  years, intraoperative 
EBL ≥ 325 ml, delayed ambulation, and weight ≥ 64 kg as 
particularly influential predictors for AEs (Fig. 1).

Random forest model
Recursive feature elimination removed 12 variables 
from the original set of 26 candidate predictors. A ran-
dom forest model was developed using the remaining 
14 variables. Intraoperative EBL, operative time, delayed 
ambulation, age, number of fused segments, BMI, and 
RBC count were the most significant variables in the final 
model (Fig. 2).

After the three models were developed using the train-
ing dataset, every model performance was validated on a 
separate cohort of 205 patients in the testing dataset. The 
logistic regression model AUC was 0.73 vs. 0.72 for the 
random forest model and 0.70 for the single classification 
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tree model (Fig. 3). DCA was performed to calculate the 
clinical net benefit of each model, and it revealed that the 
logistic regression model was more benefit than random 

forest and single classification tree model in predicting 
postoperative AEs (Fig. 4).

Finally, we therefore selected the simpler logistic 
regression model to build our prognostic classifier. The 

Table 1  Perioperative and follow-up data of training, testing, and validation dataset

BMI, Body mass index; CCI, Charlson comorbidity index; INR, International normalized ratio; EBL, Estimated blood loss; LOS, Length of hospital day; POD0, 
Postoperative day 0; AEs, Adverse events

*Represents for statistically different (P < 0.05)

Variables Training dataset Testing dataset Validation dataset P
N = 820 N = 205 N = 175 Value

Demographic data

Age (yr) 72.8 ± 5.6 72.7 ± 5.7 73.2 ± 5.9 0.713

Male n (%) 305 (37.2%) 88 (42.9%) 78 (44.6%) 0.096

Weight (kg) 66.9 ± 10.9 67.9 ± 10.9 68.5 ± 11.0 0.164

BMI (kg/m2) 25.6 ± 3.7 25.6 ± 3.6 25.8 ± 3.5 0.799

Medical disease n(%)

CCI 0.611

0 or 1 676 (82.4%) 167(81.5%) 149 (85.1%)

2 or more 144 (17.6%) 38 (18.5%) 26 (14.9%)

Hypertension 523 (63.8%) 127 (62.0%) 99 (56.6%) 0.200

Coronary heart disease 176 (21.5%) 44 (21.5%) 27 (15.4%) 0.189

Peripheral vascular disease 33 (4.0%) 4 (2.0%) 15 (8.6%) 0.005*

Diabetes 263 (32.1%) 74 (36.1%) 45 (25.7%) 0.093

Cerebrovascular disease 80 (9.8%) 21 (10.2%) 15 (8.6%) 0.850

Osteoporosis 96 (11.7%) 24 (11.7%) 40 (22.9%) 0.001*

Connective tissue disease 17 (2.1%) 6 (2.9%) 9 (5.1%) 0.071

Smoker 95 (11.6%) 31 (15.1%) 20 (11.4%) 0.364

Drinker 66 (8.0%) 19 (9.3%) 11 (6.3%) 0.563

Peptic ulcer 24 (2.9%) 3 (1.5%) 3 (1.7) 0.375

Laboratory test

Red blood cell count(× 1012/L) 4.3 ± 0.5 4.2 ± 0.5 4.2 ± 0.5 0.850

Hemoglobin(g/L) 130.2 ± 14.8 129.7 ± 14.6 130.2 ± 12.9 0.898

INR 0.97 ± 0.08 0.99 ± 0.13 0.95 ± 0.06 0.001*

Medication history

Glucocorticoids 11 (1.3%) 5 (2.4%) 3 (1.7%) 0.525

Anticoagulant agent 146 (17.8%) 43 (21.0%) 7 (4.0%)  < 0.001*

Surgery-related data

Number of fused segments 2.02 ± 0.97 2.02 ± 0.95 1.64 ± 0.71  < 0.001*

Lumbosacral fusion 367 (44.8%) 79 (38.5%) 43 (24.6%)  < 0.001*

Intraoperative EBL (ml) 352.1 ± 330.1 352.5 ± 282.8 200.8 ± 190.3  < 0.001*

Operative time (min) 210.6 ± 67.3 214.4 ± 64.7 210.9 ± 68.2 0.768

Drainage volume on POD0 (ml) 114.1 ± 94.9 112.3 ± 81.4 106.7 ± 97.4 0.001*

Postoperative outcomes

Delayed ambulation 288 (35.1%) 78 (38.0%) 57 (32.6%) 0.533

Postoperative LOS (d) 6 (5,9) 6 (5,10) 6 (5,7)  < 0.001*

Prolonged LOS 190 (23.2%) 55 (26.8%) 42 (24.0) 0.547

Total complications 149 (18.2%) 54 (26.3%) 37 (21.1%) 0.030*

Medical complications 122 (14.9%) 46 (22.4%) 32 (18.3%) 0.028*

Surgery-related complications 27 (3.3%) 3 (1.5%) 5 (2.9%) 0.379

Readmission within 90 days 36 (4.4%) 7 (3.4%) 2 (1.1%) 0.117

AEs 282 (34.4%) 83 (40.5%) 63 (36.0%) 0.264
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logistic regression model was well-calibrated (observed 
to expected ratios) in the training and validation cohorts 
(Fig.  5). The accuracy of the predictive model was 70% 
(AUC = 0.69) in the sample from an institution that was 
different and independent from those used for model 
creation and internal validation (Fig. 6). Then, the logistic 
regression model data were used to construct a nomo-
gram (Fig. 7).

Discussion
The hospitalized patient experience has become an area 
of increased focus for hospitals given the recent cou-
pling of patient satisfaction to reimbursement rates for 
inpatients [19]. Although previous studies focused on 
identifying risk factors for complications, reducing LOS 
and readmission rates are equally important to improve 
the patient experience and reduce costs [6, 20]. There-
fore, postoperative AEs should include complications, 
readmission, and prolonged LOS after spine surgery. 
In this study, we developed and validated three models 
(logistic regression, single classification tree and random 
forest algorithms) for predicting postoperative AEs fol-
lowing lumbar fusion surgery in elderly patients using a 
prospective Geriatric Lumbar Disease Database. To our 
knowledge, this is the first study to develop and exter-
nally validate a prediction model for postoperative AEs in 
elderly patients with high predictive accuracy.

The predictive ability of our three models was compa-
rable, with no significant differences in AUC. Then, we 
performed a decision curve analysis to determine the 
clinical usefulness of the three risk stratification models. 
The logistic regression model had a higher net benefit 
for clinical intervention than the other models. Our final 
models (logistic regression model) had good calibration 
and predictive performance in the internal validation 
cohort (C-statistics, 0.69–0.76), demonstrating that it 
can accurately predict potential outcomes in new popula-
tions with similar characteristics. Finally, we performed 
an external validation of the most appropriate model and 
provided an online user-friendly risk prediction tool at 
https://​xuanw​umodel.​shiny​apps.​io/​Model_​for_​AEs/.

Multivariable regression analysis revealed that age, 
BMI, operative time, intraoperative blood loss, and 
delayed ambulation were independently associated with 
postoperative AEs. This finding was in line with other 
spine surgery literature, which suggested that older age, 
obesity, and surgical trauma were risk factors for post-
operative complications [8, 14, 21]. Intraoperative blood 
loss was also associated with readmission and prolonged 
length of hospital stay in previous studies [12, 22]. Our 
findings suggest that operative time and blood loss were 
more critical risk factors than the number of surgi-
cal segments for AEs in lumbar fusion for degenerative 

Table 2  Univariate analysis of risk factors for AEs

BMI, Body mass index; CCI, Charlson comorbidity index; INR, International 
normalized ratio; EBL, Estimated blood loss; POD0, Postoperative day 0

*Represents for statistically different (P < 0.05)

Non-AEs group AEs group P

Variables N = 660 N = 365 Value

Demographic data

Age (yr) 71.9 ± 5.2 74.4 ± 6.0  < 0.001*

Male n (%) 264 (40%) 129 (35.3%) 0.161

Weight (kg) 66.9 ± 10.9 67.7 ± 10.9 0.255

BMI (kg/m2) 25.4 ± 3.6 26.0 ± 3.7 0.015*

Medical disease n(%)

CCI 0.098

0 or1 553 (83.8%) 290 (79.5%)

2 or more 107 (16.2%) 75 (20.5%)

Hypertension 410 (62.1%) 240 (65.8%) 0.276

Coronary heart disease 133 (20.2%) 87 (23.8%) 0.195

Peripheral vascular disease 24 (3.6%) 13 (3.6%) 1.000

Diabetes 201 (30.5%) 136 (37.3%) 0.031*

Cerebrovascular disease 64 (9.7%) 37 (10.1%) 0.907

Osteoporosis 46 (7.0%) 49 (13.4%) 0.003*

Connective tissue disease 16 (2.4%) 7 (1.9%) 0.761

Smoker 88 (13.3%) 38 (10.4%) 0.206

Drinker 57 (8.6%) 28 (7.7%) 0.676

Peptic ulcer 16 (2.4%) 11 (3.0%) 0.718

Laboratory test

Red blood cell 
count(× 1012/L)

4.3 ± 0.5 4.2 ± 0.5 0.074

Hemoglobin(g/L) 130.9 ± 14.9 128.8 ± 14.4 0.030*

INR 0.97 ± 0.08 0.98 ± 0.11 0.025*

Medication history

Glucocorticoids 13 (2%) 3 (0.8%) 0.248

Anticoagulant agent 121 (18.3%) 68 (18.6%) 0.973

Surgery-related data

Number of fused segments 1.8 ± 0.80 2.4 ± 1.1  < 0.001*

Lumbosacral fusion 268 (40.6%) 178 (48.8%)  < 0.014*

Intraoperative EBL (ml) 296.4 ± 276.9 452.8 ± 367.8  < 0.001*

Operative time (min) 198.0 ± 59.4 235.3 ± 72.5  < 0.001*

Drainage volume on POD0 
(ml)

102.5 ± 79.8 134.0 ± 108.7  < 0.001*

Delayed ambulation 183 (27.7%) 183 (50.1%)  < 0.001*

Table 3  Multivariate logistic regression for postoperative AEs

BMI, Body mass index; EBL, estimated blood loss

Risk factors OR (95% CI) P-value

Age (yr) 1.84 (1.42–2.40)  < .001

BMI (kg/m2) 1.28 (1.04–1.56) 0.019

Intraoperative EBL (ml) 1.22 (1.01–1.47) 0.036

Operative time (min) 1.92 (1.47–2.51)  < .001

Delayed ambulation 1.88 (1.36–2.61)  < .001

https://xuanwumodel.shinyapps.io/Model_for_AEs/
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Fig. 1  Decision tree for risk of AEs following lumbar fusion surgery

Fig. 2  Random forest model variable importance
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disorders. Preoperative risk of AEs may be modified by 
intraoperative events, most notably blood loss, which 
was the most relevant single parameter determining the 
risk of AEs in elderly patients. For older patients with 
higher BMI, reducing intraoperative blood loss and oper-
ative time can decrease the occurrence rate of adverse 

events. As an important intervention of enhanced recov-
ery after surgery pathway (ERAS), early ambulation had 
been demonstrated to be associated with better clinical 
outcomes [5, 23]. Our study also revealed that delayed 
ambulation (> 48  h) after surgery was a predictor for 
postoperative AEs when patients with intraoperative 
complications were excluded. Therefore, how to improve 
ERAS compliance of elderly patients is an urgent prob-
lem to be solved.

Tree-based machine learning algorithms (including the 
single classification tree and the random forest approach) 
were chosen based on many desirable properties for the 
given binary outcome of having an adverse event or not, 
including the ability to handle hundreds of variables 
(both categorical and continuous) and ease of construc-
tion [14]. The single classification tree algorithm showed 
that the number of fused segments was the first discrimi-
nator for predicting postoperative AEs. Our findings sup-
ported that > 3 fusion segments in lumbar surgery was 
considered to be long-segment fusion that can cause 
more extensive surgical trauma. Other discriminators of 
the present classification tree included age, intraopera-
tive blood loss, delayed ambulation, and weight, similar 
to our regression analysis and some prior studies [13, 18, 
24, 25]. In a retrospective multicenter database analysis, 

Fig. 3  Receiver operating characteristic curves of logistic regression (blue), single classification tree (red), and random forest algorithms (green)

Fig. 4  Decision curve analysis comparing the clinical utility 
of the three models
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Arora et  al. [11] performed a decision tree analysis and 
found that advanced age, obesity, and greater surgical 
invasiveness were significant variables increasing the like-
lihood of readmission and prolonged LOS. To reduce the 
incidence of postoperative AEs, in older patients (aged 
79  years or older) who undergo long-segment fusion, 
hemostatic agents and minimally invasive surgery should 
be used to reduce intraoperative bleeding.

Random forest is an algorithm that, in many situa-
tions, improves on single classification trees. However, 
the random forest model exhibited a nonsignificant trend 
to superior discrimination compared to the classification 
tree model (classification tree AUC = 0.70 vs. random for-
est AUC = 0.72). This lack of significant difference is likely 
due to the small size of our testing dataset, as the method 
utilized to calculate AUC confidence intervals depend-
ent on sample size. Similar to the other two models, the 
most important variables in the random forest model 
were operative time, intraoperative blood loss, BMI, age, 
and delayed ambulation. Preoperative RBC count and 
drainage volume on POD0 were relatively important pre-
dictors for postoperative AEs within 90 days of surgery. 

These two variables correlate highly with postoperative 
RBC count and hemoglobin, which could affect discharge 
planning. This conjecture, however, will require further 
study.

Previous spinal surgery studies focused solely on 
comparing different machine learning and regression 
approaches for postoperative AEs in patients with spine 
deformity and involved only internal validation of the 
developed prediction models [13, 25]. Yagi et  al. and 
Passias et  al. demonstrated the efficacy of classification 
trees in preoperative screening and risk stratification 
of patients likely to have major complications following 
corrective spine surgery and cervical deformity surgery, 
respectively [13, 26]. In a retrospective study of 37,852 
patients, Jain et al. developed nine models to assess risks 
of discharge-to-facility, 90-day readmissions, and major 
medical complications after long-segment lumbar spine 
fusion with moderate sensitivity and specificity. The 
authors found that logistic regression models modestly 
outperformed random forest and elastic net models [25]. 
Although many predictive models for spinal disorders 
had been developed, that as yet we have to pay care-
ful attention in deciding which tools to use depending 
on the outcomes and the setting of interest. Despite the 
considerable rate of AEs in elderly patients undergoing 
lumbar fusion surgery, there are few quantitative tools to 
predict AEs in elderly patients. The present study offers a 
novel contribution to the field by assessing and compar-
ing the performance of logistic regression models versus 
tree-based algorithms and validating them using external 
data.

This study had several limitations. First, our models 
were created using retrospective data and are relevant to 
context of the current standard of care. Prospective mul-
ticenter studies can guarantee the sustained effectiveness 
of the model while ensuring a large sample size. How-
ever, our retrospective and uncontrolled data theoreti-
cally lends to greater generalizability across institutions 
and surgical teams. Second, there might be significant 
predictors of outcomes that are not available in our data 
set, such as insurance status, dependency status, income 
levels, and details of spinal pathology. In the present 
study, we found many non-modifiable preoperative char-
acteristics and intraoperative variables were significantly 
risk factors for postoperative AEs. Of note, our primary 
goal was to predict the absolute risk of AEs following 
surgery and not to identify modifiable factors. Third, 
given that postoperative complications mainly occurred 
within the first three months after surgery, we included 
only patients who were followed up for three months or 
more [27, 28]. Finally, as we move toward value-based 
care and shared decision-making, there is an increas-
ing need to collect and use patients-reported outcomes 

Fig. 5  Calibration curve of the training (A) and testing (B) cohort
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Fig. 6  Receiver operating characteristic curve showing sensitivity and specificity of the logistic model for predicting occurrence of any adverse 
events among the external validation cohort

Fig. 7  The nomogram based on the multivariate logistic regression model
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not just in research settings, but also in routine clinical 
care or quality improvement activities. Thus, our future 
research will develop models for postoperative minimal 
clinically important difference and satisfaction in elderly 
patients undergoing lumbar fusion surgery with a long-
term follow-up.

Conclusions
This investigation produced three predictive models for 
postoperative adverse events in elderly patients undergo-
ing lumbar fusion surgery. The predictive ability of our 
three models was comparable. Logistic regression model 
had a higher net benefit for clinical intervention than the 
other models. An online dynamic nomogram calcula-
tor was established based on the final logistic regression 
model. Our predictive tool could inform physicians about 
elderly patients with a high risk of AEs within the 90 days 
after surgery.
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