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Abstract 

Osteoporotic fractures impose a substantial burden on patients with diabetes due to their unique characteristics 
in bone metabolism, limiting the efficacy of conventional fracture prediction tools. Artificial intelligence (AI) algo-
rithms have shown great promise in predicting osteoporotic fractures. This review aims to evaluate the application 
of traditional fracture prediction tools (FRAX, QFracture, and Garvan FRC) in patients with diabetes and osteoporosis, 
review AI-based fracture prediction achievements, and assess the potential efficiency of AI algorithms in this popula-
tion. This comprehensive literature search was conducted in Pubmed and Web of Science. We found that conven-
tional prediction tools exhibit limited accuracy in predicting fractures in patients with diabetes and osteoporosis due 
to their distinct bone metabolism characteristics. Conversely, AI algorithms show remarkable potential in enhancing 
predictive precision and improving patient outcomes. However, the utilization of AI algorithms for predicting osteo-
porotic fractures in diabetic patients is still in its nascent phase, further research is required to validate their efficacy 
and assess the potential advantages of their application in clinical practice.
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Introduction
Osteoporotic fractures (OF) remains a prevalent clini-
cal disorder that severely impacts patients’ quality of life, 
leading to hospitalization, disability, and even mortality 
[1]. The diagnosis of osteoporosis is established when 
the bone mineral density (BMD) value falls below − 2.5 
standard deviations (T-score − 2.5) [2]. Latest globalized 
data has indicated that the prevalence of osteoporosis 
and osteopenia were 19.7% and 40.4%, respectively [3]. 

OFs is the most common complication of osteoporosis, 
including hip fracture (HF), vertebral fracture (VF), wrist 
fractures (WF), and distal radius fracture (DRF). An esti-
mated 9 million cases of OF were reported worldwide in 
2000, including 1.6 million HF, 1.7 million WF, and 1.4 
million VF [4]. Notably, the mortality rate after HF may 
be as high as 20% [5]. Given the substantial morbidity and 
serious consequences associated with OF, this condition 
imposes a significant economic burden on society that 
cannot be ignored. In 2000, osteoporosis in the UK was 
accountable for a financial burden of 1.8 billion pounds, 
and this figure is estimated to rise to 2.2 billion pounds by 
2025 [6]. Similarly, China is projected to experience 5.99 
million osteoporotic fractures annually, with an annual 
cost of 25.43 billion US dollars by 2050 [7]. Aging remains 
the primary etiological factor that underlies osteoporosis, 
while secondary causes include chronic kidney disease, 
diabetes, thyroid disease, treatment of glucocorticoids, 
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proton pump inhibitors, antiepileptic drugs, and selective 
serotonin reuptake inhibitors [8]. With the global trend 
of population aging, OF will undoubtedly become more 
prevalent [9]. Thereby emphasizing the need for accurate 
risk assessment to minimize the substantial socioeco-
nomic costs associated with this condition.

In addition to the rising incidence of osteoporosis, 
diabetes is also a growing public health concern. Inter-
estingly, although patients with type 1 diabetes mellitus 
(T1DM) tend to have lower BMD, patients with type 
2 diabetes mellitus (T2DM) often exhibit higher BMD 
[10]. Despite these differences in BMD, both T1DM and 
T2DM increase the risk of fracture [11]. FRAX, QFrac-
ture algorithm and the Garvan Fracture Risk Calculator 
(Garvan FRC) are the most common fracture risk predic-
tion tools internationally. However, these tools fail to pre-
dict the fracture risk of patients with diabetes accurately 
[12]. Specifically, FRAX and Garvan FRC underestimate 
fracture risk in patients with T2DM by failing to incor-
porate T2DM as an independent predictor. On the other 
hand, although QFracture includes both T1DM and 
T2DM as independent predictors, its performance has 
not been validated in diabetic populations [12]. As such, 
there is a pressing need for more accurate fracture risk 
prediction tools for individuals with diabetes.

This comprehensive review aims to provide insights 
into the unique features of bone metabolism and frac-
ture risk in patients with osteoporosis and diabetes mel-
litus. Specifically, we critically analyze the limitations 
of currently available osteoporosis prediction tools for 
diabetic populations and explore the potential of artifi-
cial intelligence (AI) in enhancing the accuracy of frac-
ture prediction. Our findings highlight the urgent need 
for innovative approaches to personalized fracture risk 
assessment and management.

Correlation of diabetes and osteoporotic fracture
Distinct pathophysiological mechanisms of T1DM and 
T2DM underlie the heightened fracture risk observed in 
patients with diabetes. The risk for fractures in patients 
with T1DM is six-fold higher than in the general popula-
tion, primarily due to low BMD, alterations in bone qual-
ity, microarchitecture, and impaired bone turnover state 
[13]. Non-osseous factors such as recurrent hypoglyce-
mic episodes, peripheral neuropathy, autonomic neurop-
athy, retinopathy, and low body weight further increase 
the risk of falls in this population [14]. Although the 
decrease of BMD is not significant, T2DM patients still 
have a higher risk of fracture than non-diabetes patients 
[13, 15]. A meta-analysis comprising 54 clinical studies 
conducted in China has demonstrated that the preva-
lence of osteoporosis in patients with type 2 diabetes is 
significantly higher (37.8%) than the overall prevalence 

of osteoporosis (27.96%) [16]. In sharp contrast to the 
effect of secondary OF in T1DM, T2DM patients tend to 
present with higher BMD [17]. Alteration in bone micro-
architecture that result in poor bone quality may account 
for the increased risk of fracture in T2DM patients. 
Studies have shown that trabecular bone score (TBS) in 
patients of T2DM and pre-diabetes stage is significantly 
lower than that in non-type 2 diabetes patients [18]. The 
changes of bone microstructure in T2DM with OF were 
characterized by higher endocortical bone surface, intra-
cortical pore volume and greater relative porosity at the 
distal tibia and ultra-distal radius [19]. In addition to 
the risk factors above mentioned, chronic hyperglyce-
mia, tissue-specific accumulation of advanced glycation 
end-products (AGE), changes in vitamin D homeostasis, 
diabetes microvascular disease, and insulin pharmaco-
therapy [20], which are common to the two types of dia-
betes, have adverse effects on the bone health of diabetes 
patients. In view of the large population base of diabetes 
patients, the unique bone metabolism characteristics, 
and higher prevalence of osteoporosis, OF should not be 
neglected as a complication of diabetes.

Prediction effect of traditional prediction tools 
on fracture in diabetes patients
At present, there are various risk assessment tools for 
OF. The most recommended risk assessment tool is the 
FRAX® fracture risk assessment tool [21], followed by the 
QFracture algorithm [22] and the Garvan Fracture Risk 
Calculator (Garvan FRC) [23].

FRAX (https:// www. sheff eld. ac. uk/ FRAX/) is a com-
puter-based algorithm that calculates the fracture risk 
in the next 10 years for people aged 40–90. Since it was 
developed in 2008, FRAX has been an open access tool 
provided convenience for clinicians all over the world. 
The algorithm incorporates independent variables 
included age, weight (kg), height (cm), previous fracture 
history, parent hip fracture history, smoking history, 
glucocorticoid use history, rheumatoid arthritis history, 
secondary osteoporosis history, alcohol intake history, 
and femoral neck BMD value. Obviously, race, diet, geo-
graphical factors that vary from regions to regions are 
not included. The reason that FRAX is recommended by 
most osteoporosis related guidelines or consensus all over 
the world is that FRAX has been calibrated to countries 
or regions where the epidemiology of fracture and death 
is known (currently 64 countries) [21]. FRAX regards 
T1DM but not T2DM as a cause of secondary osteopo-
rosis, and the current FRAX algorithm does not acquire 
T2DM input, which may be the reason why FRAX has 
insuffcient ability to predict fracture in patients with dia-
betes [24]. As for T1DM, scientists haven made efforts to 
use FRAX algorithm to predict fracture in patients with 
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T1DM without BMD value in a clinical cohort of 346 
patients with T1DM and 411 controls, and concluded 
that the FRAX without BMD exerted good prediction 
effciency in detecting patients with T1DM at risk of 
major osteoporotic fracture (MOF) [25]. However, it has 
been recognized that FRAX underestimates the fracture 
risk of individuals with T2DM when applied to popula-
tions with equivalent BMD and T score [26]. In 2012, a 
clinical study including 3518 diabetes patients and 36,085 
non diabetes patients showed that FRAX underestimated 
the risk of MOF and HF observed in diabetes patients 
after adjusting for competitive mortality [27]. Further-
more, a cohort study of 49,098 non-diabetic women and 
8840 women with diabetes in 2016 showed that FRAX 
underestimated the risk of HF in diabetes patients, 
while in diabetes patients with diabetes for more than 
10 years, FRAX underestimated the risk of MOF [28]. To 
improve the performance of FRAX for T2DM, four fea-
sible methods have been proposed [29]: (1) including the 
rheumatoid arthritis (RA) input to FRAX; (2) making a 
TBS adjustment to FRAX; (3) reducing the femoral neck 
T-score input to FRAX by 0.5 SD; and (4) increasing the 
age input to FRAX by 10 years. However, there has not 
been a method that is optimal in all cases.

QFracture (https:// qfrac ture. org/) was developed by 
Julia Hippisley Cox and Carol Coupland based on data 
from the United Kingdom to estimate1 to 10-year risk 
of MOF and HF in people aged 30–99 without BMD 
measurement. It is characterized by no need for imag-
ing or laboratory examination data. The variables in this 
algorithm included body mass index (BMI), age, gender, 
ethnicity, smoking status, alcohol status, history of dia-
betes, parent’s history of osteoporosis/hip fracture, resi-
dence history of nursing or care home, history of wrist 
spine hip or shoulder fracture, history of falls, dementia, 
cancer, asthma or chronic obstructive pulmonary dis-
ease (COPD), heart attack, angina, stroke or transient 
ischemic attack (TIA), chronic liver disease, chronic kid-
ney disease (stage 4 or 5), Parkinson’s disease, rheumatoid 
arthritis or systemic lupus erythematosus (SLE), malab-
sorption such as Crohn’s disease, ulcerative colitis, coeliac 
disease, steatorrhea or blind loop syndrome, endocrine 
problems such as thyrotoxicosis, hyperparathyroidism, 
Cushing’s syndrome, epilepsy or treatment of anticonvul-
sants, antidepressants, treatment of steroid tablets regu-
larly, and estrogen replacement therapy. Compared with 
FRAX, the advantage of QFracture algorithm applied 
in the prediction of osteoporotic fracture in diabetics is 
that it directly includes the presence or absence of dia-
betes as its calculation variable. However, there are cur-
rently no studies specifically evaluating the performance 
of QFacture prediction of OF in patients with diabetes. 
Despite the disadvantages including not taking BMD as 

an input variable, ignoring mortality as a competitive 
risk, and only calibrated for use in populations in UK, its 
clinical use is still recognized. The Fremantle Diabetes 
Study Phase I (FDS1) in 2019 [30] proposed a simple HF 
risk prediction tool which took QFacture as comparison 
to evaluate the prediction effciency of MOF. QFracture 
demonstrated excellent discrimination, calibration, and 
accuracy. During 10 years of follow-up, 48 (3.94%) out of 
the 1219 members of the FDS1 cohort with T2DM had 
an incident HF, and the predicted risk by the QFracture 
hip fracture risk equation is 4.06% (49.5 cases).

Garvan FRC was developed based on the Dubbo Oste-
oporosis Epidemiology Study (DOES) cohort study in 
Australia in 2007 [31]. Garvan FRC incorporates four 
clinical risk factors including age, sex, number of previ-
ous fractures, and number of recent falls with BMD or 
weight (when BMD is not available) to estimate 5-year 
and 10-year risk of OF and HF [32]. Although diabe-
tes is not incorporated in Garvan FRC’s risk prediction 
algorithm, history of recent falls may substitute for the 
increased risk of diabetes to a certain extent. A registry-
based cohort study was performed in 2022 to estimate 
the performance of Garvan FRC in patients with diabe-
tes [33]. Individuals aged 50–95 years consisting of 2618 
women with and 14,064 without diabetes, and 636 men 
with and 2201 without diabetes were recruited and their 
5-year fracture risk rate was calculated. Results showed 
that Garvan FRC provided similar fracture risk stratifica-
tion in individuals with versus without diabetes, however, 
OF risk in women with diabetes was underestimated. 
Interestingly, after lowering the femoral neck T-score by 
0.3 in women with diabetes for re-calculation, the effect 
of diabetes on OF and HF provided by Garvan FRC was 
largely attenuated.

As mentioned above, clinicians use of FRAX, QFrac-
ture, and Garvan FRC for estimation of fracture risk 
in an individual with diabetes should be aware of this 
limitation.

Performance of AI in predicting osteoporotic 
fracture
Since the above three tools have limitation in predict-
ing osteoporotic fracture in patients with diabetes, there 
is an urgent need to develop a convenient and accurate 
tool to predict the risk of OF in patients with diabetes. 
In recent years, the rapid development of artificial intel-
ligence has brought a feasible answer.

Artificial intelligence (AI) technology has been 
increasingly utilized in the field of osteoporosis, pri-
marily through machine learning (ML) methodologies. 
ML is to apply specific traits to identify patterns that 
can be used to analyze a particular situation [34]. Algo-
rithms of ML are typically classified into three typical 

https://qfracture.org/
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types: supervised learning, unsupervised learning, 
and semi supervised learning. The typical supervised 
learning algorithms include linear regression, logis-
tic regression, neural network, decision tree, random 
forest, support vector machine, least absolute shrink-
age and section operator, ensemble learning, and deep 
learning, etc. Unsupervised learning algorithms include 
K-means clustering, principal component analysis, sup-
port vector domain description, and local outlier factor, 
etc. Semi supervised learning is an algorithm that com-
bines supervised learning and unsupervised learning 
but rarely used in the medical field. Supervised learn-
ing is frequently used to estimate risk. The area under 
the receiver operating characteristic curve (AUROC) 
and precision-recall curve (PRC) are comparatively 
common patterns to demonstrate the performance of 
AI algorithms [35]. These powerful algorithms allow 
for the identification of complex relationships and pat-
terns within large datasets, offering great potential 
in advancing our understanding and management of 
osteoporosis.

To assess the current predictive value of AI in estimat-
ing osteoporotic fracture risk, a systematic literature 
search was conducted across multiple electronic data-
bases, including PubMed and Web of Science. Studies 
published till March 2023 were included. A restriction for 
English language has been applied. Searches relevant to 
the use of AI to predict osteoporotic fracture were made 
using the search terms (“Fracture” OR “Fragility Frac-
ture” OR “Osteoporotic Fracture”) AND (“Artificial Intel-
ligence” OR “Deep Learning” OR “Machine Learning”) 
AND “Osteoporosis”. Records identified from searches 
were screened by the Li Zeting and Zhao Wen.

The study selection flow diagram is presented in Fig. 1. 
272 literature results were identified by the search stra-
gety.76 records were removed as duplicates. 5 records 
were removed as introduction of patents or techniques. 
33 records were removed as conference articles. 31 
records were removed as reviews or comments. 108 
records were removed after review of titles, abstracts, and 
full-texts, among which 16 were irrelevant to the theme, 
and 92 identified as AI on osteoporosis in other fields, 
including 2 about applications of AI on omics, 44 about 
applications of AI on prediction of BMD and screening 
and diagnosis of osteoporosis, 24 about applications of 
AI on diagnosis of fracture, 17 about applications of AI 
on assessment of bone quality or bone microstructure, 
and 5 about applications of AI on iatrogenic intervention 
related to osteoporosis and its prognosis. A total of 19 of 
these records [36–54] concerned with the applications of 
AI on prediction of fracture risks were considered eligible 
for inclusion in the current literature review as presented 
in Table 1.

According to the presented data, most researches 
(18/19) of application of AI on prediction of fracture 
risks showed up after 2017, which is related to the vig-
orous and rapid development of AI algorithm in recent 
years. Researchers from various localities have gained 
universally acknowledged achievements in this domain, 
especially researchers from North America [36, 39, 44, 
48, 49, 51], Europe [41–43, 45–47, 50, 52, 53], and East 
Asia [37, 38, 40]. As for the application of algorithm pat-
terns, supervised learning [41–51, 53, 54] is the most 
common pattern of risk prediction algorithm, and there 
are also reports on the application of unsupervised [36, 
52] learning methods to define high-risk groups of OFs. 
Most of the existing studies are based on the existing 
cohort researches. In the field of fracture risk prediction, 
the application of AI is mainly divided into three types, 
among which the most common type is to improve the 
effciency of fracture risk prediction by to establishing a 
new method or by applying the existing AI algorithm to 
the field of fracture risk prediction [38–40, 42–44, 46–49, 
53, 54]. The following is to improve the prediction eff-
ciency of the original ML prediction model or traditional 
prediction method by incorporating innovative imaging 
data or clinical characteristics [36, 37, 39, 41, 45, 50, 51]. 
Last but not least, to define the high-risk group [36, 52] 
through ML algorithm, and then calculate its fracture 
prediction risk.

The prediction effciency of AI fracture prediction 
model is the most concerned in clinic. As shown in 
Table 1, most ML model excellent prediction effciency, 
with AUC range from 0.74 to 0.99. Kruse et  al. [53] 
made the greatest efforts in the application of the ML 
algorithm, that 24 ML algorithms were applied in their 
research to predict 5-year hip fracture and 10-year hip 
fracture for a population of 4722 women and 717 men, 
including Classification Tree, Bootstrap aggregated 
trees, Bayesian Generalized Linear Model, Partial Least 
Squares, k-Nearest Neighbours (kNN), Boosted Logis-
tic Regression, Boosted Generalized Additive Model, 
High Dimensional Discriminant Analysis, Random For-
est (RF), Conditional Inference Tree, Logistic Model 
Trees, Stochastic Gradient Boostin, Quadratic Discri-
minant Analysis, Linear Discriminant Analysis, Bagged 
Flexible Discriminant Analysis (BFDA), Bagged Multi-
variate Adaptive Regression Splines, Nearest Shrunken 
Centroids, Support Vector Machines with Radial 
Weights, Neural Network (NN), Neural Network with 
Feature Extraction, eXtreme Gradient Boosting (XGB), 
Conditional Inference Random Forest and Adaptive 
Boosting. Predictive performance and calibrated prob-
abilities were good as AUC > 0.9 in ML algorithms such 
as XGB, RF, and BFDA, and the best performance is the 
BFDA in the female group with an AUC value of 0.91. 
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These results surpassed the most widely used modi-
fied FRAX tools performance achieved by Lundin et al. 
(AUC = 0.73 [0.64;0.81]) [55]and that in the Spanish 
FRIDEX cohort (AUC = 0.88 [0.82; 0.95]) [56].

Adding new parameters to the existing ML model may 
obtain potentially beneficial effects. Dong et al. [39] mod-
ified GoogLeNet, a neural network algorithm, to 4461 
subjects and 15,524 spine radiographs for osteoporotic 

Fig. 1  The study selection flow diagram
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compression fractures by combing radiographs Genant 
semiquantitative system, then achieved an AUC-ROC of 
0.99 and an area under the precision-recall curve (AUC-
PR) of 0.82, respectively. Meanwhile, a sensitivity of 
59.8%, a specificity of 99.9%, a positive predictive value 
(PPV) of 91.2%, an F1 score of 0.72, and an accuracy of 
99.5% were yielded.

In addition to improve the prediction effciency, to 
identify the characteristics of high fracture risk popula-
tion in the early stage is also of great clinical significance. 
Whittier et  al. [36] classified a multinational cohort 
(n = 5873), into three phenotypes by fuzzy c-means 
clustering, an unsupervised ML method, with high-
resolution peripheral quantitative computed tomogra-
phy (HR-pQCT) data. These phenotypes were identified 
by their anatomically different characteristics in bone 
microarchitecture, and associated with stratified risk of 
osteoporotic fracture. Furthermore, within each phe-
notype, unique bone imaging biomarkers were associ-
ated with within-phenotype fracture risk. This fracture 
prediction model that predicted fracture risk through 
unsupervised learning method combined with imaging 
examination rather than other cumbersome laboratory 
examination results or clinical characteristics facilitated 
clinical workflow.

A growing body of research has compared the eff-
cacy of various ML methods in fracture risk prediction. 
In general, newer ML techniques, such as random forest 
(RF) and neural networks (NN), have demonstrated supe-
rior performance compared to traditional approaches 
like logistic regression (LR). Furthermore, it is expected 
that deep learning (DL) methods will yield even bet-
ter results in this domain. For instance, Wu et  al. [44] 
established a prediction model of male osteoporosis frac-
ture (n = 5130) with genetic risk score, BMD, and other 
risk factors as predictors by using ML methods such as 
RF, NN, gradient boosting, and LR. Unsurprisingly, per-
formance of LR was significantly worse than the more 
advanced techniques of of RF, NN, gradient boosting. 
However, in contrast to previous studies, recent research 
has shown that traditional AI methods may still hold 
promise for fracture risk prediction. For example, when 
de Vries et  al. [43] developed Cox regression, random 
survival forests (RSF) and an artificial neural network 
(ANN)-DeepSurv model to predict the risk of a future 
MOF, Cox regression outperformed RSF (p = 0.043 and 
p = 0.023) and ANN-DeepSurv (p = 0.043) with a C-index 
of 0.625 (0.562–0.689), pulling back a game for tradi-
tional AI methods These results suggest that the adage 
"new is good" may not always hold true in the field of AI, 
and reinforce the importance of rigorous comparative 
studies to identify the most effective methods for specific 
clinical applications.

In general, the development of AI algorithm has led the 
prediction of osteoporotic fracture into a new aera. Com-
pared to traditional predictive tools, AI algorithms have 
achieved superior effciency in fracture risk assessment. 
However, among the various types of AI algorithms cur-
rently available, no single algorithm has demonstrated 
consistently outstanding predictive performance. Addi-
tionally, issues related to universality and practicality still 
need to be addressed, highlighting the need for contin-
ued improvement in this field. To achieve optimal results, 
it is necessary to develop specific AI algorithms tailored 
to the needs of distinct populations, such as diabetic 
patients, which would enable the creation of specialized 
predictive tools for these high-risk groups.

Efficacy of AI in predicting osteoporotic fracture 
in diabetes population
As previously discussed, conventional fracture risk pre-
diction tools have shown limited effcacy when applied 
to osteoporosis patients with diabetes. Now what about 
the performance of AI algorithm? 20 literature results 
were identified in PubMed using the search terms 
("Fracture"[All Fields] OR "Fragility Fracture"[All Fields] 
OR "Osteoporotic Fracture"[All Fields]) AND ("Artificial 
Intelligence"[All Fields] OR "Deep Learning"[All Fields] 
OR "Machine Learning"[All Fields]) AND ("Diabetes"[All 
Fields] OR "Hyperglycemia"[All Fields] OR "Abnormal 
glucose metabolism"[All Fields]), and 23 literature results 
were identified in Web of Science with search terms 
(((TS = (Artificial Intelligence OR Deep Learning OR 
Machine Learning)) AND TS = (Fracture OR Fragility 
Fracture OR Osteoporotic Fracture)) AND TS = (Diabe-
tes OR Hyperglycemia OR Abnormal glucose metabo-
lism)). However, only 3 records were accurately related to 
application of AI on fracture risk prediction in diabetes 
patients after review of titles and abstracts.

In 2022, Chen et  al. [40] developed a hybrid model 
combining XGBoost with deep neural network (DNN) to 
predict the fracture risk of patients using data of 14,419 
diabetes patients. Various machine learning methods 
were used simultaneously in this study, including LR, RF, 
kNN, Support Vector Machine (SVM), Decision Tree 
(DT), Extremely Randomized Trees (ERT), Gradient 
Boosting Decision Tree (GBDT), AdaBoost, CatBoost, 
XGBoost, and multilayer perceptron (MLP, a DNN 
derived algorism). Accuracy of the ML methods ranged 
from 67.76% to 86.08%, precision ranged from 70.41% to 
87.69%. LR presented the worst performance (accuracy 
of 67.76% and precision of 70.41%), while XGboost (accu-
racy of 86.08% and precision of 87.69%) and MLP (accu-
racy of 82.78% and precision of 84.18%). Furthermore, 
the authors combined the best two methods to develop a 
new one and achieved the best performance (accuracy of 
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90.38%, precision of 90.52%, and AUC of approximately 
0.90). Under the premise that the fracture prediction 
ability of traditional tools in diabetes patients is greatly 
reduced, it is encouraging that AI shows such excellent 
prediction effciency. In the following year, two exciting 
studies emerged. Chu et  al. [57] developed Probabilistic 
Classification Vector Machines (PCVM) algorithm to 
construct risk prediction models for fractures apart from 
the 6 algorithms LR, SVM, RF, DT, GBDT, XGBoost, 
which were conducted in the research above. What 
is delightful is that PCVM achieved the best f1 scores 
(0.97), surpassing LR (0.75), SVM (0.83), RF (0.84), DT 
(0.85), GBDT (0.87), XGBoost (0.88). Research of Chen 
et  al. [40] determined 18 influencing factors of fracture 
risks of patients with diabetes while Chu et al. [57] deter-
mined 17 influencing factors, these influencing factors 
were easy to obtain and do not require precise inspec-
tion. To predict the risk of hip fractures in a more accu-
rate way, Yosibash et al. [58] developed a ML algorithm 
with autonomous finite element analyses (AFE) based 
on CT scans for hip fracture risk assessment in type 2 
diabetic mellitus (T2DM). The research results showed 
a sensitivity of 92% and specificity of 88% (cross-vali-
dation area under the curve [AUC] 0.92) among T2DM 
patients, indicating that AL algorithm has the potential 
to showcase more advantages in the accuracy of fracture 
risk assessment for diabetes patient combining with the 
advancement of imaging technique.

Current evidences suggest that Denosumab, Iban-
dronate, and Teriparatide are considered the most suc-
cessful drugs for postmenopausal osteoporosis-related 
fragility fractures [59, 60]. Risedronate, alendronate, zole-
dronate, denosumab, or etidronate have also shown good 
effcacy in preventing fractures in corticosteroid-induced 
osteoporosis (CIO) [61]. The effectiveness of osteoporo-
sis treatment is believed to be related to factors such as 
polymorphisms of the vitamin D receptor (VDR) [62], 
and biochemical markers of bone turnover (BTMs), such 
as the bone alkaline phosphatase (bALP), procollagen 
type I N propeptide (PINP), serum cross-linked C-tel-
opeptides of type I collagen (bCTx), and urinary cross-
linked N-telopeptides of type I collagen (NTx) [63, 64]. 
However, there is a lack of large-scale clinical studies on 
osteoporosis patients with diabetes, which is related to 
the lack of prediction methods for osteoporotic fractures 
in patients with osteoporosis and diabetes, which leads to 
the lack of awareness of this aspect. Although research 
in this field is still limited, it is noteworthy that vari-
ous machine learning methods were employed in these 
researches, leveraging large dataset for training purposes. 
As such, these findings lend credibility to the potential 
utility of AI-driven approaches for improving risk predic-
tion in diabetic patients. Nevertheless, further research 

is warranted to validate and extend these results, as well 
as to explore the broader applicability of AI in addressing 
clinical challenges related to osteoporosis management 
in high-risk populations.

Conclusion
In the domain of osteoporotic fracture prediction, there 
remains a substantial need for improved performance of 
traditional tools such as FRAX, QFracture, and Garvan 
FRC when applied to patients with diabetes. Under 
such conditions, AI algorithm holds a bright future in 
enhancing the accuracy of fracture risk prediction in 
osteoporosis patients with diabetes. Notably, advanced 
AI techniques are rapidly evolving, while conventional 
methods such as linear regression continue to demon-
strate utility. However, the limitations of AI methods 
comprising the demand of large amount of training data, 
inconvenience for clinical application, and unpredictable 
universality of the model. To address these challenges, it 
is urgent to develop new machine learning models using 
large, real-world data sets from patients with diabetes 
and osteoporosis exhibiting regional or national charac-
teristics. By leveraging these approaches, it may be pos-
sible to establish a novel, widely accepted osteoporotic 
fracture prediction tool that can better serve the needs of 
high-risk patient populations.
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