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Abstract 

Trp3 allele in COL9A3 gene has been widely studied in populations with intervertebral disc disease. We identi-
fied a novel pathogenic variant in COL9A3 gene in a pedigree with multiple lumbar disc herniation (LDH). The 
proband was a 14-year-old boy who developed LDH at the L4/5 and L5/S1 spinal segments. His father, paternal 
aunt and grandfather were diagnosed with LDH at an age of 35, 30 and 23, respectively. By applying whole exome 
sequencing, a heterozygous missense variant (c.1150C > T, p.Arg384Trp) in COL9A3 was identified. According 
to the ACMG guidelines, this variant is predicted to be pathogenic. In addition, prediction tools found COL9A3 protein 
of this variant a reduced stability, some changed charge properties, and an altered spatial conformation. Findings 
expanded the mutational spectrum of LDH and contributed to the understanding of COL9A3 in the pathogenesis 
of LDH.

Introduction
Lumbar disc herniation (LDH) is a common lumbar spi-
nal disorder that leads to back and leg pain [1]. Report-
edly, the incidence rate of LDH is 1–3% in general 
populations, adding heavy socio-economical burdens in 
communities [2]. Etiological studies revealed that LDH 
is a genetically predominant disorder [3]. A number of 
genes related to disc structural components, inflamma-
tory factors, and matrix remodelling proteases have been 

found to be associated with the occurrence of LDH [4, 
5]. For example, COL9A3 gene (Collagen type IX α3) has 
been repeatedly identified in different populations [6].

Collagen IX is a heterotrimeric protein encoded by 
COL9A1, COL9A2, and COL9A3 genes [7]. It serves as 
an organizing bridge, crosslinking collagens and non-
collagenous components in articular cartilage and disc 
extracellular matrix (ECM) [8]. COL9A3 gene locates 
in chromosome 20q13.3 and encodes the α3 (IX) chain 
of collagen IX, which is a component of nucleus pulpo-
sus (NP) [9]. An early study of COL9A3 on disc diseases 
found that patients with the Trp3 (tryptophan) allele, also 
known as c.307C > T, p.Arg103Trp (rs61734651), had 2.7-
fold higher risks of being diagnosed with lumbar spinal 
disease [10]. The minor allele frequency (MAF) of this 
single nucleotide polymorphism (SNP) was less than 0.05 
in multiple datasets, GnomAD_exome (0.047), ExAC 
(0.048) and 1000 Genomes (0.022). Later on, while some 
independent studies demonstrated that Trp3 was statis-
tically associated with the increased risk of lumbar disc 
diseases [11, 12], some others failed to relate it with disc 
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diseases. For instance, the Trp3 allele in COL9A3 was 
found not clustered in lumbar disc degeneration [13], 
and the genotype of Trp3 allele was not related to clini-
cal symptoms [14]. In addition, a number of meta-anal-
ysis studies did not observe the association between the 
COL9A3 Trp3 polymorphism and disc degeneration [15].

Since previous population-based case–control studies 
on COL9A3 gene have obtained inconsistent results [11–
15], the underlying pathogenic mechanism of COL9A3 is 
not fully understood to date. Here, we reported a clinical 
pedigree of LDH with significant genetic characteristics 
and involvement of multiple lumbar discs. By applying 
whole exome sequencing (WES), we identified a novel 
pathogenic single nucleotide variant (SNV) of COL9A3. 
Our findings provide insights of understanding the func-
tion of COL9A3 in the pathogenesis of LDH.

Materials and methods
Case reports
The proband in this study was a 14-year-old boy who had 
low back pain and numbness in the lower extremities 
for half a year. The father, who accompanied for his son’s 
consultation, had radiculopathy in the left lower extrem-
ity for over two decades. The proband’s paternal aunt and 
grandfather were also clinically diagnosed with sympto-
matic LDH, with available MR images for confirmation. 
No other skeletal abnormality was observed in this family 
on radiological images. Written consent for each family 
member was obtained. This study was approved by the 
authors’ institutional ethic board.

Whole exome sequencing, variant identification 
and validation
After blood sample collection, genomic DNA of the 
proband, his father, paternal aunt and grandfather were 
extracted using the Blood Genome Column Medium 
Extraction Kit (Kangweishiji, China). The extracted DNA 
samples were subjected to quality controlling using Qubit 
2.0 fluorimeter and electrophoresis with 0.8% agarose 
gel. Whole exome library was constructed using Roche 
Nimble Gen Seq EZ Exome Enrichment Kit V2.0 and Seq 
EZ Exome Enrichment Kit V2.0 capture probes (Roche, 
USA). High-throughput sequencing was performed on 
a Novaseq 6000 instrument (CHIGENE, Beijing, China) 
[16]. Quality control of whole exome sequencing data, 
variants calling and variant annotation was performed in 
the same institution.

Variant prioritization was performed based on guide-
lines released by ACMG (The American College of 
Medical Genetics and Genomics). First, co-segregation 
analysis was performed to exclude SNVs contradic-
tory to the phenotypic data. SNVs were analysed under 
the assumptions of Mendelian dominant inheritance, 

recessive inheritance and sex-linked inheritance. Second, 
only rare variants with MAF < 1% were included for fur-
ther selection [17, 18]. Candidate variants were selected 
based on the 1000 Genomes (https:// www. inter natio 
nalge nome. org), the Exome Sequencing Project (ESP), 
the Exome Aggregation Consortium (ExAC, http:// exac. 
broad insti tute. org), Allele Frequency Aggregator (ALFA) 
and the Genome Aggregation Database (gnomAD, 
https:// gnomad. broad insti tute. org). Third, synonymous 
variants and non-coding region variants were excluded. 
In silico prediction tools were applied to analyse patho-
genicity of identified missense variants (Sorting Intoler-
ant From Tolerant (SIFT), Polymorphism Phenotyping v2 
(Polyphen2), Multivariate Analysis of Protein Polymor-
phism (MAPP), Mutation Taster, Mendelian Clinically 
Applicable Pathogenicity (M-CAP), Rare Exome Variant 
Ensemble Learner (REVEL) and Combined Annotation 
Dependent Depletion (CADD)) [19–25]. The deleterious 
effects of splice variants were predicted by MaxEntScan 
and dbscSNV [26, 27]. Next, evolutionary conservatism 
was analysed by phastCONS, phyloP and Genetic Evolu-
tionary Rate Profiling (GERP) [28–30]. At last, protein 
function, GO (Gene ontology) annotations, tissue-spe-
cific distribution and existing literature were searched to 
evaluate the remaining SNVs.

Sanger sequencing was performed to validate the iden-
tified candidate variants. Sanger sequencing was per-
formed with these primers:

Forward primer 5′-CAG GCG TCC CTG TGA GTA TC-3′,
Reverse primer 5′-CAT CAA GGC AAC CAA ATG CCA-3′.
The RefSeq accession numbers of the transcript and 

the corresponding protein isoform of COL9A3 we used 
for mutation nomenclature were NM_001853.4 and 
NP_001844.3, respectively.

Results
Clinical characterization of the pedigree with multiple 
lumbar disc herniation
The proband (height 1.65 m, weight 55.6 kg) is a 14-year-
old Chinese boy suffering from low back pain and numb-
ness in the lower limbs for 6 months before consultation. 
Magnetic resonance (MR) imaging revealed LDH at L4/5 
and L5/S1 spinal segments (Fig. 1A). Growth and devel-
opment of the proband were normal in adolescence. 
The proband did not experience waist trauma or exces-
sive physical labour within 6 months before the onset of 
clinical symptoms. Blood biochemistry measurements 
and radiographs of limbs did not present any abnor-
mality on the proband. A follow-up investigation of the 
LDH-related clinical symptoms and radiographs was car-
ried out on the proband’s immediate family members. 
The proband’s father, who suffered from left lower limb 
radiculopathy for decades, had L3/4 and L4/5 LDH based 
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on his lumbar spine MR images (Fig. 1B). The proband’s 
father, paternal aunt and grandfather had back pain and 
radicular leg pain, which were consistent with MR find-
ings. They were clinically diagnosed with LDH at an age 
of 35, 30 and 23, respectively (Fig.  1C). None of them 
reported a history of waist injury before the onset of 
LDH‐related symptoms nor any other abnormality in the 
musculoskeletal system, except for the proband’s grand-
father, who had degenerative kyphosis after 60 years old.

Identification of a novel COL9A3 missense variant 
in the LDH family
We performed WES from four members (proband III-
I, affected father II-2 and paternal aunt II-1, and unaf-
fected mother II-3) to identify the candidate gene for 
the phenotypic manifestation of LDH. The work flow is 

summarized in Fig. 1D. A total of 3624 SNVs were iden-
tified after exclusion of non-genic and polymorphic 
variants. SNVs which did not co-segregate with the phe-
notype and were more than 1% frequency in the public 
genomes databases were excluded. Under the assumption 
of Mendelian dominant inheritance, 179 SNVs were iden-
tified. Synonymous variants and variants in non-coding 
region were then excluded, resulting in 69 SNVs. Besides, 
several in silico prediction tools invariably predicted that 
seven of the SNVs might cause damage to the protein, 
and no SNV near splice site had deleterious effects on 
the protein. In view of the protein function, GO anno-
tations, tissue-specific distribution and the facts in pub-
lished literatures, a novel heterozygous missense variant 
(c.1150C > T, p.Arg384Trp) in COL9A3 was identified, 
and further confirmed by Sanger sequencing (Fig. 1E).

Fig. 1 Magnetic resonance (MR) characteristics, pedigree chart and sequencing results of the proband and family members. A MR imaging 
of the proband: disc herniation at L4/5 and L5/S1 spinal segments. B MR imaging of the proband’s father: disc herniation at L3/4 and L4/5 spinal 
segments. C Pedigree chart: the proband’s paternal aunt and grandfather were diagnosed with lumbar disc herniation at an age of 30 and 23, 
respectively. D Summary of exome sequencing of the pedigree: the identified SNV (c.1150C > T, p.Arg384Trp) is located at COL9A3, a gene encoding 
one of the three alpha chains of type IX collagen. E Sanger sequencing: the heterozygous COL9A3 missense variant (c.1150C > T, p.Arg384Trp) 
was confirmed
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The MAF of this SNP was less than 0.01 in different 
databases, ESP (0.00), 1000 Genomes (0.00), ALFA (0.00), 
GnomAD_exome (0.00004) and ExAC (0.00003). This 
variant was predicted to be pathogenic by in silico pre-
diction tools, Provean (3.16), SIFT (0.005), Polyphen2_
HDIV (1.0), MutationTaster (0.999494), M-CAP (0.705) 
and REVEL (0.725). In addition, with a CADD score > 20, 
this variant was also evaluated to be deleterious in GERP, 
phyloP and phastCons software. According to the vari-
ant interpretation guideline of ACMG (PM2, PP1, PP2, 
PP3 and PP4), this variant (c.1150C > T) was classified as 
“likely pathogenic” variant [31].

Change of charge properties and instability of COL9A3 
protein with p.Arg384Trp variant
The p.Arg384Trp variant is situated within the collagen-
ous domain, resulting in the substitution of arginine with 
tryptophan in amino acid sequence (Fig.  2A). Protein 
sequence alignment revealed that this locus is highly con-
served among common species (Fig.  2B). Furthermore, 
the impacts of the p.Arg384Trp variant on the structure, 
function, and stability of COL9A3 were analysed using 

Swiss-Model (Fig. 2C) [32–34]. According to the predic-
tion, the variant at this site changed the charge property 
and hydrophilicity of COL9A3 protein due to the sub-
stitution of arginine (Basic amino acid) with tryptophan 
(Aromatic hydrophobic amino acid). In addition, the pre-
diction result in I-Mutant2.0 revealed a decreased stabil-
ity of COL9A3 protein (Fig. 2D) [35].

Discussion
Pedigree-based screening can identify pathogenic genes 
for heritable LDH. In this study, LDH patients were 
characterized by early-aged onset, multi-segment disc 
involvement, dominant inheritance, and the absence of 
extra-discal deformities in the musculoskeletal system. 
The clinical significance of the identified COL9A3 vari-
ant (c.1150C > T, p.Arg384Trp) has not been previously 
reported. Our findings suggested that this variant is dis-
ease-causing rather than a susceptibility factor for LDH.

Collagen IX plays an important role in forming and sta-
bilizing the collagen matrix in the disc. SNPs that result 
in tryptophan polymorphisms in collagen IX genes, 
such as Trp2 allele (p.Gln326Trp) in COL9A2 and Trp3 

Fig. 2 An illustration of COL9A3 protein structure, Pathogenic variants, Sequence alignment among multiple species and Prediction results 
of COL9A3 missense variant (c.1150C > T, p.Arg384Trp). A The identified COL9A3 variant (c.1150C > T, p.Arg384Trp, Red) locates within the third 
collagenous region, resulting in the substitution of arginine (Arg) with tryptophan (Trp) in the amino acid sequence. Previously identified variant 
(p.Arg103Trp) were marked in black. B Multiple species sequence alignment using MEGA11 software shows that this variant is highly conserved 
among common species. C Protein structure predicted by Swiss-Model reveals an altered protein structure and a charge property change 
by the replacement of 384th Arg residue. The 384th amino acid is mutated from a basic amino acid (Arg, Blue) to an aromatic hydrophobic 
amino acid (Trp, White). D The I-Mutant v2.0 software reveals that the variant can result in decreased COL9A3 protein stability at optimal pH 
and temperature. SP: Signal peptide; TC: Triple-helical collagenous region; NC: Non-helical collagenous region; WT: Amino acid in Wild-Type Protein; 
NEW: New Amino acid with the variant; RI: Reliability Index; pH: − log [H+]; T: Temperature in Celsius degrees.
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allele in COL9A3, have been linked to an increased risk 
of lumbar disc disease in different populations [10, 36]. 
We summarized the phenotypes, sampling regions, sam-
ple sizes and statistical results of COL9A3 pathogenic 
variants in intervertebral disc diseases (Table  1) and 
found that results from different studies were incon-
sistent. In previous research, Trp3 variant (c.307C > T, 
p.Arg103Trp) was the only pathogenic variant site identi-
fied in COL9A3 among populations (Fig. 2A).

To date, various mechanisms have been proposed to 
explain COL9A3 dysfunction leading to disc disease. For 
example, Trp3 allele in COL9A3 increases the propor-
tion of tryptophan in the collagen, which subsequently 

alters the triple helical structure of the protein. This sub-
stitution may also disrupt the process of lysyl oxidase-
catalysed crosslinking, increase the risk of disc instability, 
and eventually lead to the occurrence of disc diseases [37]. 
Also, silencing the expression of COL9A3 can activate the 
MAPK pathway and downstream apoptosis-related fac-
tors, resulting in attenuated NP cells proliferation and 
promoted cell apoptosis [51]. In animal models, Col9a3 
deficient mice exhibit abnormalities in the disc and carti-
lage, including shortened body height, impaired matura-
tion of articular cartilage, and calcified epiphyseal cartilage 
[52]. In addition, absence of collagen IX may be related to 

Table 1 Summary of identified COL9A3 variants and related information in disc diseases

*Disc Disease: disc degeneration and herniation

Mutation Phenotype Region/race Sample size Significance Conclusion References

p.Arg103Trp Disc disease* Finnish 492 Yes Trp3 allele frequency was 12.2% in patients Paassilta et al. [10]

p.Arg103Trp Disc degeneration Finnish 135 Yes Trp3 allele frequency was 17% in patients Solovieva et al. [37]

p.Arg103Trp Disc disease American 14 No Trp3 allelic protein has no obvious effect 
on disc disease

Matsui et al. [38]

p.Arg103Trp Disc degeneration Finnish 85 No Trp3 allele alone is not likely to cause disc 
degeneration, but it may be one of the pre-
disposing factors

Noponen et al. [39]

p.Arg103Trp Disc disease Greek 105 No Trp3 allele in COL9A3 is likely to be less sig-
nificant susceptibility factors for interverte-
bral disc disease

Kales et al. [40]

p.Arg103Trp Disc degeneration Chinese 804 No The Trp3 allele was absent from the South-
ern Chinese population

Jim et al. [36]

p.Arg103Trp Disc degeneration Finnish 135 No The effect of the COL9A3 polymorphism 
on disc degeneration maybe modified 
by IL-1β polymorphism

Solovieva et al. [41]

p.Arg103Trp Disc degeneration Japanese 84 No No patients had the Trp3 allele Higashino et al. [42]

p.Arg103Trp Disc disease Finnish 211 No Trp3 allele had less association with disc 
disease phenotype

Virtanen et al. [43]

p.Arg103Trp Disc disease Finnish 228 No Trp3 allele had less association with disc 
disease phenotype

Karppinen et al. [44]

p.Arg103Trp Disc degeneration American 133 Yes The product of the Trp3 allele may cause 
degeneration of intervertebral discs

Zhu et al. [11]

p.Arg103Trp Disc disease Singaporean 54 No The Trp3 allele was absent from all the sub-
jects

Lim et al. [45]

p.Arg103Trp Disc disease Indian 100 No Allelic variation in COL9A3 was found 
to have no significant correlation with disc 
disease

Rathod et al. [46]

p.Arg103Trp Disc degeneration Southern European 100 Yes Trp3 allele was associated with more severe 
disc degeneration based on Pfirrmann 
scores

Toktas et al. [47]

p.Arg103Trp Disc degeneration Iranian 165 Yes Male patients with Trp3 allele were more 
likely to develop disc degeneration

Bagheri et al. [48]

p.Arg103Trp Disc herniation American 15 No Collagen-encoding variants may be 
a genetic risk factor for lumbar disc hernia-
tion

Theodore et al. [49]

p.Arg103Trp Disc herniation Chinese 768 Yes Trp3 allele significantly influence the risk 
of lumbar disc herniation

Yang et al. [50]

p.Arg384Trp Disc herniation Chinese 3 – A novel heterozygous missense variant 
co-segregating with phenotypes, was pre-
dicted to be pathogenic

Current case



Page 6 of 7Jiang et al. Journal of Orthopaedic Surgery and Research           (2024) 19:19 

premature disc degeneration with annular lesions through 
disrupting the Ihh-PTHrP pathway in ageing mice [53].

Although COL9A3 gene has been repeatedly studied, 
the underlying mechanism and its effects on the patho-
genesis of LDH remain unclear. Results of this study fur-
ther evidenced that COL9A3 plays an important role in 
LDH. A new genetic variant was identified in this report, 
but further studies are needed to explore the pathogenesis 
of LDH with the COL9A3 pathogenic variant (c.1150C > T, 
p.Arg384Trp) and develop possible treatment strategies.

Conclusions
In this report, we identified a novel missense patho-
genic variant, which is conserved among common 
species, in a family with multi-segment LDH. The iden-
tified COL9A3 variant was predicted to have detrimen-
tal effects on the structure and stability of COL9A3. 
We provided new evidence to support an association 
between COL9A3 pathogenic variants and LDH, and 
extended the mutational spectrum of LDH.
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