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Abstract 

Context With the development of society, the number of patients with osteoporosis is increasing. The prevention 
and control of osteoporosis has become a serious and urgent issue. With the continuous progress of biomedical 
research, ferroptosis has attracted increased attention. However, the pathophysiology and mechanisms of ferroptosis 
and osteoporosis still need further study. Natural products are widely used in East Asian countries for osteoporosis 
prevention and treatment.

Objective In this paper, we will discuss the basic mechanisms of ferroptosis, the relationship between ferroptosis 
and osteoclasts and osteoblasts, and in vitro and in vivo studies of natural products to prevent osteoporosis by inter-
fering with ferroptosis.

Methods This article takes ferroptosis, natural products, osteoporosis, osteoblasts and osteoclast as key words. 
Retrieve literature from 2012 to 2023 indexed in databases such as PubMed Central, PubMed, Web of Science, Scopus 
and ISI.

Results Ferroptosis has many regulatory mechanisms, including the system XC -/GSH/GPX4, p62/Keap1/Nrf2, FSP1/
NAD (P) H/CoQ10, P53/SAT1/ALOX15 axes etc. Interestingly, we found that natural products, such as Artemisinin, Bio-
chanin A and Quercetin, can play a role in treating osteoporosis by promoting ferroptosis of osteoclast and inhibiting 
ferroptosis of osteoblasts.

Conclusions Natural products have great potential to regulate OBs and OCs by mediating ferroptosis to prevent 
and treat osteoporosis, and it is worthwhile to explore and discover more natural products that can prevent and treat 
osteoporosis.
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Introduction
Osteoporosis is a disease that affects the skeletal sys-
tem throughout the body and is mainly characterized 
by increased brittleness of the bones and decreased 
bone mass, which predisposes individuals to fractures 
[1]. The incidence of osteoporosis is increasing every 
year with the development of society and the decreas-
ing birth rate. According to one study, approximately 
8.9 million people worldwide experience fractures every 
year. [2], and the risk of fracture increases from 60 to 82% 
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per 10,000 patients per year [3]. The main risk factor for 
such fractures is osteoporosis, with brittle fractures being 
more common [4]. Bone health depends on the balance 
between bone formation and bone resorption. However, 
when this balance is disturbed, osteoporosis can occur. 
Osteoclasts (OCs) are the main players in bone resorp-
tion. OCs are responsible for bone resorption, which can 
be divided into the following pathways: bone adsorption, 
cytoskeletal reorganization and vesicular transport [5]. 
Bone formation is dominated by osteoblasts (OBs), which 
are capable of mediating bone formation through runt-
related transcription factor 2 (Runx2) [6]. Runx2 is not 
only a key regulator of OB maturation but also regulates 
OB extracellular matrix components, such as osteocalcin 
(OCN), osteopontin (OPN) and bone salivary protein 
(BSP) [7]. The expression and transcription of these fac-
tors, in turn, promote OB maturation [8]. In addition, 
there are also some factors that directly regulate osteo-
porosis, such as regulating BMD by mediating Vitamin D 
Receptor [9]. Alendronate [10] and Denosumab [11, 12] 
are the preferred drugs for treating osteoporosis in clini-
cal practice, and experiments have also confirmed that 
they have achieved good clinical efficacy. It is worth men-
tioning that when observing the efficacy of medication in 
treating osteoporosis, bone turnover biochemical mark-
ers are essential [13, 14]. However, the above-mentioned 
drug treatment mechanisms are relatively single, and in 
order to enrich the treatment methods for osteoporosis, 
it is particularly important to find new drugs and new 
mechanisms for preventing and treating osteoporosis.

Ferroptosis is a form of programmed cell death char-
acterized by iron-mediated accumulation of lipid per-
oxidation leading to increased density and contraction of 
mitochondrial membranes [15]. Ferroptosis was officially 
named by Scott J Dixon and colleagues in 2012 after the 
discovery that erastin triggered a unique iron-dependent 
form of nonapoptotic cell death in oncogenic RAS-selec-
tive models [16]. The morphological characteristics of 
ferroptosis are an increase in mitochondrial membrane 
density and a decrease in mitochondrial volume, as well 
as a disruption in outer mitochondrial membrane integ-
rity, resulting in the dissolution and disappearance of 
mitochondrial cristae [17].

Ferroptosis is widely used in the regulation of major 
systemic diseases such as cancer [18], liver disease [19], 
Alzheimer’s disease [20], and cardiovascular disease [21]. 
In recent years, researchers have also focused on ferrop-
tosis-mediated regulation of osteoporosis [22–24]. Stud-
ies have confirmed that ferroptosis regulates osteoporosis 
by inhibiting OC-mediated bone resorption and promot-
ing bone formation by OBs [25]. Alireza V enhanced the 
bone formation capacity and cellular activity in OBs by 
using the iron-lowering inhibitor ferrostatin-1 in cancer 

cells, as determined by examining cell differentiation, 
alizarin red staining and RUNX2 gene expression [26]. 
Several studies have demonstrated that melatonin can 
reduce steroid-induced osteoporosis and diabetic osteo-
porosis by inhibiting OCs and promoting the ferritin 
pathway in OBs [27–29]. Ferroptosis-mediated regula-
tion of osteoporosis via herbal medicine and herbal com-
pounds has also received increasing attention from 
researchers in East Asian countries.

East Asian countries, especially in China, have rich 
experience in the use of natural products. They have the 
advantages of low price, multi-target synergy and broad 
research prospects. Based on these, this paper summa-
rizes the mechanisms and regulatory pathways of ferrop-
tosis, and the regulation of osteoblasts and osteoclasts. 
At the same time, the in vivo and in vitro studies on the 
prevention and treatment of osteoporosis by some natu-
ral products through ferroptosis were discussed. It is 
hoped that this review can provide the necessary theo-
retical basis for the prevention and treatment of osteopo-
rosis by natural products through regulating ferroptosis.

Mechanisms and regulation of ferroptosis
Iron metabolism associated with Ferroptosis in vivo
Iron is one of the essential trace elements in the human 
body and plays an important role in cell proliferation 
and function [30]. The theory that iron overload due to 
abnormal iron metabolism is the main feature of ferrop-
tosis has been recognized by researchers [15, 16, 31]. In 
the human body, iron is widely present and mainly in the 
form of ferrous ions  (Fe2+) and ferric ions  (Fe3+). Circu-
lating iron binds to transferrin receptor 1 (TFR1) on the 
cell membrane, and subsequently,  Fe3+ is reduced to  Fe2+ 
by the six-transmembrane epithelial antigen of prostate 
3 (STEAP3) [32, 33]. Divalent metal transporter protein 
1 (DMT1) releases  Fe2+ into a labile iron pool (LIP) in 
the cytoplasm [34]. It is important to recall that the LIP 
enables the active uptake of free iron in the cytoplasm as 
well as the recycling of iron from ferritin and mitochon-
dria. There is a large LIP in lysosomes [35]. Therefore, the 
main organelle associated with ferroptosis is also one of 
the targets of disease treatment [36]. Immediately after-
ward, ferritin 1 (FPN1) transports excess  Fe2+ outside the 
cell and stores it in ferritin heavy chain 1 (FTH1) and fer-
ritin light chain 1 (FTI1) [37, 38].

Iron metabolism plays an important role in the occur-
rence and development of ferroptosis. In the absence 
of disease, iron metabolism operates normally, and the 
transfer of iron into and out of the cell remains stable. In 
contrast, excessive accumulation of iron can cause dam-
age to an organism [39]. However, it remains unclear 
whether iron levels determine the development of fer-
roptosis in response to disease. What is certain is that 
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sustained increases in iron intake and decreases in iron 
efflux stimulate oxidative damage, thereby leading to fer-
roptosis (Fig. 1).

Lipid peroxidation associated with ferroptosis in vivo
Lipid peroxidation is not only an important marker of 
ferroptosis but also a cause of ferroptosis. Free polyun-
saturated fatty acids (PUFAs) are important substrates 

for lipid oxidation, and PUFAs in cell membranes are 
important targets for reactive oxygen species (ROS) 
attack [40]. Lipid peroxidation occurs due to the reac-
tion between ROS and macromolecules such as polyun-
saturated acids and phosphatidylethanolamine (PE). This 
process also generates lipid peroxidation (LPO), which 
further generates malondialdehyde (MDA), lipid perox-
ide (LOOH) and 4-hydroxynonenal (4-HNE) [41]. The 

Fig. 1 The main regulatory pathways of ferroptosis. The first pathway is regulated by the inhibition of the system Xc-, MVA pathway and p53 
regulatory axis through the GSH/GPX4 pathway. The second pathway is regulated by Keap1/HO-1, the ATG5-ATG7/NCOA4 pathway and STEAP3. 
The next pathway is the regulation of lipid metabolism through P53/ALOX15, ACSL4 and LPCAT3. Finally, the NAD(P)H/FSP1/CoQ10 pathway 
regulates iron-mediated death in concert with GPX4
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free radicals generated by these LPOs can damage bio-
logical membranes and affect the function and structure 
of cells. In addition, adrenal acyl (AdA) is synthesized 
into free fatty acids (FFAs) via acyl coenzyme A synthase 
long chain family member 4 (ACSL4) and arachidonic 
acid (AA). In the final step, lipoyl coenzyme B, which is 
esterified by lysophosphatidylcholine acyltransferase 3 
(LPCAT3), interacts with PE to produce PUFA-PE [42]. 
PUFA-PE is further lipid peroxidized by lipoxygenase 
(LOX) and releases ROS and phospholipid hydroperox-
ides [43]. Therefore, as the ROS concentration continues 
to increase beyond the normal physiological range, it will 
further affect biofilm function and structure, causing fer-
roptosis [44]. In summary, we suggest that interfering 
with ferroptosis by regulating ACSL4, LPCAT3 and LOX 
may be a new strategy to combat disease (Fig. 1).

Regulation of Ferroptosis
The System Xc‑/GSH/GPX4 Axis
System Xc-, which consists of solute carrier fam-
ily 7 member 11 (SLC7A11) and solute carrier family 
3 member 2 (SLC3A2), is distributed in phospholipid 
bilayers and is one of the antioxidant systems in cells. 
l-Glutathione (GSH), an important antioxidant in the 
oxidative stress response, is composed of glycine, glu-
tamate and cysteine and is present as reduced GSH and 
oxidized glutathione (GSSG) [45]. Selective inhibition of 
System Xc- decreases intracellular GSH levels, increasing 
the accumulation of ROS and ultimately inducing ferrop-
tosis [46]. P53, activating transcription factor 3 (ATF3), 
and BRCA1-associated protein 1 (BAP1) enhance fer-
roptosis by significantly reducing the expression level of 
SLC7A11 [47, d]. Glutathione peroxidase 4 (GPX4), an 
important characteristic marker of ferroptosis, is a GSH-
dependent antioxidant. GPX4 promotes the reduction of 
phospholipid hydroperoxides (PLOOH) in cells and can 
inhibit ferroptosis in cells by converting PLOOH to non-
toxic lipid alcohols [49, 50].

The p62/Keap1/Nrf2 Axis
p62/SQSTM1 (p62) is an intracellular oxidative stress-
induced protein and a receptor for ubiquitinated proteins 
and organelles [51]. Nuclear factor erythroid 2-related 
factor 2 (Nrf2) is a key regulator of intracellular oxidative 
stress [44]. Kelch-like ECH-associated protein 1 (Keap1) 
is rich in cysteine residues, which in turn leads to inacti-
vation of Keap1, which induces the translocation of Nrf2 
to the nucleus, which further activates the antioxidant 
protein HO-1 [52, 53]. Moreover, a continuous increase 
in Nrf2 nuclear translocation can upregulate the protein 
expression of the downstream factor HO-1, which can 
alleviate ferroptosis [54]. Therefore, disease control can 

be achieved by alleviating ferroptosis through the p62/
Keap1/Nrf2 pathway [55].

The FSP1/NAD(P)H/CoQ10 Axis
Ferroptosis suppressor protein 1 (FSP1) has been sug-
gested to be a survival factor [56]. Coenzyme Q10 
(CoQ10) is a fat-soluble quinone compound and is pre-
sent in the oxidized ubiquinone form (CoQ), the semioxi-
dized semiquinone form (CoQH) and the fully reduced 
ubiquinoline form (CoQH2) [57]. NAD(P)H is a typi-
cal coenzyme that can play a role in the anabolic path-
way [58]. FSP1 can promote the regeneration of COQ10 
through NAD(P)H. FSP1/NAD(P)H/CoQ10 and GPX4/
GSH synergize with each other to inhibit ferroptosis [59].

The P53/SAT1/ALOX15 Axis
P53, which is a factor that mediates the cell cycle, cellu-
lar senescence and apoptosis, has recently been shown 
to promote ferroptosis [60]. SAT1 is not only a restric-
tion enzyme for polyamine catabolism but also a tran-
scriptional target gene of P53. It has been shown that 
P53 upregulates the expression level of arachidonic acid 
lipoxygenase 15 (ALOX-15) by activating SAT1, which in 
turn leads to lipid peroxidation and ferroptosis induced 
by the accumulation of ROS [61]. For example, in a study 
by Yang, Ma, Li, Ling, Zhou, Chu, Xue and Tao [62], 
inhibiting ferroptosis and mitigating acute lung injury 
could be achieved by regulating the expression of P53. 
However, P53 may have bidirectional effects on the regu-
lation of ferroptosis, and the exact mechanism needs fur-
ther study.

Other axes
Mevalonate (MVA) is another pathway that regulates fer-
roptosis. IPP and COQ10 are important products of the 
MVA pathway, and IPP regulates selenocysteine tRNA to 
enhance GPX4 expression, thereby regulating the devel-
opment of iron prolapse [63]. The GCH1/DHFR/BH4 
[25, 64] and ATG5/ATG7/NCOA433 [65] pathways also 
play roles in regulating ferroptosis by regulating intracel-
lular iron ion and ROS formation (Fig. 1).

The relationship between osteoporosis 
and ferroptosis
Ferroptosis and osteoblasts
OBs are responsible for bone formation, and osteopo-
rosis can be prevented and treated by promoting the 
proliferation of OBs [66]. Iron accumulation causes an 
excess of ROS, which induces bone metabolic signal-
ing pathways that further inhibit OB activity and inhibit 
bone resorption [67, 68]. Previous studies have shown 
that ferroptosis inhibits the abilities of MC3T3 cells [69] 
and bone marrow mesenchymal stem cells (BMSCs) [70] 
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to undergo osteogenic differentiation, affecting the onset 
and progression of osteoporosis. This may be due to the 
overexpression of DMT1 in OBs, which causes oxidative 
stress and inhibits the osteogenic function of OBs [71]. 
A significant increase in ROS and a significant decrease 
in GPX4 were observed in an in  vitro model of high 
glucose-induced MC3T3 cells, and cells with smaller 
mitochondria and membranes with darker staining and 
obvious membrane folding were observed, suggesting 
that MC3T3 cells that underwent ferroptosis had signifi-
cantly reduced differentiation toward OBs and formed 
mineralized nodules [28, 72]. Mitochondrial ferritin 
(FtMt) maintains intracellular apposition homeostasis 
by reducing the amount of free  Fe2+ in mitochondria, 
decreasing ROS levels, and reducing oxidative stress [73]. 
It was confirmed that increased expression of mitochon-
drial DMT1 in OBs led to iron overload in a high glu-
cose environment and that the overexpression of FtMt 
reduced intracellular ROS levels and inhibited ferroptosis 
in OBs [72]. Therefore, inhibiting ferroptosis in OBs may 
be a therapeutic strategy to combat osteoporosis (Fig. 2).

Ferroptosis and osteoclasts
OCs, which are responsible for bone resorption, are 
multinucleated giant cells formed by the fusion of mon-
onuclear macrophage precursor cells induced by mac-
rophage colony-stimulating factor (M-CSF) and receptor 
activator of nuclear factor-κB ligand (RANKL) [74]. The 
expression of the prostaglandin endoperoxide synthase 2 

gene, changes in the levels of malondialdehyde, reduced 
GSH and Fe2 + levels, and iron deposition in mitochon-
dria occurred in bone marrow-derived macrophages 
(BMDMs) induced by RANKL stimulation [75]. In addi-
tion, iron ions can activate the MAPK and NF-κB path-
ways through the continuous accumulation of ROS, 
increasing the differentiation of OCs and promoting 
bone loss [76]. The iron chelator DFO reduces the iron 
levels in cells and inhibits the proliferation and differen-
tiation of OBs by inhibiting the MAPK signaling path-
way and affecting the expression levels of downstream 
NFATc1, C-FOS and C-Myc [77]. Another study showed 
that zoledronic acid could induce ferroptosis in OCs by 
promoting the ubiquitination and degradation of p53 
[78]. Therefore, promoting ferroptosis in OCs may be an 
additional therapeutic strategy to combat osteoporosis 
(Fig. 2).

Ferroptosis, a new therapeutic target in natural products 
for the prevention and treatment of osteoporosis
China is one of the most experienced countries in the 
world in using natural products to treat diseases. In 
ancient China, doctors have already used natural prod-
ucts to treat osteoporosis, such as Epimedium, Scutel-
laria baicalensis, Eucommia ulmoides etc. Since the 
concept of " ferroptosis " was proposed in 2012, an 
increasing number of natural products have been proven 
to have anti osteoporosis effects by regulating ferroptosis. 
As we know, the essence of osteoporosis is an imbalance 

Fig. 2 Relationship between ferroptosis and osteoporosis. First, OBs undergo ferroptosis, resulting in decreased osteogenic capacity and decreased 
bone formation. Second, OCs do not undergo ferroptosis, resulting in increased osteoclastic capacity and increased bone resorption
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between osteoblasts and osteoclasts. It should be noted 
that the mechanism of regulating osteoblasts and osteo-
clasts is generally mediated by natural products that 
interfere with the ferroptosis regulatory pathway, such 
as System Xc -/GSH/GPX4 axis, p62/Keap1/Nrf2 axis, 
and FSP1/NAD (P) H/CoQ10 axis mentioned above. The 
following is an overview of how some natural products 
exert anti osteoporosis effects by regulating ferroptosis.

Artemisinin (ARS) is the main extract of the Chi-
nese herb Artemisia annua, which has antimalarial 
[79] and anticancer effects [80] and has recently been 
shown to inhibit OCs. Previous studies have shown that 
ARS can inhibit bone loss in animal models, including 
lipopolysaccharide (LPS) induced bone loss models [81], 
ovariectomized osteoporosis models [82], titanium par-
ticle induced osteolysis models [83], and osteoarthritis 
induced bone loss models [84]. According to the high 
level of iron in osteoclasts, ARS may inhibit osteoclast 
differentiation through mechanisms related to intracellu-
lar iron. This mechanism involves mediating P53/SAT1/
ALOX15 axis to block intracellular oxidative damage, 
peroxides, and increase cellular free iron levels to induce 
ferroptosis in osteoclasts [85]. The activation of ARS by 
iron and the high iron content in osteoclasts may activate 
the ARS peroxide group to produce a large number of 
free radicals, thereby inhibiting the generation and bone 
resorption of osteoclasts [86]. In addition, it can also 
cause ferroptosis in OCs by downregulating the RANKL-
induced osteoclastogenesis pathway [86, 87].

Gastrodin is a major component of the Chinese herbal 
medicine asparagine, which modulates neurotransmit-
ters [88] and has anti-inflammatory [89] and antioxi-
dant effects [90]. Currently, asparagine is widely used in 
the prevention and treatment of osteoporosis [92, 94, b]. 
Both in vivo and in vitro studies have confirmed that gas-
trodin reduces glucocorticoid induced cell apoptosis and 
increases mitochondrial membrane function by activat-
ing the NRF2/HO-1 pathway, inhibits ferroptosis of oste-
oblasts, enhances differentiation function of osteoblasts, 
and thus achieves the effect of improving osteoporosis 
[93].

Biochanin A, which is a major component of Astragalus 
membranaceus, has been shown to have osteoprotec-
tive effects in vivo and in vitro [94, 95]. The mechanism 
of action may involve reducing intracellular iron levels 
by inhibiting TFR1 and promoting FPN expression or by 
inhibiting ferroptosis by preventing lipid peroxidation 
through the Nrf2 and System Xc-/GPX4 signaling path-
ways [95]. Astragalus polysaccharide is another major 
active ingredient in Astragalus membranaceus. The fer-
roptosis model of BMSCs induced by ferric ammonium 
citrate was found after intervention with astragalus poly-
saccharides. Astragalus polysaccharide can effectively 

reduce the accumulation of intracellular and mitochon-
drial ROS in BMSCs by intervening in p62/Keap1/Nrf2 
axis, thereby protecting BMSCs from ferroptosis, ulti-
mately restoring cell proliferation and differentiation 
ability, and increasing bone mass [96].

Quercetin is widely found in TCM, such as Scutel-
laria baicalensis [97], Ginkgo biloba [98] and Eucommia 
japonica [99]. Quercetin has been proven to be effec-
tive in preventing and treating osteoporosis by inhibit-
ing osteoclasts and promoting osteoblasts [100, 101]. By 
detecting Fe3 + reduction and lipid peroxidation clear-
ance rates, researchers found that quercetin can signifi-
cantly reduce ROS accumulation and protect BMSCs 
from erastin induced ferroptosis, thereby improving 
osteoporosis [102]. And this mechanism may be achieved 
through antioxidant pathways, such as the NRF2/HO-1 
ferroptosis pathway.

The effective extract of Curculigo orchioides is the phe-
nolic glycoside curculigoside, which has shown antioxi-
dant and bone protective properties [103]. The phenolic 
glycoside curculigoside can protect the proliferation and 
differentiation ability of MC3T3-E1 induced by excessive 
iron by upregulating the levels of FoxO1 and Nrf2, down-
regulating the levels of p53 and FoxO1 phosphorylation, 
enhancing its antioxidant effect, inhibiting cell ferrop-
tosis, and enhancing the activity of ALP. In addition, it 
can improve the bone density and microstructure of iron 
excess mice [104].

Resveratrol, as an activator of SIRT1, extracts die-
tary foods such as pistachios, peanuts, etc. Studies have 
shown that resveratrol can significantly protect bone 
trabecular defects and injuries in iron excess mice, so as 
to prevent bone loss in osteoporosis mice. The mecha-
nism may be that resveratrol upregulates FoxO1 to pro-
tect against excessive iron damage to Runx2, OCN, and 
type I collagen, reducing oxidative stress and alleviating 
cell ferroptosis. In addition, resveratrol also reduced the 
proportion of OPG/RANKL in osteoblasts and mice, and 
improved bone loss [105].

Icariin is a flavonoid glycoside extracted from Herba 
Epimedii, which can play an antiosteoporosis role [106]. 
In  vitro studies have shown that icariin can reverse 
Runx2, ALP and OCN by inhibiting ROS production and 
mitochondrial membrane potential dysfunction caused 
by iron overload in osteoblasts, thereby protecting oste-
oblasts from ferroptosis. In addition, icariin can also 
inhibit osteoclast differentiation and function. Mean-
while, icariin can significantly reduce the production 
and accumulation of iron in the bone marrow, promote 
osteoclast ferroptosis, and thus inhibit bone loss in ani-
mal models [107].

Neferine is a natural product extracted from Nelumbo 
nucifera and has significant anti-inflammatory [108], 
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antioxidant [109], and anticancer properties [110]. Nefer-
ine exerts therapeutic effects by regulating the Nrf2/
HO-1 pathway to control cell ferroptosis [111]. Simi-
larly, Neferine can use NF-κB signaling pathway inhibits 
osteoclasts and promotes the generation, proliferation, 
and differentiation of osteoblasts, preventing and treating 
osteoporosis [112].

Curcumin is the main active ingredient of traditional 
Chinese medicine Curcuma longa LINN, belonging to 
the polyphenolic yellow substance [113]. A study in vitro 
showed that Curcumin upregulated the phosphorylation 
level of AKT/GSK3β, improved mitochondrial oxidation 
status, inhibited the death of the osteoblast line Saos-
2, and promoted its osteogenic function [114]. Another 
in vivo study also confirmed that curcumin exerts an ant-
iosteoporosis effect by protecting osteoblasts from death 
[115].

Artesunate is one of the artemisinin compounds 
derived from the plant Artemisia annua [116]. Artesu-
nate can induce ferroptosis in osteoclasts by increasing 
the production of malondialdehyde and 4-hydroxynona-
nal. This study also confirms that Artesunate plays a role 
in inhibiting the proliferation and differentiation of oste-
oclasts, reducing bone loss [117].

Maresin1 is a major derivative of -3 fatty acids, which 
has been proven to have antioxidant and anti-inflamma-
tory effects [118]. A recent experimental result indicates 
that Maresin1 primarily activates the NRF2 signaling 
pathway, further increasing the activity of GPX4 and 
SLC7A11, achieving inhibition of ferroptosis in osteo-
blasts and promotion of osteogenic ability in MC3T3-
E1 cells. Maresin1 inhibits type 2 diabetes osteoporosis 
based on this mechanism [119].

Silymarin is a flavonoid compound extracted from milk 
thistle seeds with significant antioxidant properties [120]. 
Silymarin has been confirmed to enhance the expression 
of RUNX2 and SIRT1, inhibit ferroptosis in osteoblasts, 
and thus promote the activity and differentiation of oste-
oblasts. At the same time, it was found in animal models 
of osteoporosis that Silymarin can improve bone loss by 
inhibiting ferroptosis [121].

Humulus lupulus L is a traditional folk medicine in 
China that can be used for postmenopausal osteoporosis 
[122]. Xanthohumol is a unique hop extract with anti-
inflammatory, antioxidant, and osteoprotective effects 
[123–125]. Xanthohumol can be activated by the AKT/
GSK3β/ Nrf2 pathway, inhibits oxidative stress induced 
by iron dextran, inhibits ferroptosis in osteoblasts, and 
effectively improves bone loss and increases bone micro-
structure in mice with iron overload. In addition, Xan-
thohumol significantly promoted the cell proliferation 
and differentiation ability of osteogenic cells induced by 
iron dextran, and the expression of osteogenic-related 

proteins such as Runx2, thereby enhancing the expres-
sion of ALP [126].

Geniposide is an effective extract from gardenia flow-
ers and plays an important role in combating osteoporo-
sis [127]. In vitro and in vivo studies have confirmed that 
Geniposide exerts antioxidant stress by directly upregu-
lating the RNA binding protein Grsf1 of GPX4, inhibiting 
cell ferroptosis [128], and regulating NRF2/NF-κB signal-
ing pathway inhibits osteoblast death and exerts an anti-
osteoporosis effect [129].

Herbal compounding is also widely used in the preven-
tion and treatment of osteoporosis through the ferropto-
sis pathway. Qing’e Pill is an herbal formula consisting of 
four botanicals with strong antioxidant activity against 
lipid metabolism dysfunction [130]. In  vitro studies 
have shown that Qingmoth Pill can inhibit ferroptosis 
by affecting the System Xc-/GPX4 signaling pathway, 
thereby promoting the differentiation function of OBs. It 
was also confirmed that Qingmoth Pill improved erastin-
induced ferroptosis in depressed rats in vivo [131]. These 
in vivo and in vitro studies have confirmed that herbs and 
herbal compounds can prevent and treat osteoporosis 
through ferroptosis (Table 1).

Discussion
Osteoporosis has been effectively controlled, but the 
commonly used anti-osteoporosis drugs in clinical prac-
tice have shortcomings, such as unstable efficacy, serious 
toxic side effects, and susceptibility to drug resistance 
[132]. In recent years, with the continuous research on 
natural products in East Asian countries, it has been 
found that compared with traditional synthetic drugs, 
natural products have a larger molecular weight, stable 
active skeleton, and excellent biological activity in the 
process of anti- osteoporosis [133–135]. Geniposide has 
obvious advantages in the treatment of osteoporosis, 
such as high biological activity and multiple therapeu-
tic mechanisms [127, 129]. It is precisely based on these 
advantages of natural products that it has become the 
most common choice for the development of new drugs 
against osteoporosis [136]. Both clinical and basic experi-
ments have shown that natural products have enormous 
to exert anti-osteoporosis effects. Ferroptosis is another 
form of cell death distinct from autophagy and apoptosis. 
Interestingly, ferroptosis has also been widely used in the 
treatment of osteoporosis. This mechanism mainly inhib-
its osteoblasts’ ferroptosis and promotes osteoclasts’ 
ferroptosis, thereby reducing bone loss and achieving 
anti-osteoporosis effects. Multiple in  vivo and in  vitro 
studies have confirmed this conclusion [137–139]. Vari-
ous natural products, such as Gastrodin, Biochanin A, 
and Icariin, have been proven to have anti-osteoporosis 
effects through ferroptosis. Combining natural products 
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and cell ferroptosis is another practical therapeutic 
approach for preventing and treating osteoporosis.

Although many natural products have been proven to 
have anti-osteoporosis effects by regulating ferroptosis, 
this evidence is limited to the cellular or animal level, 
and there are still very few clinical drugs for treating 
osteoporosis through the conversion of natural prod-
ucts, which is a significant limitation and challenge. On 
the one hand, screening and verifying effective drugs that 
can effectively treat osteoporosis in clinical practice from 
natural products that have been proven to have effects 
in both cells and animals requires a considerable work-
load, human resources, and economic expenses, as well 
as a significant amount of time, which is very detrimen-
tal to the conversion into clinical drugs [140]. Therefore, 
this requires more efficient and cutting-edge technology 
development and precise identification, which may be 
a good suggestion to address this reason. On the other 
hand, natural products have drawbacks such as fast 
metabolism, poor absorption, low bioavailability, and low 
specificity [141]. One way to address this drawback is for 
researchers to focus on improving the bioavailability and 
specificity of natural products by developing new drug 

delivery systems. In addition, the limitations of natural 
product collection and safety are also why it is difficult to 
convert into clinical drugs [142]. The reasons listed above 
require our researchers to continuously explore safer, 
more efficient, precise, and more suitable natural prod-
ucts for clinical conversion.

Conclusion
In this review, we summarized iron metabolism, lipid 
peroxidation and the pathways associated with ferrop-
tosis in vivo. We also detailed how ferroptosis regulates 
OBs and OCs to prevent and treat osteoporosis. Besides, 
some in vivo and in vitro examples of natural products for 
preventing and treating osteoporosis through ferroptosis 
were discussed. Finally, we discussed the advantages and 
disadvantages of natural products and the effective way 
for natural products to exert anti-osteoporosis effects by 
mediating ferroptosis. In conclusion, this review provides 
a theoretical basis for studying the mechanism of ferrop-
tosis and the relationship between ferroptosis and osteo-
porosis to guide natural products in the prevention and 
treatment of osteoporosis. Furthermore, natural prod-
ucts have great potential to regulate OBs and OCs by 

Table 1 Examples of natural products for the prevention and treatment of osteoporosis through ferroptosis

Natural products Mechanisms related to ferroptosis regulation Mechanism of the prevention and treatment 
of osteoporosis

References

Artemisinin Increased TFR1-mediated iron uptake Promotion of OC differentiation [86, 87]

Gastrodin Activation of the NRF2/HO-1 pathway Enhanced differentiation of OB to improve OB 
function

[91, 93]

Biochanin A Alters the Nrf2 and System Xc-/GPX4 signaling 
pathways to prevent lipid peroxidation

Inhibition of OC differentiation [95]

Astragalus polysaccharide Reduce the accumulation of ROS in mitochondria Promoting the proliferation and differentiation 
of OB

[96]

Quercetin The antioxidant pathway reduces ROS accumula-
tion

Protects OB from damage [102]

Phenolic glycoside curculigoside Upregulation of FoxO1 and Nrf2 levels, downregu-
lation of p53 and FoxO1 phosphorylation levels

Enhance the proliferation and differentiation abil-
ity of osteoblasts

[104]

Resveratrol protects Runx2, OCN and type I collagen Inhibition of osteoclasts [105]

Icariin Inhibition of ROS production and mitochondrial 
membrane potential dysfunction

Inhibition of osteoclasts and protection of osteo-
blasts

[107]

Neferine By regulating the Nrf2/HO-1 pathway to control 
cell ferroptosis

Inhibition of osteoclasts and protection of osteo-
blasts

[111, 112]

Curcumin Regulating AKT/GSK3βpathway to improve mito-
chondrial oxidative status

Inhibited the death of the osteoblast line Saos-2 [114, 115]

Artesunate Increasing the production of malondialdehyde 
and 4-hydroxynonanal

Inhibiting the activity and differentiation of osteo-
clast

[117]

Maresin1 Activating the NRF2 signaling pathway, further 
increasing the activity of GPX4 and SLC7A11

Inhibiting the ferroptosis in osteoblasts and pro-
moting the osteogenic ability of MC3T3-E1 cells

[119]

Silymarin Enhancing the expression of RUNX2 and SIRT1 Inhibiting the ferroptosis in osteoblasts [121]

Xanthohumol Activating the AKT/GSK3β/ Nrf2 pathway Protecting osteoblasts from ferroptosis [126]

Geniposide Antioxidant via directly upregulating Grsf1 
of GPX4

Inhibiting the osteoblast death [128, 129]

Qing’e Pill Affects the System Xc-/GPX4 signaling pathway Promotes the differentiation of OB [131]
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mediating ferroptosis to prevent and treat osteoporosis, 
and it is worthwhile to explore and discover more natural 
products that can prevent and treat osteoporosis.
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